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Abstract

Meteorological droughts have large impacts on society and the environment. A

better understanding and quantification of their occurrences can be highly rel-

evant for the development of proper climate change mitigation, adaptation

and resilience strategies. Here we examine meteorological droughts from

observed data covering the 1971–2000 period for the Fulda catchment in Ger-

many by means of the Standardized Precipitation Index. The joint dependency

of drought duration and severity is modelled by a copula function, which

relates their univariate distributions in a functional relationship. Recurrence

intervals are further calculated as a function of the joint relationship and uni-

variate marginals. Future projections are investigated in which downscaled

EURO-CORDEX Regional Climate Model (RCM) projections for the period

2021–2050 are used together with the three Representative Concentration

Pathways (RCP) 2.6, 4.5, and 8.5, in order to analyse and compare future joint

patterns of duration and severity of events. We find that drought duration and

severity present a clear interdependency supporting the choice of a bivariate

model. Results suggest substantial differences in the future joint relationship

duration–severity. Depending on the RCM and RCP, drought patterns show

different magnitude of changes in the future. The projected changes are differ-

ent for the different returns periods. RCP8.5 shows more severe events and

longer drought durations than RCP2.6 and RCP4.5. The uncertainties of the

projected patterns also depend on the RCP and RCM and are larger for higher

return periods.
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1 | INTRODUCTION

Meteorological droughts have large impacts on society and
the environment (Sheffield, Wood, & Roderick, 2012).
Droughts are normal, recurrent features of climate that occurs
in virtually all climate zones (Mpelasoka et al., 2008). One of
the related environmental phenomena associated to droughts
is desertification, which not only has an impact on the envi-
ronment but can also have severe consequences on society
(e.g., Trnka et al., 2018, and references therein). Naumann,
Spinoni, Vogt, and Barbosa (2015) used drought damage
functions relating drought characteristics and their impacts
and found an increasing relationship between reduction in
cereal crop production and an increase in drought severity.

Depending on the application context, different drought
categories exist (Dracup, Lee, & Paulson, 1980; Spinoni,
Naumann, Carrao, Barbosa, & Vogt, 2014; Wilhite &
Glantz, 1985). Definitions embrace water supply deficit in
stream flows; water storages in lakes and reservoirs as well
as in groundwater (hydrological drought); shortage in soil
moisture that affects average crop production by causing a
lack in water supply (agricultural drought); and precipita-
tion deficit relative to a normal or average condition in a
certain region (meteorological drought). A drought event in
one of these types does not automatically imply the occur-
rence of a drought event in another type. For example,
meteorological droughts do not necessarily coincide with
periods of agricultural droughts (Wilhite & Glantz, 1985).

Droughts can be defined in terms of different charac-
teristics (Yoo, Kwon, Kim, & Ahn, 2012). A well-known
index to describe meteorological droughts is the Standard-
ized Precipitation Index (SPI; McKee, Doesken, & Kleist,
1993). As the SPI is based only on precipitation time series,
other processes that affect the water balance, such as evap-
oration, run-off or soil water content dynamics, are
ignored. Therefore, alternative indices have been proposed.
The Standardized Precipitation-Evapotranspiration Index
(SPEI) requires precipitation and evapotranspiration data
(Beguería, Vicente-Serrano, Reig, & Latorre, 2014; Vicente-
Serrano, Beguería, & López-Moreno, 2010) and the Palmer
Drought Severity Index (PDSI) implements meteorological
as well as soil-related information. As for the PDSI, the SPI
relies on various assumptions, in particular the statistical
distribution of the precipitation data (Lloyd-Hughes &
Saunders, 2002; Mishra & Singh, 2010; Wu, Svoboda,
Hayes, Wilhite, & Wen, 2007). Recently, Farahmand and
AghaKouchak (2015) suggested a nonparametric normali-
zation procedure for the SPI. Descriptions of these and fur-
ther indices can be found in Keyantash and Dracup (2002)
and Heim (2002). Although several indices exist, there
seems to be scientific consensus that there is not a best
index to define droughts and that the quest for a best index
is useless (Van Loon, 2015). Nevertheless, Raible,

Baerenbold, and Gómez-Navarro (2017) tested different
water balance models (differing in the number of hydro-
logical fluxes included) to define various drought indices of
diverse complexity for several regions in Europe. The com-
parison of these different drought indices provides insight
about regions where indices with simpler water balance
models (i.e., reduced number of hydrological fluxes
included) are sufficient to characterize a drought. Raible
et al. (2017) showed that the simplest index, the SPI, per-
forms well for Western Europe, including Germany.

