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Abstract

Satellite images in the visible spectral range contain high-resolution cloud infor-
mation, but have not been assimilated directly before. This paper presents
a case-study on the assimilation of visible Meteosat SEVIRI images in a
convective-scale data assimilation system based on a local ensemble transform
Kalman filter (LETKF) in a near-operational set-up. For this purpose, a fast
look-up table-based forward operator is used to generated synthetic satellite
images from the model state. Single-observation experiments show that the
assimilation of visible reflectances improves cloud cover under most condi-
tions and often reduces temperature and humidity errors. In cycled experiments
for two summer days with convective precipitation, the assimilation strongly
reduces the errors of cloud cover and improves the precipitation forecast. While
these results are promising, several issues are identified that limit the efficacy of
the assimilation process. First, the linearity assumption of the LETKF can lead
to errors as reflectance is a nonlinear function of the model state. Second, errors
can arise from the fact that visible reflectances alone are ambiguous and only
weakly sensitive to the water phase and cloud-top height. And lastly, it is not
obvious how to localise vertical covariances as visible reflectances are sensitive
to clouds at all heights. For the latter reason, no vertical localisation was used in
this study. To investigate the robustness of the results, the horizontal localisation
scale, the assigned observation error and the spatial density of observations were
varied in sensitivity experiments. The best results were obtained for an observa-
tion error close to the Desroziers estimate. High observation density combined
with small localisation radii resulted in the smallest 1 hr forecast error. These set-
tings were also beneficial for 3 hr forecasts, but forecasts at that lead time were
less sensitive to the observation density and the localisation scale.
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1 | INTRODUCTION

Cloud-affected satellite observations provide a promis-
ing source of information for data assimilation. Clouds
cover a large fraction of the Earth and frequently occur
in areas that are meteorologically of particular sensitivity
(McNally, 2002). Furthermore, clouds are an indicator of
primary forecast features, for example fronts and cyclones
on synoptic scales, as well as individual thunderstorms on
convective scales.

Nevertheless, only a very small fraction of the avail-
able cloud information is assimilated in current numer-
ical weather prediction (NWP) models. Several major
NWP centres recently started to assimilated cloud-affected
observations of microwave channels in global models and
achieved significant forecast improvements through the
incorporation of this new data source (Zhu et al., 2016;
Geer et al., 2017). Extending this direct "all-sky" assimi-
lation approach to infrared satellite channels is an active
field of research, but is not yet implemented operationally
(Okamoto, 2017; Geer et al., 2018). Furthermore, most
NWP centres do not yet include cloud variables in the
data assimilation control vector, and thus only achieve
improvements through the correction of the underlying
dynamics. Satellite channels in the solar spectrum are not
yet assimilated operationally in any NWP model despite
providing a wealth of information on atmospheric clouds.

Regional convection-permitting models lag even fur-
ther behind on the assimilation of cloud-affected satel-
lite observations since microwave channels are not avail-
able on geostationary satellites and polar-orbiting satel-
lites provide only very limited temporal resolution. Conse-
quently, operational convection-permitting regional mod-
els do not yet assimilate cloud-affected satellite observa-
tions, although these data potentially provide very relevant
information on the position and intensity of convective
storms (Gustafsson et al., 2017; Geer et al., 2018).

The high spatio-temporal density of satellite observa-
tions, for example measured by the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) on Meteosat, is
particularly promising to constrain small-scale processes
acting on the convective scale (Gustafsson et al., 2017).
In convective-scale forecasts, low stratus and convective
precipitation are among the less accurately represented
processes with major impact for society. Clouds and par-
ticularly deficiencies in the model representation of low
stratus dominate the uncertainty of solar power produc-
tion forecasts (Kurzrock et al., 2018). Heavy precipitation
preceded by the development of clouds in the process of
convective initiation is a major hazard for the security of
the public and thus requires timely and accurate warnings.
The prediction of both processes would strongly benefit
from a better positioning and better constraint of clouds

and convective systems in the analysis through all-sky data
assimilation.

For the discussed purpose, satellite observations in the
solar part of the electromagnetic spectrum, in particular
from visible and near-infrared channels, are a very promis-
ing source of information. Measuring the part of the inci-
dent sunlight that is reflected by clouds, aerosols and the
Earth’s surface, solar satellite channels allows us to infer
high-resolution information on cloud position and micro-
physics, the structure and albedo of the Earth’s surface and
aerosol distributions. Moreover, the information in solar
channels is complementary to that obtained from ther-
mal infrared channels. While cloud-affected observations
in the thermal infrared range are sensitive to both tem-
perature and clouds, non-absorbing solar channels like the
visible 0.6 pm channel are nearly exclusively sensitive to
clouds. Also with respect to the cloud-top height, thermal
and visible channels are complementary. While the bright-
ness temperature measured in thermal channels provides
information on the cloud-top height, visible reflectances
only very weakly depend on the vertical position of the
cloud. In thermal channels, low clouds are either invisible,
because of absorption by water vapour or other trace gases
higher up in the atmosphere, or hard to distinguish from
the ground or the sea, because of the weak temperature
difference between the Earth’s surface and the boundary
layer. In contrast, the brightness contrast between clouds
and the Earth’s surface makes low clouds well discernible
in visible channels. The latter thus offer possibilities to
retrieve information on boundary-layer clouds like low
stratus, fog and cumulus clouds, which is integral to the
advancement of convective-scale weather prediction for
the reasons discussed above. Finally, cirrus clouds that are
opaque in thermal channels are often semi-transparent in
visible channels, which makes it possible to infer infor-
mation on medium and low clouds below thin cirrus. All
these properties indicate that visible channels can provide
new and valuable information for data assimilation, with
the only obvious disadvantage that their use is restricted to
daytime.

Until recently, the simulation of visible satellite images
required for their assimilation has been computationally
too expensive for operational purposes. A novel possibil-
ity has been opened up by the development of the fast and
accurate radiative transfer method MFASIS (Method for
FAst Satellite Image Synthesis; Scheck et al., 2016), which
has recently also been implemented in the RTTOV (Radia-
tive Transfer for TOVS) package (Saunders et al., 2018). In
this work, we demonstrate the feasibility of assimilating
solar satellite channels in a convective-scale data assimila-
tion framework using MFASIS. We focus on two summer
days with convective precipitation and forecasts with a
length of up to three hours. These restrictions limit the
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computational effort and allow us to perform a number
of sensitivity experiments with different assimilation set-
tings. We assess the impact of the new observations on
surface and tropospheric wind, temperature and humid-
ity, cloud cover approximated by reflectance itself as well
as precipitation. Furthermore, key challenges for the effi-
ciency of the assimilation process, for example, nonlinear-
ity and ambiguity of the observations, are identified and
discussed by means of single-observation experiments.

The paper is organised as follows. In Section 2, we
introduce the observations, the forward operator and our
modelling and data assimilation framework. In Section 3,
the experimental set-up and synoptic situation during
the case-studies are explained and an overview of our
numerical experiments is given. Sections 4 and 5 are dedi-
cated to the discussion of the results of single-observation
and cycled experiments, respectively. Conclusions are pre-
sented in Section 6.

2 | DATA AND METHODS
2.1 | Data assimilation and modelling
framework

For this study, we employ the Kilometre-scale ENsemble
Data Assimilation (KENDA) system (Schraff et al., 2016)
developed at Deutscher Wetterdienst (DWD). To com-
pute the first-guess and forecast ensembles, we employ
version 5.2 of the limited-area, non-hydrostatic NWP
model COSMO (Consortium for Small-scale MOdeling)
in the COSMO-DE set-up. This configuration has been
operational at DWD until May 2018 (Baldauf et al,
2011), with a grid spacing of 2.8 km and a domain cov-
ering Germany and its neighbouring countries (black
rectangle in Figure 1). The numerical grid consists of
421 x 461 columns and uses 50 hybrid layers that are
terrain-following in the lower levels and flat in the upper
levels. The grid extends up to 22km. Deep convection is
represented explicitly by the model whereas shallow con-
vection is parametrized by means of a simplified version
of the Tiedtke scheme (Tiedtke, 1989). A Lin-type (Lin
etal., 1983) one-moment bulk cloud microphysics scheme
including cloud water, cloud ice, rain, snow and graupel is
used that contains a simplified version of the parametriza-
tion of Seifert and Beheng (2001) for auto-conversion,
accretion and self-collection. The boundary conditions for
the COSMO-DE model runs are taken from ICON-EU
model runs with parametrized convection and a grid reso-
lution of 7 km.

