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Abstract The climate of the western Mediterranean was characterized by a strong precipitation gradient
during the Holocene driven by atmospheric circulation patterns. The scarcity of terrestrial paleoclimate
archives has precluded exploring this hydroclimate pattern during Marine Isotope Stages 5 to 3. Here we
present stable carbon and oxygen isotope records from three flowstones from southeast Iberia, which show
that Dansgaard/Oeschger events were associated with more humid conditions. This is in agreement with
other records from the Iberian Peninsula, the Mediterranean, and western Europe, which all responded in a
similar way to millennial‐scale climate variability in Greenland. This general increase in precipitation
during Dansgaard/Oeschger events cannot be explained by any present‐day or Holocene winter atmospheric
circulation pattern. Instead, we suggest that changes in sea surface temperature played a dominant role in
determining precipitation amounts in the western Mediterranean.

Plain Language Summary Climate events characterized by a sudden temperature increase of up
to 10 °C occurring in less than a few decades during the last glacial are recorded in Greenland ice cores.
These abrupt warmings, the Dansgaard/Oeschger events, affected large regions of the Northern
Hemisphere. The understanding of the regional response in precipitation during these climate shifts is
limited for the western Mediterranean, due to the restricted number of terrestrial climate records that cover
the last glacial period at sufficient resolution. Speleothems and their stable isotope compositions allow to
trace changes in climate and vegetation based on an accurate chronological framework. Here we present a
speleothem stable isotope record that shows that the Dansgaard/Oeschger events were associated with
increased rainfall and a denser vegetation in the western Mediterranean. A similar pattern was observed for
western Europe and other parts of the Mediterranean, and we propose that this was related to generally
higher sea surface temperatures of the surrounding oceans rather than a reorganization of
atmospheric circulation.

1. Introduction

During the last glacial period, global climate underwent a series of rapid changes superimposed on a long‐
term cooling trend (Deplazes et al., 2013; Martrat et al., 2007; North Greenland Ice Core Project members,
2004; Wang et al., 2008). In particular, Greenland ice core records show large, rapid changes in δ18O values
interpreted as changes in temperature (Johnsen et al., 2001; Wolff et al., 2010). This climate variability on
millennial timescales with warm Dansgaard/Oeschger (D/O) events—also referred to as Greenland
Interstadials (Dansgaard et al., 1993)—and Greenland stadials (Hemming, 2004) is reflected in marine sedi-
ment cores from the North Atlantic (Heinrich, 1988; Hemming, 2004; Martrat et al., 2007) as well as the
Mediterranean Sea (Cacho et al., 1999; Frigola et al., 2012; Incarbona et al., 2013; Martrat et al., 2004).
These millennial‐scale fluctuations are assumed to have been linked to the Atlantic Meridional
Overturning Circulation (AMOC), which strongly affected climate variability in the Northern Hemisphere
during Marine Isotope Stage (MIS) 5b to 3 (96–29 ka; Henry et al., 2016; Li & Born, 2019). The strength of
the AMOC controls oceanic heat transport to high northern latitudes (Böhm et al., 2015; Menviel et al.,
2014). Concomitantly, the AMOC has a large impact on sea surface temperatures (SST) in the North
Atlantic (Pailler & Bard, 2002) as well as the western Mediterranean Sea (Bagniewski et al., 2017; Martrat
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et al., 2004). Changes in SST and the position and topography of the ice sheets, in turn, have an impact on the
atmospheric circulation (Cacho et al., 2000; Merz et al., 2015; Moreno et al., 2005; Naughton et al., 2009) by
influencing the pathways of North Atlantic storm tracks and the position of the Intertropical Convergence
Zone (ITCZ; Naughton et al., 2009; Stríkis et al., 2018) and, as a consequence, on effective precipitation in
the Mediterranean (Hodge, Richards, Smart, Andreo, et al., 2008; Hodge, Richards, Smart, Ginés, &
Mattey, 2008). A decrease or even shutdown of the AMOC is coupled to lower SSTs in the North Atlantic
and a southward shifted oceanic thermal front, which results in a more southerly route of the Atlantic jet
stream and its associated westerlies (Naughton et al., 2009).