The effect of anthropogenic climate change on drought
events has been investigated using specialized indices that
characterize droughts. For example, Zhang and Zhang
(2016) studied the Drought Hazard index as a function of
the SPEI in different regions in China. The analysis was
carried out for the present and for climate change scenar-
ios using three Representative Concentrations Pathways
(RCP). They concluded that the drought hazard increases
in all regions analysed for the RCP8.5 scenario. Tölle,
Moseley, Panferov, Busch, and Knohl (2013) investigated
climate change impacts on water supply patterns over Ger-
many using the SPI index on a seasonal (6 months) time
scale based on an ensemble of 24 Regional Climate Model
(RCM) simulations. Projections for two periods in the
future showed wetter winters during both periods. Wetter
summers during 2036–2065 were projected while drier
summers were estimated for the period 2071–2100 toward
the southwest of Germany. The authors concluded that
the SPI is a useful tool for climate change research.

We examine drought events by their duration and
severity derived from the SPI and hence consider them as
a multivariate phenomenon. To model drought duration
and severity jointly, copulas (see section 2.3) offers an
attractive method as they display the interdependence
between variables in its essential form (Bárdossy &
Pegram, 2009). A major advantage and key point in using
copulas is the ability of constructing the dependence
structure between random variables, independently of
the marginal distributions (Genest & Favre, 2007). In
hydrology, copulas have been introduced more than a
decade ago (Favre, El Adlouni, Perreault, Thiémonge, &
Bobée, 2004; Salvadori, 2004). Shiau and Modarres (2009)
used the Clayton copula to represent the relationship
between drought duration and severity and to calculate
the conditional recurrence intervals for two gauge sta-
tions in Iran. Shiau (2006) modelled the joint severity
and duration in which six parametric families of copulas
were tested. The copula selection criterion was based on
the log-likelihood function and the Galambos copula was
found to provide the best fit. Vandenberghe, Verhoest,
and De Baets (2010) analysed different storm characteris-
tics at Uccle, Belgium. They tested seven different copula
families commonly used to describe hydrological
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phenomena. Vandenberghe et al. (2010) put emphasis on
symmetrical Archimedean copulas and suggested apply-
ing asymmetric copulas for a more detailed analysis.
Recently, Halwatura, Lechner, and Arnold (2015) quanti-
fied the relationship severity–duration–frequency of
droughts considering three drought indices, namely the
SPI, the SPEI and the Reconnaissance Drought Index
(RDI) for different time scales in 11 locations in eastern
Australia. The authors used Frank and Gumbel copulas
and found that the correlation between SPI and SPEI or
RDI was stronger for tropical and temperate locations
than for arid locations.

The purpose of this paper is to characterize meteoro-
logical droughts in the Fulda region (Figure 1), Germany,
and to estimate and compare future patterns of these
drought events under anthropogenic climate change sce-
narios. We concentrate on the short-term period
2021–2050 for practical considerations as potential
changes will directly affect today's society. We focus on
three main issues in our work: first, we define the SPI
index; second, we characterize drought events as bivari-
ate phenomenon in the historical period; and third, we
investigate the joint behaviour duration–severity of
future projections for different return periods. Regarding
to this last point, the different projected joint patterns are
compared and the uncertainties induced by an ensemble
of EURO-CORDEX simulations and RCPs are quantified.
For this, five different EURO-CORDEX simulations and
three RCPs (RCP8.5, RCP2.6, and RCP4.5) are used. The
study is organized as follows. Section 2 introduces the

observed and modelled data and describes the methods.
In section 3, the results are presented and discussed
followed by conclusions in section 4.