The Local Ensemble Transform Kalman Filter
(LETKF) used in this study is a square-root filter follow-
ing Hunt et al. (2007). Its advantage is the flow-dependent
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update of the sample background-error covariance matrix
as well as its computational efficiency conducting the
analysis in the low-dimensional ensemble space (trans-
form) and grid point by grid point (local) on a reduced
analysis grid. In a first step, the analysis mean is com-
puted by an optimal linear combination of the first-guess
ensemble members. In a second step, the analysis ensem-
ble is spanned such that its spread reflects the estimated
analysis uncertainty.
The LETKEF cost function is given by

Jw) = (k= DW'™W) + ° = §° — Yow)"
X R(Y° -¥ - Y'w), 1)

where the weight vector w is of dimension k of the
ensemble space, and R is the observation-error covari-
ance matrix. In this formulation of the cost function, a
linear relationship between the first-guess ensemble in
model space and its transformation to observation space is
assumed:

HE +X°w) ~ y + Y'w. )

In Equation (2) (corresponding to equation 18 in Hunt
et al. 2007), X" is the first-guess ensemble mean and X"
the background ensemble perturbation matrix. Column i
of Xt is given by x*® — X", the deviation of the state vec-
tor of background member i from the mean state. Y is
the background ensemble perturbation matrix in observa-
tion space with columns y*® — " and the model equiva-
lents y*@ = H(x*?) are obtained by means of the nonlinear
forward operator H. The analysis ensemble members in
model space are computed as

X0 =%+ xwW, 3)

where W' is the weight vector minimising Equation (1).

The linearity assumption (Equation (2)) may not
always be valid, in particular for nonlinear forward opera-
tors sensitive to clouds and precipitation processes such as
the MFASIS operator applied in this work. We will discuss
the effects of this linearisation on the assimilation of solar
satellite channels in Section 4.

In the operational KENDA system, conventional obser-
vations from SYNOP stations, radiosondes, wind profilers,
drifting buoys and aircraft (AMDAR, Aircraft Meteoro-
logical DAta Relay, and MODE-S) are assimilated. In this
study, all these observations are assimilated, except for
MODE-S data and drifting buoys. A second difference to
the operational KENDA set-up is that we do not employ
latent heat nudging, which pulls the model towards
radar-derived precipitation rates during the first-guess
integrations.
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In our near-operational set-up, about 5,000-6,000 con-
ventional observations are available per hour in the assim-
ilation and evaluation region that extends from 47.7° to
56.0°N and from 3.5° to 17.5°E (red box in Figure 1). The
assimilation region was chosen to be somewhat smaller
than the COSMO-DE model domain and excludes the Alps
and areas close to the domain boundary to avoid nest-
ing effects and the misinterpretation of snow as clouds.
As discussed in Schraff et al. (2016), observations are
only assimilated up to a height of 300 hPa to avoid prob-
lems in the Raleigh dampening layer on the top of the
model column. Since the flight level of aircrafts is typically
above 300 hPa, the aircraft report (AIREP) observations
displayed in Figure 1 are mainly from ascent and descent
flight phases.

2.2 | Satellite observations and forward
operator

We assimilate satellite images measured by the SEVIRI
instrument onboard the satellite Meteosat-10 of the Euro-
pean Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) at a wavelength of 0.6 pm in the
visible part of the solar spectrum. In contrast to the chan-
nels in the near-infrared and infrared spectral range, the
0.6 pm channel is not affected significantly by absorption.
Moreover, the contribution of clear-sky Rayleigh scatter-
ing to the reflectance is rather small. Thus, the cloud-top
height has only a very weak influence on the observed
reflectance.

To generate synthetic 0.6 pm SEVIRI images, the
model state is transformed to radiative transfer (RT) input
parameters as in Scheck et al. (2018) and the MFASIS
RT method (Scheck et al., 2016) is used to compute
reflectances. The RT solver requires profiles of extinc-
tion coefficients and effective particle radii for water and
ice clouds and cloud cover. The extinction coefficients
and effective radii are computed following Kostka et al.
(2014). Effective droplet radii are calculated adopting the
approach of Martin et al. (1994) and the parametrization
of Wyser (1998) is used for effective ice particle sizes.
Water and ice contents are converted to extinction coef-
ficients using the parametrizations of Hu and Stamnes
(1993) and Fu (1996), respectively. In contrast to Scheck
et al. (2016) and Kostka et al. (2014), assumptions on the
cloud fraction and the overlap of subgrid clouds are taken
into account. In the COSMO model, it is assumed that
subgrid clouds exist in cells where the relative humid-
ity exceeds a height-dependent critical value (Quaas, 2012
gives an overiew of this approach). We used subgrid cloud
water and ice contents and cloud fractions that are consis-
tent with the assumptions used in the model. Consistent
with COSMO’s internal RT code for computing heating
rates, we use the stochastic 3D maximum-random overlap
method from Scheck et al. (2018). The integrated optical
depths and mean effective radii for water and ice clouds
obtained by the method are converted to reflectances using
MFASIS with the 21MB look-up table described in Scheck
et al. (2016). Aerosols are not yet taken into account
in the operator. However, except for special events, like
Sahara dust outbreaks, their impact on visible reflectances
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Reflectance in the 0.6 pm SEVIRI channel as a function of (a) total column water content and (b) optical depth for a water

cloud and an ice cloud for different effective particle radii. The albedo was set to 0.1, the solar zenith angle to 30°, the satellite zenith angle to

60° and the scattering angle to 135°

should be much smaller than the cloud signal. The rela-
tive reflectance error of MFASIS with respect to the dis-
crete ordinate method (DISORT; Stamnes et al., 1988) has
been found to be less than 2% (Scheck et al., 2016). For
a number of high-resolution scenes, the RMS reflectance
errors caused by 3D RT effects have been shown to be in
the range 0.05-0.2 (Scheck et al., 2018). The agreement
of the synthetic reflectance distribution based on opera-
tional COSMO-DE forecasts for May and June 2016 with
the observed distribution was found to be quite good for
not too extreme solar zenith angles in Scheck et al. (2018).
Therefore, we decided not to perform any bias correction
for the visible reflectances.

2.3 | Sensitivity of visible reflectances
to the model state

For the interpretation of assimilation experiments, it is
important to clarify which model state variables have an
influence on the visible reflectances generated by the for-
ward operator. In Figure 2, reflectances for water and ice
clouds are shown as functions of the optical depths and the
column-integrated water contents. It is obvious that the
reflectance, R, is a highly nonlinear function of the optical
depth, 7. R(r) strongly increases for values between 1 and
100 and saturates for larger optical depths.

Due to differences in the scattering phase function of
spherical water droplets and ice particles with complex
shapes, the reflectance of water and ice clouds can differ
significantly for a given viewing geometry, in particular
for special cases like fog bows and halos. However, aver-
aged over all viewing angles, water and ice clouds with
the same optical depth have similar reflectances. This is
also the case for the viewing geometry of the example in
Figure 2. However, ice particles are in general much larger

than cloud droplets. For the same water content, a larger
mean particle radius corresponds to a lower particle con-
centration and, as the increased scattering cross-section
cannot fully compensate for this effect, a lower probabil-
ity of scattering. Consequently, the reflectance of an ice
cloud is generally lower than that of a water cloud with
the same water content (Figure 2a). However, water clouds
cannot be distinguished from ice clouds based on visible
reflectance only.