Climatemodels suggest that on orbital timescales, this mechanism causes an increase in precipitation during
cold phases over the western Iberian Peninsula (Hofer, Raible, Merz, et al., 2012; Merz et al., 2015). However,
biome data reflect increased dryness, especially during winter (Hofer, Raible, Dehnert, & Kuhlemann, 2012;
Wu et al., 2007), which is in agreement with paleoclimate records from SW Europe (Cortina et al., 2016;
Denniston et al., 2018; Moreno et al., 2002, 2005). The rapid climate changes during MIS 5b and 3 are also
reflected in marine and terrestrial pollen records (Allen et al., 1999; Pons & Reille, 1988; Sánchez Goñi
et al., 2008; Tzedakis et al., 2006) and proxy records of precisely dated speleothems (Denniston et al.,
2018; Genty et al., 2010).

The present‐day climate of the Iberian Peninsula is dominated by several regional atmospheric circulation
patterns. For instance, the Western Mediterranean Oscillation (WeMO) and the North Atlantic Oscillation
(NAO) lead to strong spatial differences in precipitation (Comas‐Bru & McDermott, 2014; Hurrell & Loon,
1997; Martin‐Vide & Lopez‐Bustins, 2006). Pollen records from offshore sediments provide a wealth of infor-
mation on last interglacial to glacial vegetation and climate changes, but these data reflect a large region
encompassing subregions dominated by different atmospheric circulation patterns. Thus, in order to under-
stand the importance of regional atmospheric circulation patterns, precisely dated terrestrial climate records
are needed. However, so far, only very few terrestrial records from the Iberian Peninsula covering MIS 5b to
3 are available. Here we present carbon and oxygen isotope records from three precisely dated flowstones
from Cueva Victoria (CV, SE Spain), covering the period from 96 to 45 ka (MIS 5b–3, including D/O events
22 to 12). These records allow to examine how climate variability in the western Mediterranean was related
to abrupt climate change in the North Atlantic during the last glacial.

2. Sample Site and Methods

CV (37.63°N, 0.82°W, 40 m above sea level; Figure 1) is located in SE Spain and developed in Triassic lime-
stones and dolostones of the Inner Betic Cordillera (Manteca Martínez & Pina, 2015). The cave system con-
sists of more than 3 km of galleries that were artificially widened by mining activities during the early
twentieth century. The climate of the region shows a strong seasonality withwarm and dry summers and pre-
cipitation maxima in spring and autumn (up to 300 mm/year, mean annual temperature≈ 17 °C; Figure 1c).
This seasonality is also reflected by themonthly δ18O values of local precipitation, which show an inverse cor-
relation with rainfall and temperature (Araguas‐Araguas & Diaz Teijeiro, 2005). On the interannual time-
scale, the δ18O values of precipitation do not show a significant correlation to temperature or precipitation
(Budsky et al., 2019). Climate is classified as a cold semi‐arid climate (BSk) according to the Köppen‐
Geiger classification (Kottek et al., 2006). The vegetation period lasts from spring to summer and highly
depends on rainfall during these seasons (Camarero et al., 2015; Pasho et al., 2011). Precipitation is prevalent
during periods characterized by a negative WeMO (Cortesi et al., 2014; Martin‐Vide & Lopez‐Bustins, 2006;
Moreno et al., 2014) index (Figure 1a). The main moisture sources of precipitation are the surrounding
Mediterranean and Alboran Sea as well as the North Atlantic (Budsky et al., 2019). There is no direct influ-
ence of the NAO (Figure 1b; Hurrell & Loon, 1997) or the ITCZ (Broccoli et al., 2006). Similarly, the main
modern European winter circulation patterns, such as the Eastern Atlantic or the Scandinavian pattern
(Barnston & Livezey, 1987), have almost no impact on precipitation in SE Spain (Comas‐Bru &
McDermott, 2014).