2 | MATERIAL AND METHODS

2.1 | Study area and data

The study area is Fulda located in the Federal state of
Hesse, Germany, with coordinates: latitude 50.53�N, lon-
gitude 9.67�E, elevation 225 m.a.s.l. and can be seen in
Figures 1 and S1, Supporting Information. Daily precipi-
tation time series are provided by the Climate Data Cen-
ter (CDC) of the German Weather Service (Deutscher
Wetterdienst [DWD]) for the period 1971–2000. Figure 1
also shows the monthly average precipitation in the area.
A clear cycle is observed in which the maximum aggre-
gated monthly precipitation is higher in spring and sum-
mer. Precipitation time series simulations for 1971–2000
and for 2012–2050 were obtained from an ensemble of
five bias-corrected EURO-CORDEX runs (Jacob et al.,
2014a), namely, EC-EARTH_RCA4 (M1), MPI-
ESM_CCLM (M2), CNRM-CERFACS_ALADIN (M3),
CNRM-CERFACS_ALARO (M4), and MPI-ESM_REMO
(M5) for three RCPs (RCP2.6, RCP4.5, and RCP8.5; Moss
et al., 2010). The EURO-CORDEX precipitation data are
based on daily model output. The precipitation data refer
to the location of the Fulda DWD weather station and
were derived by nearest neighbour interpolation from the

FIGURE 1 Location and

monthly average precipitation for

the period 1971–2000 (data
provided by the German

Meteorological Service [DWD]),

Fulda station, Germany
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model grid. The choice of RCMs was based on availability
of information. The full range of simulations was not
available, and therefore only a subset was chosen based
on: (a) availability of all three RCP scenarios;
(b) previous evaluation papers, which examined the sta-
tistical characteristics of regional climate simulation
results compared to observed precipitation (see, e.g., Jacob
et al., 2014a or Kotlarski et al., 2014); (c) were not too
wet or dry for the Fulda region. To alleviate systematic
biases, they are bias-corrected and downscaled by the
empirical quantile mapping method given in Ivanov and
Kotlarski (2017).

2.2 | Characterization of drought

The SPI index is used to characterize drought duration
and severity in both historical and projected period. SPI
depends solely on precipitation data. Its calculation
involves applying the quantile function of the standard-
ized normal distribution to the distribution of the data.
Given a specific time scale (e.g., 1, 3, 6, 12, or more
months), a probability model (distribution function) is fit
to the long term precipitation time series so that the
transformed series are defined in the unit interval. In the
present study the Gamma probability model is used
which has been applied and proposed by many authors
(McKee et al., 1993; Wu et al., 2007). A further transfor-
mation is then carried out by applying the inverse of the
standard normal distribution. This implies zero mean
and unit standard deviation. For more details, refer to
McKee et al. (1993). SPI can take both positive and nega-
tive values. Positive (negative) values indicate observed
precipitation larger (smaller) than the median.
Depending on the magnitude of the SPI, droughts can be
classified on the spectrum from mild to extreme severe
(McKee et al., 1993). The main advantage of the SPI is
that it can be calculated for several time scales (McKee,
Doesken, & Kleist, 1993McKee et al., 1993). Often used
time scales for precipitation deficit are 3, 6, 12, 24,
48 months (McKee et al., 1993). As defined by McKee
et al. (1993) a drought event is defined as a period in
which the SPI is continuously negative and the SPI
reaches a value of −1.0 or less.

To compare joint patterns of drought events in the
projected period as well as joint patterns of droughts
between projected and historical period, different RCM–
RCP combinations are used in this study. We analyse
drought events considering a seasonal 3-month time scale
to account for seasonal effects in the evaluation of dry-
ness conditions. It is important to stress that we are com-
paring different patterns which can be defined
independently in both, historical and projected period.

This will tell us, for example, how the bivariate relation-
ship duration–severity may change between periods (his-
torical and projected) and between different scenarios
given by the ensemble of projections (RCM–RCP).
Drought severity S (Equation (1)) is defined as the cumu-
lated SPI during a drought as follows:

S=−
XD

i=1
SPI ið Þ, ð1Þ

in which D represents the duration of the drought event
in months. As the SPI is negative during the drought
event, S is a positive real number. Drought duration is
defined as the aggregated time in which a drought event
occurs.