The curves displayed in Figure 2 represent the
reflectance for single cloud layers with cloud fraction 1.
The sensitivity to cloud water and ice may differ signif-
icantly if several cloud layers are present and when the
clouds only fill a part of the atmospheric column (i.e., if the
column contains grid boxes with cloud fractions between
zero and one). The reflectance generally depends on all
water and ice cloud layers, but its sensitivity to the water or
ice content in specific layers can be much smaller than in
the single-layer case shown in Figure 2. For instance, the
liquid water content (LWC) of a water cloud under a thick
ice cloud has only a very weak impact on the reflectance.
The presence of the ice cloud will thus reduce dR/dLWC.
As a second example, the ice water content (IWC) of a thin
ice cloud has an impact on the reflectance when a thick
water cloud is present.

The variables LWC and IWC used as input vari-
ables for the RT do not only contain grid-scale cloud
water, but also a contribution from parametrized subgrid
clouds. For cells with a relative humidity higher than a
height-dependent threshold value (in COSMO typically
70-95%), it is assumed that subgrid clouds are present
(Schomburg et al., 2015) and contribute to the LWC. Thus
there is also a sensitivity of the reflectance to humidity for
grid cells close to saturation. Moreover, the reflectance also
depends on the local gradient of the cloud-top height, an
effect that is taken into account by means of the cloud-top
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inclination correction of Scheck et al. (2018). In contrast to
infrared radiances, the cloud-top height itself has no sig-
nificant influence on the 0.6 pm reflectance (discussion in
Scheck et al., 2016).

2.4 | Superobbing and thinning

In the COSMO-KENDA system, a diagonal
observation-error covariance matrix is employed. To alle-
viate problems with correlated observation errors, it can
be helpful to reduce the spatial density of the observations.
One of the standard approaches is to thin the observations,
which means to remove satellite pixels in regular spatial
intervals such that the distance between neighbouring
observation locations is increased. For the satellite images
considered here, the thinning process keeps every nth
pixel in the zonal direction and only every 2nth pixel in
the meridional direction. Due to the broadening of the
radiation beam in the meridional direction, as one satellite
pixel of the SEVIRI instrument covers a nearly rectangu-
lar surface area with dimensions of about 6 x 3km in the
COSMO-DE domain, this leads to a regular grid of satel-
lite observations that is nearly equidistant with a thinning
length scale of Iy, =n x 6 km.

Superobbing, i.e. averaging the reflectance for every
block of k x m pixels, is a further approach to data reduc-
tion. However, since all pixels are included in the averaging
process, correlated observation errors cannot be removed
as efficiently. Rather, the reason for superobbing is to
reduce the representativeness error by drawing the spatial
scale represented by the observations towards the effective
resolution of the model. To achieve a nearly equidistant
grid of observations, we assume k=2Xxm and define a
superobbing length-scale as I, = m X 6 km.

Superobbing and thinning can also be combined. In
this case, the superobbing is performed first and then
only every fuinth superobservation is kept in the zonal
and meridional directions, which results in a horizontal
observation density of

psat = (lsoﬁhin)_z- 4)

To keep this definition meaningful when only thinning
is used, we assume Iy, = 6 km and f;, = n in this case.

Both superobbing and thinning are suitable meth-
ods to reduce the number of observations. Beyond
data reduction, reduction of representativeness error
and accounting for the assumption of uncorrelated
observation errors, this is useful to balance the num-
ber of conventional and satellite observations. Schraff
et al. (2016) define the effective number of observa-
tions as the sum of localisation-weighted observations

that influence a grid point in the analysis. The adaptive
localisation method for conventional observations in
KENDA tries to keep this number constant by locally
adjusting the localisation radius to a value between 50 and
100 km.

For observations with a constant spatial density p, like
the thinned and/or superobbed satellite images considered
here, the localisation-weighted number of observations
within the cut-off radius r, = 24/10/3 I, (here 1, is the
localisation scale) can be shown to be

)
/ G(r) p 2z dr = 27p 12,
0

where G is the Gaspari-Cohn function (Gaspari and
Cohn, 1999), which is zero for r> ry. For satellite obser-
vations with p = p% the effective number of observa-
tions influencing each grid point in the analysis is Nggt =
27 (lsafnin) 2.

3 | EXPERIMENTAL SET-UP

3.1 | Synoptic situation

The data assimilation experiments were conducted for two
days, namely 29 May and 5 June 2016, from a highly
convective period that has been studied extensively (e.g.,
Necker et al. 2018; 2020; Keil et al. 2019; Bachmann et al.
2020). From 26 May 26 to 9 June 2016, a high num-
ber of consecutive severe thunderstorms, heavy rainfall,
flash floods, hail and tornados determined the weather
situation in Germany and caused losses on the order
of billions of Euros. According to Piper et al. (2016),
the fundamental trigger for these events was a block-
ing situation due to a large-scale ridge extending from
Great Britain over Iceland to central Scandinavia which
blocked the exchange of moist and unstable air masses
over Europe.

Due to the weak pressure gradient that accompanied
the blocking situation, there was basically no advective
forcing on 5 June so that the thunderstorms were mostly
stationary and caused extremely heavy rainfall and hail
with precipitation totals of more than 100 mm within
few hours in some locations. In contrast, significantly
stronger forcing influenced convection on 29 May so that
the convective cells had a much shorter lifetime. For the
assimilation of SEVIRI-VIS observations, the two days are
particularly interesting as they provide very diverse large-
and small-scale convective clouds at the state of convective
initiation as well as fully developed cumulonimbus clouds
with large anvils.
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3.2 | Set-up and metrics
for single-observation experiments

A number of single-observation experiments were con-
ducted to investigate the impact of assimilating VIS obser-
vations. The observations were selected such that they
are spatio-temporally close to radiosonde observations. In
total, 35 radiosondes were launched at 1045 UTC and
1645 UTC on 29 May and 5 June 2016 within the assim-
ilation region shown in Figure 1. The distance between
the radiosonde stations is sufficiently large (Figure 1)
such that setting the horizontal localisation cut-off radius
to 90km ensures that every analysis grid point is influ-
enced by only one VIS observation. Thereby, multiple
single-observation experiments can be conducted simul-
taneously in one LETKF cycle (as in Schomburg et al.,
2015). First-guess forecasts were initialised by a model
warm start at 1000 UTC and 1600 UTC on 29 May and
5 June from a reference cycling experiment in which
only conventional observations were assimilated. Analy-
ses were computed for 1100 UTC and 1700 UTC using
selected VIS observations only. While inflation meth-
ods were used in the reference experiment from which
the single-observation experiment was started (see next
section), they were switched off for the single-observation
analysis step. The increments generated in the analysis are
thus caused only by the assimilation of the observation.
For the sake of simplicity we assimilated individual satel-
lite pixels and not superobservations. An observation error
of 0.1 was used.

To assess the error of the model state with respect to
radiosonde observations, we define mean profile errors as

1 Pmin
€y =———— / [Xo — X,|dp, (5)
Dsfc — Pmin Dete

where X is one of the variables T, RH, U and V and
v e A,B indicates whether the deviation from the observa-
tion Xo is computed for the first-guess (B) or the analysis
(A) model state. pyi, was set to 200 hPa. To quantify the
change in the mean profile errors due to data assimila-
tion, we define Aey = €3 — €¥, for which negative values

indicate a reduction of the error.

3.3 | Standard set-up for cycled
experiments

For cycled assimilation experiments, we employed
near-operational settings. As in Schraff et al. (2016), we
used 40 ensemble members and an assimilation window
of 1hr. To control spread, both additive and adaptive
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multiplicative inflation were used together with relax-
ation to prior perturbations (RTPP; Zhang et al., 2004),
for which the @ parameter was set to 0.75, as in Har-
nisch and Keil (2015). The scaling factor for the additive
inflation (parameter @, in Zeng et al., 2018) was set to
a value of 0.2, which improved results slightly com-
pared to the operational value of 0.1. For conventional
observations, we used the same fixed vertical localisa-
tion and adaptive horizontal localisation as in Schraff
et al. (2016). The adaptive localisation aims at restrict-
ing the effective number of observations that influence
a grid point to a given value, in this case a number of
100. To achieve this goal, the localisation scale is allowed
to vary between 50 and 100 km. The LETKF state vector
in our experiments comprises the prognostic variables
temperature, specific humidity, surface pressure, hor-
izontal and vertical velocity components, cloud water
and cloud ice.