Flowstone SR01t (6 cm thick) was sampled from the center of “Sala de las Reuniones”, while cores Vic‐III‐
1 and Vic‐III‐3 were drilled in thick (>50 cm) flowstones in room “Victoria 3” (Ros & Llamusí, 2015). For
Vic‐III‐1 (42 cm) and Vic‐III‐3 (40.5 cm), we focus on the upper 23 and 8 cm here (supporting information
Figure S1), which correspond to the last 96 ka (MIS 5b/c transition). Cave monitoring at CV is not possible
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due to the lack of active drip sites and the artificial widening of the cave, which strongly altered the natural
cave system.

For 230Th/U dating, small pieces (0.05–0.3 g) were cut from the flowstone, prepared by column chemistry
(Gibert et al., 2016; Yang et al., 2015), and analyzed using multicollector inductively coupled plasma mass
spectrometry at the Max Planck Institute for Chemistry in Mainz (Obert et al., 2016). Samples for stable iso-
tope analysis were milled at an equidistant spacing of 500 μm (Vic‐III‐1, SR01t) and 250 μm (Vic‐III‐3),
respectively. The obtained powders were analyzed at the University of Innsbruck with a DeltaplusXL isotope
ratio mass spectrometer linked to a Gasbench II (Spötl, 2011; Spötl & Vennemann, 2003).

3. Results

For all samples used for 230Th/U dating, 232Thwas below 10 ng/g. Nevertheless, some samples have a (230Th/
232Th) < 200, and detrital contamination may have a significant effect on the 230Th/U‐ages (Richards &
Dorale, 2003). Thus, 230Th/U ages were corrected for detrital contamination. The (232Th/238U) activity ratio
of the detrital material was calculated for each flowstone following the approach of Budsky et al. (2019) by
minimizing the total sum of all age inversions. This resulted in a (232Th/238U) activity ratio of 0.24 ± 0.12

Figure 1. (a) Correlation of observed precipitation (E‐OBS 19.0, Cornes et al., 2018) from December to March (1950–2009) with the Western Mediterranean
Oscillation (Martin‐Vide & Lopez‐Bustins, 2006) and (b) the North Atlantic Oscillation index (Jones et al., 1997). (c) Climate diagram for San Javier with tem-
perature (red) and precipitation (blue) displaying strong seasonality. (d) Mean precipitation (1950–2010) for December to March in millimeters per day (Cornes
et al., 2018). The correlation (a, b) and precipitation (d) maps were created with the KNMI Climate Explorer (http://climexp.knmi.nl). Speleothem records are
indicated by triangles. CV = Cueva Victoria (this study, red triangle); GC = Gitana Cave (Hodge, Richards, Smart, Andreo, et al., 2008); BG = Buraca Gloriosa
(Denniston et al., 2018); NSpC = caves in North Spain (Muñoz‐García et al., 2007; Stoll et al., 2013); VC = Villars Cave (Genty et al., 2010); MC =Mallorcan Caves
(Dumitru et al., 2018; Hodge, Richards, Smart, Ginés, & Mattey, 2008); SuC = Susah Cave (Hoffmann et al., 2016); DC = Dim Cave (Ünal‐İmer et al., 2015); SoC =
Soreq Cave (Bar‐Matthews et al., 2003). Marine sediment cores are indicated by blue circles. ASR = Alboran Sea (ODP161‐977, MD95‐2043; Martrat et al., 2004;
Cacho et al., 1999); IMR = Iberian margin (MD01‐2443/4, MD95‐2042; Martrat et al., 2007; Daniau et al., 2007; Shackleton et al., 2000). The lake Monticchio (LM;
Allen et al., 1999) and Tenaghi Philippon (TP; Tzedakis et al., 2003) records are indicated by brown circles.
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for Vic‐III‐1 and 0.37 ± 0.19 for Vic‐III‐3, respectively, which are in agreement within uncertainty. For sam-
ple SR01t, the correction is negligible due to its low content of detrital material ((230Th/232Th) ≫ 200;
Richards & Dorale, 2003). An exception is subsample SR01t‐11 ((230Th/232Th) = 49.01). Therefore, we used
the mean (232Th/238U) activity ratio of samples Vic‐III‐1 and Vic‐III‐3 for detrital correction ((232Th/238U)
= 0.31 ± 0.16) for SR01t. The corrected ages range from 95.7 ± 4.7 to 46.2 ± 0.6 ka (Vic‐III‐1), excluding
the uppermost age, which corresponds to the Holocene (Budsky et al., 2019), 92.8 ± 1.8 to 49.9 ± 0.4 ka
(Vic‐III‐3) and 85.4 ± 1.2 to 49.5 ± 1.3 ka (SR01t). The final age models for all flowstones were constructed
using the corrected ages and the StalAge algorithm (Scholz & Hoffmann, 2011; Figure S2). Visible hiatuses
were included manually into the StalAge age model by fitting the corresponding flowstone sections sepa-
rately (see supporting information). For very short growth phases consisting of only one 230Th/U‐age, we
used a mean growth rate of the corresponding longer growth intervals to establish an age‐depth model.
These short growth intervals were stratigraphically identified by dark layers in thin sections. There is no evi-
dence of dissolution or diagenesis at these growth stops. Thin sections show a pristine elongated/open colum-
nar fabric (cf. Frisia, 2015).

