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Abstract

The new SEAS5 global ensemble forecast system was dynamically downscaled

over the Horn of Africa for summer (June-July-August) 2018. For this purpose,

a multi-physics ensemble was designed with a grid increment of 3 km and

without any intermediate nest based on the Weather Research and Forecasting

model (WRF). The WRF and the SEAS5 model output were compared with

each other and reference datasets to assess the biases in 4 different regions of

Ethiopia. Also, the WRF ensemble variability was investigated in relation to

model parameterization and lateral boundary conditions. Over the summer,

the SEAS5 has a positive temperature bias of 0.17�C compared to ECMWF

analysis average for the study domain, while the WRF bias is +1.14�C. Con-
cerning precipitation, the WRF model had average accumulated values of 264

mm, compared to 248 mm for SEAS5 and 236 mm for the observations. Over

south Ethiopia, however, the downscaling produced over 50% more precipita-

tion than the other datasets. The maximum northward extension of the tropi-

cal rain belt was reduced by about 2� in both models when compared to

observations. Downscaling increased reliability for precipitation, correcting the

SEAS5 underdispersion: ensemble spread for precipitation was increased by

about 70% in the WRF ensemble in three of the four Ethiopian sub-regions,

whereas the very dry Somali region remained unaffected. The WRF ensemble

analysis revealed that the ensemble spread is mainly caused by the perturbed

boundary conditions, as their effect is often 50% larger than the physics-

induced variability in the mountainous part of Ethiopia for precipitation and

temperature.
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1 | INTRODUCTION

Accurate and reliable seasonal forecasts are fundamental
tools for decision making in many sectors like agricul-
ture, water management, and early warning systems
(Feldman and Ingram, 2009). Advanced seasonal fore-
casts are becoming even more important considering the
expected global warming and the related higher probabil-
ity of extreme events, that is, heavy rainfall, floods,
heatwaves and droughts (Min et al., 2011; Osima
et al., 2018). Global seasonal forecasts are produced at
NOAA (National oceanic and atmospheric administra-
tion), ECMWF (European Centre for Medium-Range
Weather Forecasts), UK Met Office and other centres
worldwide. Their results are collected and disseminated
through the world meteorological organization. Improve-
ments of seasonal simulations depend on two factors: on
the one hand, progress in the understanding and model-
ling of processes related to long-term predictability in
various regions of the world. Sources of predictability
beyond a two-week period have been identified in sea
surface temperature (SST) anomalies (Shukla, 1998), ice
and snow cover (Cohen and Entekhabi, 1999),
stratosphere-troposphere interactions (Thompson
et al., 2002), soil moisture (Koster et al., 2004), and vege-
tation state (Tölle et al., 2014). On the other hand, a
larger amount of observations has progressively become
available to initialize forecasts. Enhanced prediction
skills were recently reported for tropical (Stockdale
et al., 2018) or extratropical 2-m temperature
(Vitart, 2014), and the Madden-Julian Oscillation phases
(Vitart, 2014). New model developments have reduced
the monthly SST bias in the equatorial Pacific, the critical
region for the El Niño Southern Oscillation (ENSO), by
more than 1�C at lead times of two months and longer
(Stockdale et al., 2018). For the United Kingdom
MetOffice GloSea5 model, the global correlation between
ENSO phases and precipitation patterns saw a statisti-
cally significant increase from 0.76 to 0.80 from the previ-
ous model version (Maclachlan et al., 2015).

However, at sub-seasonal and seasonal time scales
the horizontal resolution of global prediction models is
coarser than 10 km. As a cumulus scheme is necessary at
this grid size to simulate convection, large uncertainties
in precipitation amount and timing are introduced (Prein
et al., 2015). Coarse-resolution models underperform in
regions with complex topography such as coastlines and
mountain ranges (Schwitalla et al., 2008; Prein
et al., 2013). High resolution is also important when
modelling smaller water bodies like lakes and wetlands
(Lauwaet et al., 2012).

In order to achieve higher resolution it is possible to
downscale a global model over the region of interest.