In the standard configuration, we apply superobbing
(no thinning) with a length-scale of I, = 18 km. The super-
obbed image resolution is thus somewhat coarser than the
effective model resolution, which Bierdel et al. (2012) esti-
mated to be about five times the grid spacing of 2.8 km.
Within each 1-hr data assimilation window, one visible
satellite image is assimilated assuming a constant observa-
tion error of 0.2. The horizontal localisation scale for the
superobbed reflectance observations is set to a constant
value of 50 km such that the effective number of satel-
lite observations that influence a grid cell in the analysis
(as defined in Section 2.4) is Nggt ~ 50. The motivation
for this choice was to give satellite observations a sig-
nificant weight relative to the conventional observations
without overwhelming the influence of the latter. As visi-
ble reflectances are sensitive to clouds at all heights, there
is no obvious way to perform a vertical localisation. There-
fore, vertical localisation is not used for these observa-
tions in our experiments. Furthermore, no bias correction
was used in the experiments given the short experimental
period.

In the following, the data assimilation experiment
using only conventional observations is denoted CONV.
The experiment using both conventional and visible
satellite observations is denoted VISCONV. Both exper-
iments were cycled throughout the two days described
in Section 3.1. The CONV experiment was initialised
at 2100 UTC on the previous day and extended until
1800 UTC. The VISCONV experiment was branched off
the CONV experiment at 0500 UTC. Thus, we assim-
ilate satellite images in each cycle between 0600 and
1800 UTC. For both 29 May and 5 June, forecasts with a
lead time of 3 hr are initialised at 0600, 0900, 1200 and
1500 UTC.
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TABLE 1
assimilation settings of all experiments

Overview of the

described in Section 3.4 Experiment
S6-1
S6-2
S12-1
S12-2
S18-1
S18-2
S18-3
S18-4
S36-1
S36-2
S36-3
S18T2-1
S18T2-2
T12-1
T12-2
T18-1
T18-2
T18-3
HL-1
HL-2
HL-3

Oo

0.15
0.20
0.15
0.20
0.30
0.20
0.15
0.10
0.20
0.15
0.10
0.15
0.10
0.15
0.20
0.20
0.15
0.10
0.20
0.20
0.20

Iy Ly I N3t
(km) (km) (km) Ng' (10*hr™)
17 6 — 50.4 166.6
17 6 — 50.4 166.6
35 12 — 53.5 41.7
35 12 = 53.5 41.7
50 18 — 48.5 18.5
50 18 — 48.5 18.5
50 18 — 48.5 18.5
50 18 — 48.5 18.5
100 36 — 48.5 4.6
100 36 — 48.5 4.6
100 36 — 48.5 4.6
100 18 36 48.5 4.6
100 18 36 48.5 4.6
35 = 12 53.5 41.7
35 — 12 53.5 41.7
50 = 18 48.5 18.5
50 — 18 48.5 18.5
50 = 18 48.5 18.5
70 18 — 95.0 18.5
50 18 = 48.5 18.5
35 18 — 23.8 18.5

Note: For each case, the assigned observation error o, the horizontal localisation scale I,, the superobbing
scale I, the thinning scale I, the number of satellite observations influencing each grid cell, Ng}‘f’ and the

total number of satellite observations assimilated every hour,

Nsat

ot are specified. Section 2.4 gives exact

definitions. The experiments S18-2 and HL-2 are identical to the VISCONV standard experiment. Bold
type denotes variation in one or two parameters within each group.

3.4 | Sensitivity experiments
with modified parameters

In addition to the cycled experiments with the standard
configuration, a number of experiments with modified
assimilation settings was performed to assess the impact of
tunable parameters. An overview of the experiments and
the assimilation settings is given in Table 1. Eight groups
of experiments were conducted and within each group one
or two parameters were varied (indicated by bold type in
the table).

In the groups S6, S12, S18, S36 the superobbing scale
was set to 6,12, 18 and 36 km, respectively. Within the
group, the assigned observation error was varied. Groups
T12 and T18 are similar to S12 and S18, but thinning was
used instead of superobbing and the number in the iden-
tifier refers to the thinning length-scale. In group S18T2,

superobbing to 18 km was combined with thinning by a
factor of finin, =2 in the zonal and meridional directions
(Section 2.4). In the described groups, the total number of
satellite observations N%' assimilated per 1-hourly cycle
varies between 4,600 and 160,000. However, the localisa-
tion radius for the satellite observations is adjusted such
that Ng' ~ 50 satellite observations influence each grid
cell in the analysis in all of the experiments. In contrast,
the localisation radius is varied without changing N;2' in
group HL. Therefore, Ng;' varies and more (HL-1) or less
(HL-3) weight is given to the satellite observations than in
the standard configuration.

Note that the experiments S18-2 and HL-2 are iden-
tical to the VISCONV experiment carried out with the
standard assimilation settings. As discussed in Section 3.3,
no vertical localisation is used for the reflectance
observations.
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4 | RESULTSI:
SINGLE-OBSERVATION
EXPERIMENTS
4.1 | Impacton reflectance
Figure 3a provides an overview of the pairs of effec-
tive optical depths of water and ice clouds in the 35
different single-observation experiments. Among these
cases are pure water, pure ice and mixed pairs with
ice optical depths up to 7 and water optical depths
up to 70.

To discuss the impact of the data assimilation on
error reduction, we use the following definitions. The
mean reflectance of the background members is denoted

by

Rp =

1=

k
D HE), (6)
i=1

the mean reflectance of the analysis members (as esti-
mated by the LETKF) by
L&
= 2 V'3 4 youad

RA—kigly + Yow*, (7)

and the observed reflectances by Rp, where all other vari-
ables are defined in Section 2.1, just as in Hunt et al.
(2007). While Equation (6) involves applying the full non-
linear operator H to the background ensemble members,
the latter is not applied in Equation (7). Instead of using
H, the reflectances of the analysis members are estimated
from the reflectances of the background members using
Equation (2). Since, as discussed in Section 2.3, the relation
between model state and visible reflectance is nonlinear,
we assess the effect of the linearity assumption. For that

-0.2 0.0 0.2 0.4

text are marked with numbers
Rg-Ro

purpose, we apply the full nonlinear operator to a 50s
forecast started from the analysis state. It is not possible to
apply the operator directly to the analysis state, since the
diagnostic variables (e.g., the ones related to the shallow
convection, which contributes to the subgrid clouds) are
not part of the analysis. However, by applying the opera-
tor to a very short forecast, the left side of Equation (2) can
be approximated. The obtained reflectance values allow
for the computation of the actual mean reflectances of the
analysis members,

k k
1 a(i 1 - a(i
RY = E;H(x Dy = E;H(xb +Xw).  (8)

If a single observation is assimilated, the devia-
tion of the mean analysis reflectance from the obser-
vation, IRy —Rpl, should be smaller than the one of
the background, |IRg —Rpl. As shown in Figure 3b, it
is IRg — Rol—IRs — Rpl >0 for all experiments (open cir-
cles). For larger first-guess departures, a stronger reduc-
tion of the error is achieved. However, when the change
in the reflectance departure is calculated using analysis
reflectances computed with the full nonlinear operator
(filled circles in Figure 3b), it becomes evident that in many
cases the departure reduction as estimated by the LETKF,
IRg — Rol—IRA — Rol, differs from the actual value, |Rp —
Ro| = |R} —Ro|. In most cases, the model equivalents
have not been drawn as close to the observations as esti-
mated by the LETKF. The nonlinearity of the operator thus
limits the effectiveness of the VIS assimilation. However,
only for cases with small first-guess departures, the non-
linearity of the operator leads to analysis reflectance errors
that are larger than the first-guess errors (|Rg — Ro| —
IR} — Rol| < 0). In any other case, the analysis is closer to
the observations than the first guess.
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4.2 | Impact on model variables

Figure 4 shows the impact on tropospheric tempera-
ture, humidity and the horizontal wind components as
verified against radiosondes. For nearly all cases, the
impact on relative humidity is either beneficial or neu-
tral (Figure 4a). The only case with increased error (the
dot in the upper-right corner) will be discussed below.
Results for temperature errors are similar. In most cases
the error is reduced and there are only three cases with an
error increase of more than 0.05 K. The evaluation of winds

overall does not show a systematic effect (Figure 4b).