The stable isotope values show a large variability on millennial timescales (Figures 2 and 3). δ18O values
range from −6.0‰ to −3.5‰ (Vic‐III‐1) and −6‰ to −3‰ (Vic‐III‐3), whereas the δ18O values of SR01t
are slightly less negative (−5.5‰ to −3.0‰). The δ13C values of Vic‐III‐1 and Vic‐III‐3 range from −11.0‰
to −9.5‰, whereas SR01t shows ~3‰ higher δ13C values. In all samples, the lowest δ13C and δ18O values
occur around 85 ka (D/O 21). δ18O and δ13C values correlate positively with r = 0.67 for SR01t, 0.55 for
Vic‐III‐1, and 0.7 for Vic‐III‐3.

4. Discussion
4.1. Interpretation of the CV Speleothem Record

The three flowstone records from CV cover a long period between the last interglacial and the Last Glacial
Maximum,which is only sparsely covered by other paleoclimate archives from SE Spain. The typical D/O pat-
tern as recorded by the North Greenland Ice Core Project ice core (North Greenland Ice Core Project mem-
bers, 2004; Obrochta et al., 2014; Svensson et al., 2013) is reflected in both the carbon and oxygen isotope
records of the CV flowstones with lower values occurring during D/O events and vice versa. This indicates
a strong link between climate in theNorthAtlantic region and SE Spain onmillennial timescales. In the over-
lapping sections, all three flowstones show consistent δ13C and δ18O values (Figures 2 and 3). This replication
of the proxy signals confirms that the observed variability is related to climate change above the cave rather
than processes within the cave or the karst aquifer. Temporal discrepancies are likely largely due to uncer-
tainties in the chronology of our flowstones, in particular for a few short growth periods that cannot be con-
strained by more than one 230Th/U‐age, and probably to a smaller extent due to the uncertainties of the
chronology of North Greenland Ice Core Project (up to 1.5 ka; Svensson et al., 2008; Figure 2).