2.3 | Selection of a copula model

Copulas are tools that aim to model dependence of ran-
dom variables. In the two-dimensional case, they are
functions defined on the unit square with uniformly dis-
tributed marginals. Here, we consider a two-
dimensional copula, in which the dimensions represent
duration D and severity S of the drought events. An
important aspect is that a link between a joint distribu-
tion function and a copula function can be established
that permits to model the association between the vari-
ables regardless of their univariate marginal distribu-
tions (see, e.g., Nelsen, 2006). More specifically, Sklar's
theorem (Sklar, 1959) states that if X and Y are two ran-
dom variables with corresponding marginals F1 and F2
and joint distribution function H, there exists a copula
given by Equation (2)

P X≤x,Y≤yð Þ=H x,yð Þ=Cθ F1 xð Þ,F2 yð Þf g, ð2Þ

in which x, y ∈ R and P denotes the probability of the
event. Writing u1 = F1(x) and u2 = F2(x), the copula func-
tion Cθ can be defined as

Cθ u1,u2ð Þ=P U1≤u1,U2≤u2ð Þ: ð3Þ

Continuity of the marginals entails the uniqueness
of C. This result allows expressing the dependence
structure of drought properties S and D in terms of a
two-dimensional copula. The main advantage of this
approach is that the selection of an appropriate model
to describe the association between the random vari-
ables can be carried out independently of the choice of
the marginal distributions. If in a parametric frame-
work we choose F1, α, F2, β, Cθ, with α, β, θ representing
the parameters (or parameter sets) of the marginals
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and the copula respectively, then a joint model for
X and Y can be constructed. For more details see Gen-
est and Favre (2007). Among the parametric copulas,
most of the models can be associated to a family with
one or more parameters. In this paper, five frequently
used copula families for hydrological applications
(Vandenberghe et al., 2010) are considered, namely
Gumbel, Frank, Clayton, Ali-Mikhail-Haq (AMH), and
Farlie-Gumbel-Morgenstern (FGM) family. Their for-
mulations are shown in Table 1. The first four belong
to the Archimedean copula class, which is character-
ized by a convex generator function (Equation (4))
expressed as

Cθ u1,u2ð Þ=ϕ−1 ϕ u1ð Þ+ϕ u2ð Þð Þ, ð4Þ

in which ϕ is known as the generator function, so that ϕ:
(0, 1] ↦ [0, ∞) and ϕ−1 is the pseudo-inverse of ϕ. Condi-
tions on this function can be found elsewhere (Genest,
Quessy, & Remillard, 2006; Nelsen, 2006).

2.4 | Parameter estimation and
duration–severity model for different
return periods

Given a continuous model Cθ with associated density cθ,
a rank-based maximum pseudo-likelihood method is
used (Genest & Favre, 2007) for parameter estimation
(Equation (5)):

l θð Þ=
Xn

i=1
ln cθ

Ri

n+1
,

Si
n+1

� �� �
, ð5Þ

in which n is the number of pairs and (Ri, Si) represents a
pair of ranks for duration and severity. The optimum
parameter set maximizes l. An important step is to iden-
tify an appropriate kind of dependence structure from
the set of copula models. In this study, the empirical cop-
ula (Equation (6)) is used to approximate the theoretical
copula in terms of the root mean square error (RMSE;
Equation (7)):

Cn u1,j,u2,j
� �

=
1
n

Xn

i=1
1

Ri

n+1
≤u1,j,

Si
n+1

≤u2,j
� �

, ð6Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i=1
Cθ u1,i,u2,ið Þ−Cn u1,i,u2,ið Þð Þ2

r
, ð7Þ

in which 1(�) represents the indicator function. Another
goodness-of-fit criteria used in this study is the Akaike
information criterion (AIC; Akaike, 1974) which has
been applied in copulas and hydrological assessments
(see Hao, Zhang, & Yao, 2015; Zhang & Singh, 2007) to
identify the appropriate probability distribution. The AIC
selects a model among a set of models and includes a
penalty term linearly related to the number of parameters
in the calculation. It can be calculated as

AIC=−2log Lop
� �

+2k, ð8Þ

with Lop representing the optimized likelihood and k the
number of parameters in the model. The higher the abso-
lute value of AIC, the better the model. More about the
methods for parameter estimation is given in Genest and
Favre (2007) and Genest et al. (2006). The RMSE as well
as the AIC for the five copulas, each regional model and
RCP are given in Table S1. The values correspond to the
post-fitting procedure outcomes. The best copula model
is chosen so that it minimizes these two indicators.