4.3 | Selected cases

The cases marked with digits 1-3 in Figures 3 and 4 are
now discussed further.

431 | Casel

In the first case, the first-guess ensemble is dominated by
a thick water cloud below a thin ice cloud and has a mean
reflectance of 0.7 (Figure 5a). The observed reflectance
is only 0.35 and related to a low-level cloud indicated
by the radiosonde humidity profile shown in Figure 6e.
In the LETKF analysis, the water content and the cloud
fraction of the water cloud are decreased (Figure 6a,c).
The reflectance is reduced to about 0.5. The ice content
remains unchanged and the cloud fraction is even slightly
increased at the ice cloud (Figure 6b). There are two rea-
sons for the ice cloud remaining nearly unchanged. First,
in this situation with a thin ice cloud and a much thicker
water cloud, the derivative of reflectance with respect to
QI should be smaller than the one with respect to QC,

which means that changes in the water cloud are a more
efficient way for the LETKF to change the reflectance. Sec-
ond, the spread in QI is smaller than in QC (not shown).
The linearisation used in the LETKF does not lead to a
significant error in the ensemble mean reflectance in this
case, but causes the reflectance spread to be increased
instead of being decreased (compare A and A* ensembles
in Figure 5a). After the assimilation, the relative humid-
ity and temperature profiles better agree with the ones
observed by the radiosonde (Figure 6d,e). The removal of
clouds leads to a stronger direct insolation of the surface
and higher low-level temperatures.

Even though the observation lies outside the back-
ground ensemble (Figure 5a), the LETKF manages to
improve reflectance, humidity and temperature in this
case. The cloud variables are improved in the sense that
a too dense low- to mid-level water cloud is mostly
removed. However, the remaining water cloud in the anal-
ysis extends further up than the radiosonde profile sug-
gests. This problem results from the fact that cloud-top
height is not constrained by the visible reflectance obser-
vations (Section 2.3).

43.2 | Case2

In the second case, a thick anvil ice cloud with a reflectance
of 0.9 was present at the location of the radiosonde. The
observed 0.6 pm reflectance alone only indicates that a
optically thick cloud was present, but the significantly
lower reflectance in the corresponding 1.6 pm image (not
shown) can only be explained by an ice cloud (Wolters
et al., 2008). In contrast, the ensemble only contains
much thinner ice clouds and mid-level water clouds
(Figure 7a—c) with a mean reflectance of 0.5 (Figure 5b).
Neither the water cloud nor the ice cloud dominate the
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FIGURE 6 Vertical profiles of background (B) and analysis (A) mean variables at the release location of the radiosonde for case 1. The

panels show (from left to right) cloud water mixing ratio QC, cloud ice mixing ratio QI, cloud fraction CLC, relative humidity RH, and
temperature 7. The thin black line in the RH panel is the RH observed by the radiosonde. The T panel shows the first-guess departure of the

ensemble mean for temperature (first-guess minus observation)

mean reflectance of the background ensemble. Conse-
quently, both the ice clouds and the mid-level water clouds
are enhanced in the LETKF analysis - the ice cloud mainly
by increasing the mixing ratio, the water cloud more by
increasing the cloud fraction (Figure 7a—c). These changes
cause the reflectance to increase to 0.8. However, the
radiosonde profiles show that the humidity had already
been too high at mid- and lower levels and this error is
increased further in the analysis (Figure 7d). Moreover, the
model temperature profile at lower levels is pushed further
away from the radiosonde profile (Figure 7e). In this case,
the linearisation in the LETKF causes not only an under-
estimation of the reflectance spread in the analysis, as in
case 1, but also leads to a mean analysis reflectance that is
not as close to the observed value as indicated by the linear
estimate (compare A and A* ensembles in Figure 5b).

This case is an example of the challenges related to
the ambiguity of visible reflectances. Both changes in the
water and the ice clouds could reduce the reflectance
departure and thus both are modified in the analysis.
From the radiosonde profiles it seems unlikely that a
dense water cloud was present below the ice cloud.
Assimilating additional satellite observations like the
1.6um channel (in which ice clouds are darker than
water clouds) or thermal infrared channels could reduce
this ambiguity. Moreover, vertical localisation could have
been useful in this case to avoid increments in layers
far below the top of the dense ice cloud. Since visi-
ble reflectance cannot provide direct information about
these layers, the increments probably result from spu-
rious vertical correlations in the absence of vertical
localisation.
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In the third case, an observed low cloud over the ocean is
missing in almost all first-guess ensemble members. Only
for two of the members are the reflectances considerably
higher than the observed reflectance of 0.4, while all other
members exhibit low reflectances around 0.1 (Figure 5c).
In the analysis, the near-surface cloud is optically thicker
and the reflectance is increased. As only the lowermost
model levels contain clouds, we do not show vertical pro-
files for this case.

In this case the LETKF manages to increase reflectance
(and even to reduce both humidity and temperature errors
with respect to the radiosonde profiles; Figure 4), but this
process is hampered by the nonlinear relation between
model state and reflectance. While the linear estimates for
the analysis reflectances indicate that about two thirds of
the error in the mean reflectance have been removed, the
actual mean analysis reflectance is only improved slightly
(Figure 5c).

This example is thus characterised by a large dif-
ference between the linear estimate and the real analy-
sis reflectance. This problem is related to the fact that
all ensemble members are so far from the observation
that the LETKF has no reliable information from the
background ensemble about which change in the cloud
water content would be required to correct the reflectance
eITOr.

To conclude, the single-observation experiments show
that the assimilation of visible reflectances is able to reduce
errors in the model state in most of the cases. However, the
ambiguity of the observations, spurious correlations and
the nonlinearity of the operator can limit the effectiveness
of this process.

EXPERIMENTS

This section shows the results of the assimilation of vis-
ible reflectances in a near-operational cycling set-up for
the two selected days described in Section 3.1. First, we
evaluate the impact of assimilating visible reflectances
for a standard assimilation set-up (Section 3.3) and then
the sensitivity of the results to variations of assimilation
parameters (Section 3.4).

5.1 | Impactofreflectance assimilation
for a standard set-up

To evaluate the impact of VIS observations on the accuracy
of cloud cover and precipitation forecasts, we compute
the fraction of ensemble members exceeding a reflectance
value of 0.5 for each pixel of the satellite image. This
can be interpreted as the probability of the presence of
a relatively dense cloud. As an example, the probabil-
ity of cloudiness for the 1-hr forecast valid at 1000 UTC
on 5 June is shown in Figure 8a for the CONV exper-
iment assimilating only conventional observations and
in Figure 8b for the VISCONV experiment additionally
assimilating satellite observations. Figure 8 shows clear
discrepancies between the bright areas, where most of
the ensemble members show reflectances larger than 0.5,
and the blue contours indicate where the reflectance of
the observed SEVIRI image exceeds the threshold value.
For instance, a low-cloud field at about 6°E/54°N and
a cloud band at 12-15°E/48-49°N are missing while
a dense “false alarm” cloud at 6-7°E/51°N is present
in most of the ensemble members. These errors are
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Fraction of ensemble members exceeding (a, b) a reflectance of 0.5 and (c, d) a precipitation rate of 1 mm-h~! for the 1 hr

forecast valid at 1000 UTC on 5 June 2016. (a, ¢) are initialised from a cycled experiment with data assimilation of conventional observations

only and (b, d) initialised from a cycled experiment with additional visible SEVIRI reflectances. The blue contours indicate the geographical

regions in which the threshold values were exceeded by the observation

removed or at least reduced in the VISCONV experi-
ment (Figure 8b). The low-cloud field and the cloud band
are present and the cloud at 6-7°E/51°N is significantly
weaker.