Budsky et al. (2019) demonstrated a strong influence of effective precipitation on vegetation density and
microbiological activity in the soil above CV during the Holocene. Higher δ13C values were interpreted as
decreased precipitation during the season of vegetation growth (spring to summer). This interpretation is
in agreement with other studies using δ13C values as a proxy for vegetation density (Cerling et al., 1993;
Fohlmeister et al., 2011) and soil microbiological activity (Genty et al., 2003;Meyer et al., 2014), which in turn
are related to effective precipitation during the growing season (Denniston et al., 2018; Hodge, Richards,
Smart, Andreo, et al., 2008; Hodge, Richards, Smart, Ginés, & Mattey, 2008). In addition to these processes
occurring in the soil zone, several processes within the aquifer and the cave can result in carbon isotope frac-
tionation, such as prior calcite precipitation, cave ventilation, and the distance of flow on flowstones (Hansen
et al., 2017; Johnson et al., 2006; Mühlinghaus et al., 2009; Spötl et al., 2005). Stronger cave ventilation and
increased distances of flow lead to enhanced degassing of CO2 from the solution and precipitation of calcite
prior to the sampling site. This may be particularly relevant for sample SR01t, which is associated with the
longest distance of flow due to its position in the middle of the cave chamber and may explain the elevated
δ13C values compared to the other flowstones. In general, despite their complexity, all processes result in
higher δ13C values during drier conditions above the cave. Thus, we interpret higher δ13C values in the CV
flowstones as reflecting periods of reduced precipitation/infiltration.
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Lower δ13C values during D/O events thus suggest increased precipitation in the western Mediterranean
during these warm events in the North Atlantic region (Budsky et al., 2019; Genty et al., 2003). This is in
agreement with other climate archives from the Mediterranean, such as pollen records from the western
Mediterranean (Burjachs et al., 2012; Camuera et al., 2019; Combourieu Nebout et al., 2002; Sánchez
Goñi et al., 2008) and Italy (Allen et al., 1999).

The interpretation of δ18O values in the CV flowstone records is more complex (Budsky et al., 2019). Modern
precipitation δ18O values on a monthly timescale are related to precipitation amount between October and
April. Low δ18O values of monthly precipitation correlate with high rainfall amount and vice versa
(Araguas‐Araguas & Diaz Teijeiro, 2005). Since summer precipitation with elevated δ18O values does not
infiltrate into the karst rock, the CV flowstones mainly record the more negative δ18O signal of winter pre-
cipitation (Budsky et al., 2019; Carrasco et al., 2006). On the interannual timescale, we thus expect lower
δ18O values for years with increased October–April precipitation, consistent with the interpretation for other
Mediterranean speleothem δ18O records (Ayalon et al., 1998; Ayalon et al., 2002; Bard et al., 2002). However,
during D/O events, SSTs on the Iberian margin and in the Alboran Sea were higher (Figure 3) and the con-
tinent was warmer (Genty et al., 2010; Martrat et al., 2007), which may have resulted in higher rainfall δ18O

Figure 2. δ13C values of the three Cueva Victoria flowstones with corresponding 230Th/U ages (b), which reflect vegeta-
tion density above the cave. Also shown are the NGRIP δ18O record (a, Obrochta et al., 2014), which shows North
Greenland temperature variations, temperate taxa pollen from the Alboran Sea (c, ODP 976, Combourieu Nebout et al.,
2002), and the δ13C values of a speleothem record from Portugal (d, Denniston et al., 2018). In addition, we show the
percentage of woody pollen taxa from LakeMonticchio in Italy (e, Allen et al., 1999), which reflect vegetation density. The
gray bars indicate the Dansgaard/Oeschger events. NGRIP = North Greenland Ice Core Project.
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values (Rozanski et al., 1993) even if Budsky et al. (2019) did not find a significant correlation between
temperature and rainfall δ18O values on interannual timescales. At the same time, warmer cave air results
in lower calcite δ18O values due to the temperature‐dependent isotope fractionation between water and
calcite (Hansen et al., 2019; Kim & O'Neil, 1997; Tremaine et al., 2011). The interpretation is further
complicated because the δ18O values of precipitation are not directly related to changes in the moisture
source (Moreno et al., 2014) preventing the possibility of disentangling precipitation originating in the
Atlantic from that originating from the Mediterranean region. This also implies that the transport
distance of the water vapor and potential rain‐out effects (McDermott, 2004; Mook, 2001) are not
dominant because the Mediterranean is the more local moisture source compared to the more distant
Atlantic. In addition, temporal changes in the δ18O value of surface ocean water have to be taken into
account, but unfortunately, there is no seawater δ18O reconstruction available from the region. δ18O
values of planktonic foraminifera in sediment cores from the Iberian margin and the Alboran Sea
(Vautravers & Shackleton, 2006), a proxy for both SST and the δ18O value of seawater, reflect all D/O
events (Figure 3b). However, considering the temperature dependence of the δ18O values of planktonic
foraminifera of ~ −0.21‰/°C (Bemis et al., 1998) suggests only minor changes in the δ18O value of
seawater during the D/O events (Figures 3b and 3c). Therefore, we interpret our flowstone δ18O record as
reflecting a combination of the amount of winter precipitation and cave air temperature, with more
negative flowstone δ18O values corresponding to warmer and more humid conditions. This relationship is
potentially weakened by the positive relationship between surface air temperature and rainfall δ18O values.