In order to graphically see the goodness of fit of all
models and the best performing model, two graphical
analyses are performed. First, the empirical distributions
are plotted against the theoretical copula distributions.
For a good fit, plotted pairs are expected to lie near the
1.1 line. Second, the best performing model is used to
simulate synthetic events which can be compared to the
observed drought events. We generate the artificial data
set (Genest & Favre, 2007) given by simulated ordered
pairs (u, v) that represent the transformed drought char-
acteristics duration and severity, respectively. We gener-
ate a large (n = 500) number of samples u,vð Þf gni=1 from
the fitted Frank model by means of the conditional distri-
bution ∂

∂uCθ u,vð Þ for a fixed v and randomly generated

TABLE 1 Copula models and associated parameter space

Family Model Parameter space

Frank Cθ u,vð Þ=− 1
θ log 1+

e−θu−1ð Þ e−θv−1ð Þ
e−θ−1

	 

θ ∈ (−∞, ∞)

Gumbel Cθ u,vð Þ=e− − loguð Þθ+ − logvð Þθf g1
θ

θ ∈ [1, ∞)

Clayton Cθ u,vð Þ=max u−θ+v−θ−1
� �−1

θ,0
n o

∈[−1, ∞]\{0}

FGM Cθ(u, v) = uv + θuv(1 − u)(1 − v) θ[−1, 1]

AMH Cθ u,vð Þ= uv
1−θ 1−uð Þ 1−vð Þ θ ∈ [−1, 1)
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u values from the uniform distribution. We want to high-
light that the fitting process and selection of the best cop-
ula model was carried out according to the ranked-based
maximum pseudo-likelihood method and selection
criteria according to Equations (6)–(8) respectively, as
explained previously. The graphical representation is
intended to graphically show the goodness of fit of the
three best (Figure 4) and best copula (Figure 5) for the
model MPI-ESM_CCLM.

The recurrence interval TDS for the bivariate event
(D ≥ d ^ S ≥ s) can be defined as the expected time inter-
val (or mean time interval) for the event to occur and can
be expressed as a function of the marginals and joint dis-
tribution for drought duration D and drought severity S.
Mathematically (Shiau, 2003),

TDS=
E Lð Þ

P D≥d,S≥sð Þ=
E Lð Þ

1+FDS d,sð Þ− FD dð Þ+FS sð Þð Þ , ð10Þ

in which E(L) represents the expected value of the inter-
arrival time L of a drought event and FDS(d, s) is the joint
distribution modelled by the fitted copula.

3 | RESULTS AND DISCUSSION

3.1 | Drought occurrences

The SPI time series of the model M2 is displayed exemplar-
ily in Figure 2 corresponding to the time period 1971–2000.

Periods of dry conditions are depicted in red and of wet
conditions in grey. It can be seen, for instance, that the
duration of the wet period in 1989–1991 is much longer
than the drought period between 1977–1978. For compari-
son purposes, Figures S2–S4 show the SPI time series for all
EURO-CORDEX models, RCP8.5. Clear differences can be
observed in the projected drought events indicating the dif-
ferences in projections associated to climate models. Fur-
ther, severity is calculated as the sum of SPI values. From
the SPI-based drought characterization of present and pro-
jected events, the posterior joint models are built.

A first relevant analysis of these SPIs values is the dif-
ference between the number of droughts events (Nevents)
particularly between the different RCMs and RCPs in the
projected period. Results are shown in Table 2. The first
observation is that there is not a single model which pro-
jects an upper limit for Nevents for each RCP when com-
pared to the other models. Nonetheless we see that
model M2, with the exception of model M4 for RCP4.5
always projects a higher number of drought events. We
also see that the maximum difference in Nevents occurs in
scenario RCP8.5. For this case model M1 projects
41 events in contrast to models M2 and M3 which project
49 events. Important to note is the spread (difference) in
the Nevents projections. The higher the peak in GHG
(greenhouse gases) emissions the more spread is observed
in Nevents. While RCP2.6 shows a spread of d = 3 in which
model M3 and model M2 project 46 and 49 events,
respectively, this difference increases to d = 8 in the
RCP8.5 calculated from the models M1 and M2-M3 with
41 and 49 events, respectively.