Analogously to the probability of cloudiness, we con-
sider a probability of precipitation, defined as the frac-
tion of ensemble members in which the precipitation rate
exceeds 1 mm-hr~! (shown in Figures 8c,d). A compar-
ison with the regions for which the observed precipita-
tion rate exceeds 1 mm-h~! (blue contours) shows that
the missing cloud band at 12-15°E/48-49°N was sup-
posed to generate precipitation (Figure 8c). In VISCONYV,
the cloud band not only exists but does indeed produce
precipitation (Figure 8d). The observed precipitation rate
used here is DWD’s radar-based precipitation product
RADOLAN/EY.

An overview of the impact of the reflectance assim-
ilation on the cloud cover error during the two days is
provided by Figure 9. The figure shows the evolution of the
root mean squared reflectance error,

RMSE = \/{((R = Ro)?), 9

and the mean difference of the reflectance fields,

MDIF = (R — Ro), (10)

where R is the ensemble mean reflectance field!, R, is the
observed reflectance field and the brackets mean averaging
over the field, that is, the satellite image. A positive/nega-
tive MDIF indicates in general that the overall cloud cover
is too high/low in the model. RMSE and MDIF are dis-
played for 1-hr (i.e., first guess) and 3-hr forecasts started
from the two experiments for each of the two days. It is
obvious that at the start of the forecasts the reflectance
RMSE is strongly reduced when the satellite observations
are assimilated. For all VISCONV forecasts, it remains
smaller than in the forecasts from the CONV reference
experiment until 3hr lead time. In almost all cases, the
MDIF is closer to zero for VISCONV than for CONV at the
start of the forecast, that is, the error in the area covered
by clouds is reduced. In some cases, cloud cover changes
so strongly during the 3 hr forecast that the MDIF of the
CONYV experiment ends up closer to zero than that of VIS-
CONV. However, these changes in the mean difference are
never strong enough to make the reflectance RMSE of VIS-
CONV larger than the one of CONV. For 5 June, which
is the day with weaker synoptic forcing, the impact of
reflectance assimilation on cloud cover seems to be slightly
more long-lived than for 29 May (compare the RMSEs for
the forecasts started at 0600 and 0900 UTC in Figure 9c,d).
However, a longer experimental period has to be assessed

1We use R for 2D reflectance fields (satellite images) and R for the
reflectance of individual pixels or super-observations.
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Evolution of RMSE (thick lines, Equation (9)) and mean difference MDIF (thin lines, Equation (10)) of the ensemble mean

reflectance with respect to the observed reflectance (a, b) during the 1 hr first-guess forecasts of the data assimilation cycles and (c, d) during
3 hr forecasts started at 0600, 0900, 1200 and 1500 UTC from analyses of CONV experiment, with only conventional observation (black) and
the VISCONV experiment with additional SEVIRI observation (grey) for (a, c) 29 May and (b, d) 5 June 2016. All synthetic and observed
satellite images were coarsened to a resolution of 24 km before computing RMSE and MDIF. To generate these plots, synthetic satellite

images were generated every 15 min from the forecast model states

to corroborate such an relation, which would be in agree-
ment with the radar data assimilation experiments of Craig
etal. (2012).

As an additional metric to measure the impact of the
reflectance assimilation, we employ the ensemble mean
fraction skill score (FSS) for the reflectance and the pre-
cipitation field. The FSS for reflectance with a threshold
value of 0.5 and a spatial scale of 24km (Figure 10a,b)
reveals how well the location of dense clouds is predicted
on that scale. The results confirm that the assimilation of
reflectance has a clearly beneficial impact, which in almost
all cases is still present after 3 hr. The FSS for the precipita-
tion rate with a threshold value of 1 mm-h~! and a slightly
different window size of 30 km (Figure 10c,d) is also higher
for the VISCONV experiment in almost all cases. The only
case where the precipitation FSS becomes worse for the
VISCONYV experiment (5 June after 1100 UTC; Figure 10d)
is related to the example from Figure 8. Before 1100 UTC,

the FSS is better for the VISCONV experiment, because
it has the precipitating cloud band that is missing in the
CONV experiment. In reality, the cloud band stopped
raining at 1100 UTC, while in the VISCONV experiment
precipitation continued after 1100 UTC in most of the
VISCONYV ensemble members. Thus, the precipitation in
CONV experiment agrees better with the radar-derived
precipitation observations from that time on. As visible
reflectances do not provide direct information on the pre-
cipitation rate, additional observations (e.g., radar) would
be beneficial to give greater weight to the ensemble mem-
bers that also exhibit more accurate precipitation.

To assess the impact of assimilating VIS observations
on the verification against conventional observations, we
computed root mean square departures for the 3 hr fore-
casts from the CONV and VISCONV experiments for dif-
ferent observation types and variables. The mean rela-
tive change from CONV to VISCONV (Figure 11) is in
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(a) Ensemble mean fractions skill score for reflectance with a threshold value of 0.5 and a window of 24 km for 3 hr

forecasts for 29 May started from analyses of the CONV (black) and the VISCONV (grey) experiment. (c) is as (a), but for the precipitation
rate with a threshold of 1 mm-h~! and a window size of 30 km. (b, d) are as (a, c), but for 5 June. The grey dotted lines indicate the fraction f of
the area in which the threshold is exceeded in the observation and which is equal to the skill score of a random forecast. The grey dashed line
corresponds to a value of (1+f)/2, which is halfway between random and perfect forecast skill

most cases negative, that is, the reflectance assimilation
improves the agreement of the forecast with conventional
observations. In some cases, the reflectance assimilation
causes an improvement for one day and a degradation for
the other day, leading to a neutral total impact. For 5 June,
the verification against observations indicates improve-
ments, whereas results are mixed for 29 May. Overall, it is
encouraging that we see a neutral to positive impact of the
reflectance assimilation, and that for none of the observed
variables in Figure 11 does the mean departure become
worse by more than a few percent.

5.2 | Sensitivity to assimilation
parameters

To investigate the sensitivity of the results presented in the
previous section to modified assimilation parameters, we
performed a range of further experiments for each of the

two days. The employed settings are listed in Table 1. The
experiments are divided into groups corresponding to dif-
ferent settings for superobbing/thinning and localisation.
There are groups with superobbing on scales between 6 km
(corresponding to averaging over 2 x 1 pixel blocks) and
36 km (12 x 6 pixels) as well as groups in which thinning or
acombination of superobbing and thinning is used. Within
each group, only one parameter is modified (the parame-
ters printed in bold face in Table 1), typically the assigned
observation error.

In almost all experiments, the effective number of
observations per grid point, Nggt, is kept at a value close
to 50. Only in group HL is the localisation scale varied
without changing the superobbing settings, so that in these
cases Ngp' also varies. All other assimilation settings not
listed in Table 1 are the same as in the standard experiment
VISCONV. The VISCONYV settings are identical to S18-2
and HL-2, which have only been listed separately to make
the variation of parameters within the group clearer.
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FIGURE 11 Relative change in the RMSE of model
observation equivalents due to assimilation of satellite
reflectances. Results are shown for several conventional
observation types and variables averaged over all 3 hr forecasts on
29 May and 5 June

To compare the results for the experiments sum-
marised in Table 1, it is useful to consider the RMSE of the
ensemble mean reflectance (Equation 9), divided by the
one of a reference experiment. In the following, we discuss
this normalised reflectance RMSE for certain forecast lead
times, averaged over all forecasts available for the two days.
For forecast lead times up to 1hr, 24 forecasts are avail-
able (including the first guesses from LETKF cycling). For
longer lead times, only eight forecasts are available (from
the 3 hr forecast initialised at 0600, 0900, 1200, 1500 UTC
on the two days). The average normalised RMSE of 15 min
forecasts serves as a proxy for the analysis error.