Figure 3. δ18O values of the three Cueva Victoria flowstones (e) in comparison with NGRIP (a; Obrochta et al., 2014, indi-
cating warmD/O events) as well as SST from the Iberianmargin and the Alboran Sea (b; Martrat et al., 2004; Martrat et al.,
2007). Also shown are δ18O values of planktonic foraminifera (Globigerina bulloides) from the Iberian margin (c;
Vautravers & Shackleton, 2006; Hodell et al., 2013), which reflect changes in both temperature and the δ18O values of the
source for moisture uptake. Long‐term changes in flowstone δ18O values (e) track the 65°N July insolation (d; Laskar et al.,
2004) and precession (d, dashed line; Berger, 1978). (f) δ18O values of a speleothem record from Portugal (Denniston
et al., 2018). The reddish bars indicate the D/O events. NGRIP = North Greenland Ice Core Project; D/O = Dansgaard/
Oeschger; SST = sea surface temperature.
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4.2. Climate Variability on Orbital Timescales

On orbital timescales, the flowstone δ18O record follows 65°N July insolation, whereby high insolation is
associated with low δ18O and δ13C values (warm and humid) and vice versa (Figures 3d and 3e; Berger,
1978). Only few terrestrial climate archives in southern Europe and the western Mediterranean cover MIS
5 to 3. For MIS 5c–a, coastal sediments suggest more humid conditions in SE Spain (Mauz et al., 2012).
Enhanced precipitation during interglacials is also corroborated by stalagmite growth in northern Iberia
(Muñoz‐García et al., 2007; Stoll et al., 2013). Located close to CV, the low‐resolution Gitana Cave record
(Figure 1) is in good agreement with our records on orbital timescales, with higher effective precipitation dur-
ing interglacials and a cessation of speleothem growth during Heinrich stadial 5 (≈ 46 ka; Hodge, Richards,
Smart, Andreo, et al., 2008). This coincides with a prominent sea level drop at circa 45 ka (Siddall et al., 2008)
and the termination of calcite deposition in CV. Speleothem δ13C values from Portugal also suggest that high
65°N summer insolation is associatedwith higher precipitation (Denniston et al., 2018). In summary, on orbi-
tal timescales, precipitation on both the western and the eastern Iberian Peninsula responds to 65°N
July insolation.