Figure 3 shows a scatterplot of drought duration and
severity for all regional models for the present period as
well as RCPs. The small scatter indicates a strong
duration–severity interdependence suggesting the use of
a joint model for further analysis. Although the relation-
ship may seem to be similar between different RCPs for a
specific climate model, the scatterplots show different
spread and different maximum values. For example,

FIGURE 2 Standardized precipitation index (SPI) from the MPI-ESM_CCLMmodel, period 1971–2000. Periods of droughts are indicated in

red. Grey areas indicate periods of precipitation higher than normal condition (median)

TABLE 2 Projected number of drought events for each RCM

and RCP

M1 M2 M3 M4 M5

RCP26 47 49 46 48

RCP45 45 51 46 52 48

RCP85 41 49 49 43 45

6 CHAMORRO ET AL.



model M3 in combination with RCP8.5 (red stars) shows
the highest duration–severity drought event (point
around [37, 36]), considerably higher than any other.
RCP4.5 shows the second highest value (blue crosses).
The present period and RCP2.6 display clearly smaller
maximum values.

3.2 | Probabilistic model fitting

The theoretical copula is fit by the rank-based maximum
pseudo-likelihood method given by Equation (5). The
fitted theoretical model is further compared to its empiri-
cal counterpart. Table S1 shows the average RMSE and
AIC over RCMs for all RCPs and copula models. Results
indicate a good agreement for the copula families
Clayton, Frank, and Gumbel. The worst results are found
for the FGM model with a substantially larger error than
the other models. A clearly better performance of the
Frank family in terms of the RMSE and AIC is observed
in all cases with exception of model M1 (EC-
EARTH_RCA4) for RCP4.5 and model M4 (CNRM-CER-
FACTS_ALARO) for the present period, with small dif-
ferences. The goodness of fit for the Gumbel model is,
although not the optimum, close to the Frank model in
terms of both the RMSE and AIC.

The goodness of fit of the copula models can be seen
in Figure 4 for all cases, that is, present, RCP2.6, RCP4.5,
and RCP8.5 for the model M1. This figure displays the
empirical cumulative against the theoretical copula func-
tion for the three best performing models Clayton, Frank,
and Gumbel. As Table S1 indicates, the other copula
models show a clearly worse performance and hence are
not shown. As expected and based on the fitting results
(Table S1), a good agreement is confirmed for all these
three copula families given in Table 1. For the subse-
quent analysis, we present results using the Frank model
as it shows the best fit.

Figure 5 exemplarily shows the historical and simu-
lated dependency from the conditional Frank copula for
the periods 1971–2000 and 2021–2050, model M2 as a
scatterplot. The fitted copula model Cθ adequately repro-
duces the bivariate dependency between u and v as
expected, since the simulated points are drown from the
best performing copula model (according to Equa-
tions (6)–(8)).

It is important to mention that the functional relation
between drought duration and severity cannot be
assumed a priori. Often, different models are found to
represent the joint behaviour. For instance, Shiau (2006)
identified the Galambos copula fitting best out of seven
models, while for a drought analysis for 50 rain-gauge

FIGURE 3 Duration versus severity scatterplots
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stations in Malaysia the Joe copula performed best
(Zin, Jemain, & Ibrahim, 2013). Abdul Rauf and
Zeephongsekul (2014) found the Gumbel-Hougaard cop-
ula more appropriate in representing the relationship
between severity and duration. All this indicates that first
the appropriate model is case dependent, so that an
assumption of a predefined model could lead to a poor
fit, and second the selection should be based out of sev-
eral choices.

3.3 | Joint analysis of drought duration,
severity, and recurrence intervals

The association of drought duration and severity to their
frequency in terms of recurrence intervals is calculated
using Equation (10). The return period is expressed as a
function of the marginals (duration and severity) and the
fitted bivariate copula model. Figure 6 shows the joint
relationship duration–severity for different recurrence

intervals for both the historical and projected periods.
For each return period of 1, 2, 5, and 10 years, three dif-
ferent curves representing the RCP2.6, RCP4.5, and
RCP8.5 are shown. The associated uncertainties in the
joint behaviour are characterized by the spread of the
estimates for the different RCMs and RCP.

Results show that for short return periods of 1 and
2 years, only small changes in the associated duration–
severity relationship are projected for all RCMs. The
difference is clearly larger for longer return periods and
is most accentuated for a return period of 10 years. The
magnitude of these differences substantially depends on
the RCM. Comparing all five CORDEX models
(Figure 6), the patterns of recurrence intervals for
models M1, M2, and M5 are rather similar. Larger
spreads of projections are found for the other two
models.