Figure 12 shows the average normalised RMSEs for 1-,
2- and 3-hr forecasts as a function of the analysis error
proxy for all experiments of Table 1. Results of the CONV
experiment were used to normalise the RMSEs. Figure 12
shows that for the best settings the mean RMSE is only
68% of the reference runs after 1 hr, 81% after 2 hr and 89%
after 3hr. It becomes obvious that drawing the analysis
closer towards the observations is useful for reducing the
error of the 1hr forecast, but less so for the longer fore-
casts. The mean normalised RMSEs for the 1 hr forecasts
vary much more with the analysis RMSE than the 3 hr
forecasts.

To investigate the differences related to modified
assimilation settings, it is more useful to normalise the
reflectance RMSE with the one obtained for VISCONYV,
as all experiments for the settings listed in Table 1 are
more strongly correlated with each other than with the
CONV experiment. The error bars (with a length of one
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FIGURE 12  Average normalised reflectance RMSE of 1 hr,

2 hr, and 3 hr forecasts versus 15 min forecasts for all assimilation
settings shown in Table 1. The CONV experiment with only
conventional observations from Section 5.1 was used for the
normalisation. All reflectance fields were averaged to 24 km before
computing the RMSEs

standard deviation of the RMSE/RMSEysconv Values for
all forecasts) provide information on the significance of
differences between the settings. Figure 13a shows a clear,
nearly linear relation between the average normalised
errors for 1 hr and 15 min forecasts with a variation that is
much larger than the error bars. For the experiments with
the smallest superobbing or thinning scales, the analysis
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(a,b) show the average normalised reflectance RMSE for (a) 1 hr forecasts and (b) 3 hr forecasts versus 15 min forecasts.

In contrast to Figure 12, the standard VISCONV experiment was used for the normalisation. All reflectance fields were averaged to 24 km
before computing the RMSEs. (c, d) show the average difference of the precipitation FSS (1 mm-hr~!, 30 km) relative to the standard
VISCONYV settings for (c) 1 hr and (d) 3 hr forecasts. Experiment groups are shown in different colours

and the 1 hr forecast normalised reflectance RMSE are sig-
nificantly lower than for the larger scales. The smallest
errors are found for the S6 group, where superobbing is
performed by averaging over 2 X 1 pixel blocks. This is not
very different from assimilating the satellite image at its
original resolution

For the 3 hr forecasts (Figure 13b), the situation is less
clear, but there is still some indication that smaller anal-
ysis errors result in slightly smaller 3 hr forecast errors.
To assess the impact of the different assimilation settings
on precipitation forecasts, we computed the average differ-
ence of the FSS to the one of the VISCONV experiment.
The results displayed in Figure 13c,d for the 1 hr and the
3hr forecasts agree with the reflectance results shown
in Figure 13a,b. For the 1hr forecast, smaller analysis
reflectance errors result in clearly better precipitation fore-
casts while the relation is less obvious for the 3 hr forecast.

A comparison of results for the different experiment
groups of Table 1 and the members within the groups pro-
vides more information on the impact of changes in the
following assimilation parameters.

5.21 | Observation error

The assigned observation error should not only contain
the instrument error, but also the operator error and rep-
resentativity errors (Janji¢ et al., 2018). Moreover, larger
assumed observation errors can compensate for neglect-
ing correlated errors and other deficiencies of the DA
system. The optimal value of the observation error is
thus not clear apriori. Therefore, we varied the assigned
observation error within each of the groups with com-
mon superobbing and thinning settings. Taking group S18
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as an example, an error of 0.3 as in S18-1 seems to be
too high, as for all times the normalised reflectance error
(Figure 13a,b) is higher than the one for S18-2, which is
identical to VISCONV and uses an error of 0.2. Decreas-
ing the error to 0.15 (S18-3) still leads to slightly reduced
errors at 3 hr lead time. However, an error of 0.1 (S18-4)
results in significantly increased reflectance errors and less
precipitation forecast skill after 3 hr of forecast integration
(Figure 13b,d).

As a consistency check, we used the Desroziers method
(Desroziers et al., 2005) to estimate observation errors from
departure statistics. In this context, it has to be taken into
account that reflectance is a bounded variable. There is
obviously a lower bound, as reflectance cannot become
negative. Mainly due to 3D radiative transfer effects, there
isno hard upper limit, but values exceeding 1 are in general
rare, so that in practice there is also some upper bound for
reflectance. For bounded variables, the observation error
should decrease towards the bounds, because otherwise
values outside of the bounds would be included in the PDF,
which is assumed to be Gaussian in the LETKF framework
(Bishop, 2019).

For the sake of simplicity, we ignored this problem
and used a constant observation error for the assimila-
tion experiments. However, for the Desroziers estimate we
have to take it into account to avoid unrealistic results.
For this reason the estimate for o, was not calculated
as a single value valid for all pixels, but computed as
a function of the symmetric reflectance (Ro + Rg)/2, i.e.,
the mean of the observed reflectance and the first-guess
ensemble mean reflectance . The estimated observation
errors for the S18 group indeed show values much lower
than 0.15 and a nearly linear behaviour for reflectances
smaller than 0.2 (Figure 14). However, for a wide range
of reflectances between 0.3 and 0.7, the estimates indi-
cate that the observation error should be nearly constant,
larger than 0.1 and smaller than 0.15. This is in agree-
ment with the results displayed in Figure 13. Both the
Desroziers estimates and the normalised reflectance error
results also indicate that for the S36, S12, S6 T18, T12 and
S18T2 groups the observation error should be around 0.15
(not shown).

Even though Figure 14 is not consistent with our
simple approach of using a constant observation error,
we consider this simplification a reasonable first step.
In the framework of the VISCONV standard set-up, we
further verified that the exclusion of observations with
(Ro+Rp)/2<0.2 only results in small changes in the
results. It is not clear if assimilating observations with very
small values of Rp + Rg in combination with a small obser-
vation error will improve the results, particularly because
they contain only a weak cloud signal and might be domi-
nated by surface albedo errors.

0.00 £ . . .

0.0 0.2 0.4 0.6 0.8
(Ro+Rg)/2
FIGURE 14 Desroziers estimate (thick lines) for the

observation error as a function of the symmetric reflectance

(Ro + Rp)/2 for the assimilation experiments from group S18 for

5 June. For each experiment, the thin horizontal line with the same
line style indicates the corresponding assumed observation error.
The diagonal dotted line is given by (Ro + Rp)/2 = o,

5.2.2 | Localisation scale and effective
number of observations

In group HL, the localisation scale is varied between 35 km
(experiment HL-3) and 70 km (experiment HL-1) while
the area density of satellite observations is kept constant.
A smaller I, therefore corresponds to a reduced Nggt, that
is, less weight for the satellite observations compared to
the conventional observations. The reduced weight could
cause an increased reflectance error of the analysis. How-
ever, a smaller localisation radius also allows for a better
adaptation of the analysis to the smaller scales reflected in
the satellite observations, which could reduce the analysis
error.

The reflectance and precipitation forecasts for 15 min
and 1 hr are best for the smallest I, = 35 km (Figure 13a,c).
This means that the beneficial impact from decreasing the
localisation scale from 70km (HL-1) to 35km (HL-3) is
more important than the detrimental impact of reducing
NgS;‘ from 95 (HL-1) to 24 (HL-3). Therefore, a small locali-
sation radius seems to be more helpful than a high number
of observations per grid point. After 3 hr, the reflectance
errors are similar for all cases and only a slight advantage
for the FSS is left for the I, = 35 km settings (Figure 13b,d).

5.2.3 | Superobbing and thinning

As discussed in Section 2.4, the motivation for thin-
ning is to reduce the potentially negative impact of



SCHENK ET AL.