The 65°N July insolation depends on the interplay between obliquity and precession (Davis & Brewer, 2009).
Both lead to a varying latitudinal insolation gradient, which in turn drives the latitudinal temperature gra-
dient and thus climate in higher and lower latitudes by a latitudinal displacement and varying intensity of
the midlatitude storm tracks and the tropical Hadley Cell/ITCZ (Schneider et al., 2014; Stríkis et al.,
2018). In particular, precession minima are associated with stronger latitudinal shifts of the ITCZ and the
midlatitude storm tracks on seasonal timescales and are thus associated with higher seasonality and
enhanced autumn/winter precipitation due to higher storm activity in the Mediterranean (Bosmans et al.,
2015; Kutzbach et al., 2014; Toucanne et al., 2015). This phenomenon may explain the wetter conditions
observed around 80–85 ka in our record, but not those at 50–60 ka (Figure 3). This suggests that the com-
bined signal of 65°N July insolation is more important than precession alone. Higher 65°N July insolation
during interglacials is associated with a weaker latitudinal temperature gradient. A higher temperature gra-
dient during glacial periods was associated with a weakened AMOC (Böhm et al., 2015) and leads to stronger
and southward shifted westerlies (Merz et al., 2015). Consequently, this should lead to more precipitation on
the Iberian Peninsula during glacial periods (Hofer, Raible, Merz, et al., 2012). Interestingly, this is not
observed in the western Iberian Peninsula, where glacial periods were characterized by drier conditions,
whereas interglacials were relatively wet (Denniston et al., 2018). This apparent controversy may be
explained by the fact that the glacials (interglacials) were associated with a reduced (stronger) AMOC and
lower (higher) 65°N July insolation, which lead to lower (higher) SSTs. On orbital timescales, SSTs at the
Iberian margin are correlated with precipitation at both the western (Denniston et al., 2018) and the eastern
Iberian Peninsula (CV; this study). This strongly suggests that SST controlled precipitation on the Iberian
Peninsula on orbital timescales, although it remains difficult to assess whether this is related to an increase
in winter or summer precipitation or both (Kutzbach et al., 2014).

4.3. Climate Variability on Millennial Timescales

On millennial timescales, we observe that the D/O events are associated with warm and humid conditions,
which is even the case for the short‐lived D/O events 15 (≈55 ka) and 18 (≈64 ka). In contrast, Greenland
stadials are associated with cold and dry conditions at CV (Figure 3). The same pattern is observed across
the Iberian Peninsula (Combourieu Nebout et al., 2002; Denniston et al., 2018; Hodge, Richards, Smart,
Andreo, et al., 2008; Sánchez Goñi et al., 2008) and in other regions of western Europe (Genty et al., 2003,
2010; Hofer, Raible, Dehnert, & Kuhlemann, 2012; Sánchez Goñi et al., 2013; Wu et al., 2007) and the
Mediterranean (Allen et al., 1999; Brauer et al., 2007; Dumitru et al., 2018; Fletcher et al., 2010; Hodge,
Richards, Smart, Ginés, & Mattey, 2008).

Warming of the North Atlantic during D/O events is associated with an enhanced AMOC, which results in a
decreased temperature gradient. In general, a weakened AMOC during stadials reduces the heat transport to
the North concomitant with reduced SSTs (Bagniewski et al., 2017). In combination with the presence of the
Laurentide ice sheet, this induces a southward shift of the Hadley Cell, associated with stronger and south-
ward shifted westerlies (Menviel et al., 2014). Stronger and southward shifted westerlies during stadials lead
to decreased precipitation over the Iberian Peninsula and vice versa (Bagniewski et al., 2017; Menviel et al.,
2014). Nevertheless, from a sediment core off the northwest Iberian coast, a more complex response of
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precipitation to Heinrich events 4, 2, and 1 was observed (Naughton et al., 2009). Naughton et al. (2009) sug-
gested that the first phase of the Heinrich events was associated with relatively wet and cold conditions,
whereas the second phase was characterized by dry and cold conditions following the displacement of the
ocean polar front. However, since the CV record does not cover Heinrich events 4, 2, and 1, this cannot be
verified for the eastern Iberian Peninsula. Moreover, the CV record shows drier conditions during stadials
and wetter conditions during D/O events.