For a fixed return period, the curves associated to dif-
ferent concentration pathways also show variations. Con-
sider, for example, the model M1 for the return period of

FIGURE 4 Empirical (ECDF) versus the fitted theoretical cumulative distribution function (CDF) for the models Clayton, Frank, and

Gumbel

FIGURE 5 Comparison of

calculated dependence (blue) and

simulated dependence (red) from

fitted Frank copula model. The left

panel shows present period

(1971–2000) and the right panel the

future period (2021–2050), for
RCP8.5 and M2
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10 years. Compared to the present period, the RCP2.6
projects a joint pattern in which the severity is smaller
and the durations are shorter (dashed line). RCP4.5 and
RCP8.5 show, however, opposite trends. While RCP4.5
projects smaller severity together with a longer duration,
RCP8.5 indicates larger severity and shorter duration
(seen as a bivariate dependency). The model M3 suggests
a different association between drought duration and
severity for the same return period. In this case, for
RCP2.6 and RCP4.5, severity shifts upwards and duration
shifts downwards. In contrast, for RCP8.5, both duration
and severity shift upwards. This also shows that projected
patterns are strongly related to the RCPs. On the whole,
uncertainties associated to RCPs are substantial and their
magnitude of variations are RCM-dependent. The largest
uncertainties are shown by the models M3 and M4.

The most important source of uncertainty are the
RCMs (Figure 6). In order to better compare the magni-
tudes of the differences between the five regional
models independent of the RCPs, Figure 7 shows the
duration–severity joint pattern for RCP8.5 considering
all RCMs. An increasing uncertainty with increasing
return periods is clearly observed from the model
ensemble. The projected differences in the drought pat-
terns are not negligible and are much more accentuated
for return periods of 10 years, particularly for the
model M3.

Anthropogenic climate change effects on drought
characteristics have also been the object of other studies
that support the findings of this work. For example,
changes in the precipitation patterns across the year,
changes in intensity and occurrence of dry days can influ-
ence the joint behaviour duration–severity of drought
events. The Special Report on Emission Scenarios (SRES)
projected an increase of precipitation in winter and
decrease in summer for Germany, which could explain
the pattern changes shown in this work. Meehl et al.
(2007) projected a larger number of dry days together
with an increase in variability of precipitation intensity.
Tölle et al. (2013) analysed the SPI drought index for Ger-
many and detected a statistically significant increase of
the upper quantiles of the SPI for winter. They concluded
that strong precipitation will intensify and the number of
dry months will decrease in the winter season in the
future. All this evidence is consistent with our results that
suggest a change in the interrelation between drought
duration and severity in the study region.

FIGURE 6 Recurrence intervals of 1, 2, 5, 10 years for the

observed period (solid line), RCP2.6 (dashed line), RCP4.5 (blue

line), and RCP8.5 (dash-dotted red line) for all five CORDEX

models

FIGURE 7 Recurrence intervals 1, 2, 5, 10 for RCP8.5

showing the different joint relationships duration–severity for the
driving models: M1 (black dashed line), M2 (red dashed line), M3

(black solid line), M4 (blue solid line), M5 (magenta solid line)
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4 | CONCLUSIONS

In the present study, we investigate droughts in the Fulda
catchment (Germany) under current climatic conditions
and for the near future. We show that the characteristics
duration and severity of drought events are strongly
interrelated. Based on this, we model them as a bivariate
phenomenon fitting different bivariate copula models.
The Frank model shows the best performance in terms of
the RMSE and AIC and is used to model the dependence
structure duration–severity. Potential differences in the
duration–severity interdependence for the next decades
are quantified for the RCM–RCP combinations. Alto-
gether, we considered 15 different scenarios. The uncer-
tainty of projections corresponding to different RCMs
and RCPs are also investigated. We find clear tendencies
in the different RCMs despite the inherent uncertainty of
the RCM ensemble, as the dependency between the mag-
nitudes of variations and frequencies. We conclude that
(a) the drought duration–severity interdependence may
change in the period 2021–2050 as RCMs project and
(b) that the duration–severity relationships shows differ-
ent patterns depending on return period, RCM and RCP.
Finally (c), the uncertainty associated with the RCMs is
larger than that associated with the RCPs. The most
important sources of uncertainty is given by the RCMs.
Concentration pathways also present important uncer-
tainties and the largest differences are observed by the
models M3 and M4. We can suggest that future work
should consider an even larger ensemble of RCMs to see
whether the projected spread of results is even wider.
Other uncertainty sources as those related to improving
model bias or the analysis of other joint models may also
be incorporated.
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