Quarterly Journal of the ERMets

»
N

1.05 A

1.00 A

0.95 A

RMSE / RMSEVISCONV @ 60min

0.90 A

scale [km]

FIGURE 15

Royal Meteorological Society

—_

o

N
1

o —_

=l o

(=) o
1 1

o

o

o
1

RMSE / RMSEVISCONV @ 180min

0.94 4

61224 48 96 192
scale [km]

Mean (averaged over all forecasts for the two days with the same assimilation settings) reflectance RMSE divided by

reflectance RMSE of the VISCONV experiment as a function of the scale on which the reflectance field was averaged (thick lines), for (a) 1 hr
forecasts and (b) 3 hr forecasts of the experiments S36-2 (solid), S12-1 (dotted) and S6-1 (dashed). Thin lines with the same line style indicate

the standard deviation for each experiment

neglecting correlated observation errors, whereas super-
obbing aims at reducing the influence of representativity
errors. It is not clear which of these two strategies is
more advantageous. Moreover, the optimal spatial scale
is unknown. For smaller superobbing or thinning scales,
more small-scale information is included in the analysis,
but the errors of the assimilated observations are more cor-
related. Ngsgt was kept constant for the superobbing and
thinning groups S36, S18, S12, S6, T18, T12 and S18T2.
A smaller superobbing or thinning scale therefore also
means a smaller horizontal localisation scale in these
cases.

Figure 13a,c shows that the smallest errors in the
15min and 1 hr forecasts are obtained for smallest super-
obbing and localisation scales (e.g., compare groups S6,
S12, S18, S36). The differences between superobbing and
thinning (compare group S12 to T12 and group S18 to T18)
are much smaller than the differences related to different
spatial scales. One might be tempted to conclude that it
is only the localisation scale that is important. However,
changing only the localisation scale (as from setting HL-2
to HL-3) has a much weaker impact than the differences
between T18 and T12 or S18 and S12. It is thus a smaller
localisation scale in combination with a higher spatial
density of observations that leads to reduced short-term
forecast errors.

In group S6 the superobbing scale is well below the
effective model resolution, but we still observe smaller
forecast errors than in the groups with larger superob-
bing scales. Compared to S12, the additional information
available in S6 concerns scales that are not well resolved
by the model and is thus probably not useful to reduce
forecast errors. However, the improved ability to adapt to
the observations accompanied by a smaller localisation

radius seems to be sufficient to give S6 an advantage
over S12.

For Figures 13a,b the reflectance fields were aver-
aged to 24 km before computing the RMSEs. An example
for the impact of different superobbing scales on the
scale-dependent normalised reflectance error after 1hr
and 3 hrisdisplayed in Figure 15, for which the reflectance
fields were averaged on different scales between 6 km and
192 km. Here, the [, =36 km, I, =100 km settings lead to
the largest errors on all scales for the 1 hr forecast, but to
the lowest 3 hr forecast error at scales >96 km. In contrast,
the errors for the Iy, =6km, [, =17km and I, =12km,
Iy =35km settings are lower than for the reference set-
tings Iy, = 18 km, I, = 50 km for both forecast times and all
scales.

These results show that, by assimilating observations
with higher spatial density and simultaneously reducing
the localisation scale, the analysis can be drawn signifi-
cantly closer to the observations, in particular on smaller
scales. When the analysis error is reduced in this way, the
error growth in the forecast is enhanced. However, the
error growth slows down after 3 hr for all cases and we
still see slightly smaller errors for the high-spatial-density
cases. If the goal is to strongly reduce the cloud dis-
placement error in the first forecast hour, it thus seems
advantageous to assimilate satellite images at high spatial
resolution and there is no indication that this would make
3 hr and longer forecasts worse. However, in this approach
large amounts of satellite data must be processed - for
our 6 km superobbing experiments about 1.6 X 103 obser-
vations per hour (N2 in Table 1). If the primary goal is
to improve forecasts with lead times of 3 hr or longer, it
may be more advantageous to use superobbing or thinning
on larger scales, which reduces the number of assimilated
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satellite observations significantly, for example, to 4,600
per hour in the 36 km superobbing experiments. Thereby,
the computational effort could be reduced or other addi-
tional types of observation could be assimilated.

6 | CONCLUSIONS

Visible satellite observations from instruments on geosta-
tionary satellites provide high-resolution cloud informa-
tion that could be valuable for convective-scale data assim-
ilation. However, these observations are not yet directly
assimilated in operational NWP models as sufficiently fast
and accurate forward operators have become available
only recently. In this work, we present the first assimila-
tion results for visible images from the SEVIRI instrument
on Meteosat-10 using the KENDA/COSMO ensemble data
assimilation system of DWD. These results are based on a
case-study for two days of a period with strong convective
precipitation in summer 2016.

Visible reflectance depends on the atmospheric state
in a nonlinear and ambiguous way, which potentially
poses challenges for current data assimilation algorithms.
Single-observation experiments showed that nonlinear-
ity and ambiguity of the observations can indeed limit
the effectiveness of the assimilation process. However,
the assimilation of these observations had a clear ben-
eficial impact on cloud cover in most cases. Humid-
ity and temperature fields were often improved as well.
Cycled experiments with a near-operational set-up includ-
ing conventional observations furthermore demonstrated
that the assimilation of visible satellite images can strongly
improve cloud cover forecasts and has a beneficial impact
on precipitation forecasts.

Superobbing and thinning are standard techniques to
overcome some of the limitations of current data assim-
ilation systems like the assumption of diagonal obser-
vation covariance matrices with uncorrelated observa-
tion errors and their inability to provide reliable infor-
mation on scales smaller than the effective model res-
olution. In a sensitivity study, we compared thinning
and superobbing on different scales. The spatial scale
turned out to be more important than the choice between
superobbing and thinning. If the superobbing/thinning
scale is reduced together with the horizontal localisation
scale, short-term forecast errors on smaller scales can be
reduced without a detrimental impact on 3 hr forecasts.
This result is valid for both visible reflectance (provid-
ing information on cloud cover) and precipitation fore-
casts. The best results were obtained when the satellite
images were assimilated nearly at their original resolution,
with a superobbing scale of only 6 km. These results are
particularly interesting for “seamless prediction” efforts

combining nowcasting and very-short-range forecasting,
as for example, in DWD’s SINFONY (Seamless INtegrated
FOrecastiNg sYstem) project. In such approaches, now-
casting information is to be used in NWP and viceversa. To
alleviate this transfer of information between model and
nowcasting clouds, it is essential to predict the position
of cloud as accurate as possible in the first hours of the
forecast (U. Blahak, personal communication, 2020).

We see a slightly more long-lasting impact of the VIS
assimilation for the day on which the synoptic forcing was
weaker and convection was triggered locally, which would
be in agreement with the results of Craig et al. (2012).
For both days, the impact is still present after 3 hr lead
time, which is an encouraging results for such a synoptic
situation with locally triggered strong summertime con-
vective precipitation. However, it should be kept in mind
that the experimental period of only two days is too short
to draw robust general conclusions on the impact of this
new observation type. In future studies we plan to inves-
tigate longer experimental periods with different synoptic
situations and forecasts with considerably longer forecast
horizons. In particular, a longer-lasting forecast improve-
ment may be achievable in stable atmospheric conditions
with low clouds such as fog and low stratus.

Issues related to spurious correlations and the ambi-
guity of visible reflectances should also be investigated
further in future studies. Unlike the brightness tempera-
ture observations from thermal infrared channels, visible
reflectances do not contain information about the vertical
position of clouds which is needed for vertical localisa-
tion in observation space that the current implementation
of the KENDA-LETKF depends on. Furthermore, com-
bining the VIS assimilation with other satellite channels
such as the 1.6pm channel which allows for distinguishing
between water and ice clouds (Wolters et al., 2008), or ther-
mal infrared channels that are sensitive to the cloud-top
height, may reduce errors resulting from the ambiguity of
the observations for individual channels.

For the sake of simplicity, we did not vary inflation
parameters and used a constant assigned observation error
in each experiment in this study. An adaptive error model
like the ones developed for thermal infrared channels
(e.g., Harnisch et al., 2016; Minamide and Zhang, 2017;
Okamoto et al., 2019; Geer, 2019) could further improve
the assimilation of visible channels. Moreover, a better
understanding of the circumstances under which nonlin-
earity causes large errors in the LETKF analysis should be
involved in the development of an error model or a quality
control method. The choice of covariance inflation meth-
ods and parameters should also be assessed in the context
of assimilating visible satellite images. And finally, a con-
current project aims at an improved model representation
of clouds and hydrometeors that is key for the successful
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assimilation of related observations and improved fore-
casts of clouds and precipitation.
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