4.4. Precipitation Patterns: Present‐Day Versus Last Glacial Period

The present‐day precipitation distribution on the Iberian Peninsula is strongly influenced by several atmo-
spheric circulation patterns including the WeMO and the NAO (Comas‐Bru & McDermott, 2014; Cortesi
et al., 2014). A negative WeMO index leads to enhanced precipitation in SE Spain, whereas the northern
parts remain dry and vice versa (Martin‐Vide & Lopez‐Bustins, 2006; Figures 1a and 1d). This bipolar pre-
cipitation pattern has also been discussed in detail for the Holocene (Budsky et al., 2019). In contrast, the
NAO particularly affects precipitation in the regions of the Iberian Peninsula that are not affected by the
WeMO (Figure 1b).

During the last glacial D/O events, it is well documented thatmany regions in addition to southeastern Spain,
such as western Europe (Genty et al., 2003; Wainer et al., 2009) and the eastern Mediterranean (Grant et al.,
2012; Ünal‐İmer et al., 2015), also experienced increased precipitation. This is in agreement with higher tree
pollen percentages in Greece (Tenaghi Philippon, Tzedakis et al., 2003) and Italy (Lake Monticchio, Allen
et al., 1999) and lower speleothem δ18O values and growth phases in northern Libya (Hoffmann et al.,
2016). Thus, it was more humid during the D/O events in the whole Mediterranean area and western
Europe. This simultaneous increase in precipitation associated with the D/O events in this large region can-
not be explained by changes inmodern winter atmospheric circulation pattern, such as the NAO, the Eastern
Atlantic pattern, the Scandinavian pattern, or the WeMO (Comas‐Bru & McDermott, 2014; Martin‐Vide &
Lopez‐Bustins, 2006). Instead, we suggest that changes in North Atlantic andMediterranean SSTs controlled
the water vapor content of the atmosphere and regulated changes in precipitation. We emphasize that this
general increase in precipitation neither excludes changes in atmospheric circulation during D/O events
nor must have been restricted to a specific season.

Such a strong link between SST and precipitation has also been suggested for the last glacial (Denniston
et al., 2018; Hodge, Richards, Smart, Ginés, &Mattey, 2008), primarily for theMediterranean due to instabil-
ities in winter associated with high SSTs during D/O events (Bosmans et al., 2015). In particular, it is well
known that the water vapor content of the air over the North Atlantic increased during warmer periods,
and these warm and moist air masses were then transported to the western Mediterranean causing an
increase in precipitation (Bosmans et al., 2015; Kutzbach & Liu, 1997; Trenberth et al., 1998). During gla-
cials, cool SSTs in the North Atlantic decreased the energy budget over the ocean and the moisture uptake
in winter. This resulted in drier conditions in the westernMediterranean (Daniau et al., 2007; Dumitru et al.,
2018; Hodge, Richards, Smart, Ginés, & Mattey, 2008; Moreno et al., 2005).

5. Conclusions

Three overlapping flowstone δ13C and δ18O records from CV demonstrate that precipitation in SE Spain
between MIS 5b and MIS 3 (96–45 ka) was related to North Atlantic climate variability. Warm D/O events
were associated with higher precipitation and an expansion of vegetation, even during short D/O events,
such as D/O 15 and 18. Cold stadials were associated with lower precipitation and reduced vegetation cover.
Warm and humid conditions during D/O events are also recorded by pollen and were associated with an
expansion of forests in the Mediterranean region.

Climate of the Iberian Peninsula during the Holocene and the present day shows strong regional differences
due to different controlling factors, such as the NAO and the WeMO. However, vast regions in the
Mediterranean and western Europe show coherently more humid conditions during D/O events and drier
conditions during Greenland stadials. We conclude that this coherent large‐scale climate response cannot
be explained by present‐day winter atmospheric circulation patterns alone. Instead, the SST of the North
Atlantic and the Mediterranean Sea played a key role in determining the water vapor content of the atmo-
sphere that controlled precipitation in the western Mediterranean and western Europe.
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