Smaller domains make the simulations affordable:
regional climate models (RCM) at the convection-
permitting (CP) scale have been a common research tool
in the last decade (Prein et al., 2015). The advantages of
CP models for seasonal climate modelling are lower
biases and better skill scores (Schwitalla et al., 2017; Pal
et al., 2019).

Seasonal forecasts specifically for Ethiopia have been
prepared since 1987: the Ethiopian National Meteorology
Agency (NMA) began using the analogue method to classify
years according to SSTs in the equatorial Pacific (El Nino
index) and Indian Oceans. Seasonal forecasts for precipita-
tion were issued based on the precipitation on record dur-
ing the most similar years (Korecha and Sorteberg, 2013).
More advanced statistical methods have been implemented
by NMA, using Canonical Correlation Analysis
(Fekadu, 2015). To improve the forecasts, studies assessing
the impact of dynamically predicting the ENSO state were
performed (Korecha and Barnston, 2007) but never
included in the operational routine. Testing of suitable
model configurations for seasonal predictions in Ethiopia
began in 2015, at 30 km grid increment (Regassa, 2014). A
collaboration between NMA and the United Kingdom
MetOffice has recently been established through the UN
Office for the Coordination of Humanitarian Affairs to pro-
vide seasonal forecasts based on state-of-the-art GCM
(SCIPEA, 2019, consulted on November 27, 2019).

In the Horn of Africa, the intertropical convergence
zone movement defines rainfall seasonality: south Ethio-
pia, Kenya and southern Somalia have a bimodal rainfall
pattern with rainy periods in spring and autumn. The
northern part is subjected to a unimodal rain distribu-
tion: depending on the position, the wet spell lasts up to
4 months (June to September), but it shortens moving to
the north and to the east. In Section 2.3, we present four
sub-regions, whose climatology illustrates the different
seasonal cycles. Given that summer rainfall over the
highlands is the fundamental water source for a region
where most of the farmland consists of rain-fed agricul-
ture (Korecha and Sorteberg, 2013), improvements in sea-
sonal forecasts have strong practical benefits. However,
even if some teleconnections and SST global-scale pat-
terns have been found to explain summer rainfall vari-
ability (Fekadu, 2015; Gleixner et al., 2017), global
models have generally low skills in forecasting summer
precipitation anomalies over the Horn of Africa (Batté
and Déqué, 2011; Nikulin et al., 2018). A multi-model
downscaling effort was carried out as part of the
EUPORIAS project for Ethiopia, using atmospheric
hindcasts and SSTs from reanalysis to force a 25 km reso-
lution RCM but the results showed only limited skill
improvement concerning the summer rains (Nikulin
et al., 2018).
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Overall, few works on dynamical downscaling of
ensemble seasonal forecasts (or hindcasts) have been
published (Díez et al., 2011; Castro et al., 2012; Diro
et al., 2012; Yuan et al., 2012; Siegmund et al., 2015;
Cheneka et al., 2016; Diro, 2016; Nikulin et al., 2018);
only Siegmund et al. (2015) used a grid increment finer
than 25 km, namely 10 km.

Of the seasonal downscaling studies Nikulin
et al. (2018) included simulations performed with the
Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) versions 3.4.1 and 3.8.1. It is
interesting to note that, while the two configurations per-
formed similarly elsewhere, the newer version has much
higher inter-annual correlation with precipitation obser-
vation over the central Ethiopian highlands than its older
counterpart. Recent WRF simulations in East Africa
include a model configuration test for operational appli-
cations by NMA (Regassa, 2014) with a 30 km grid to test
WRF land-surface model sensitivity. To investigate land-
cover and resolution effects in the Tana Basin, Kerandi
et al. (2017) used WRF at 25 and 50 km, concluding that
higher resolution benefits rainfall simulation. In prepara-
tion for climate runs, Argent et al. (2015) tested the WRF
ability on a 10 km grid to represent the rainfall patterns
around the Victoria Lake, including several physics
schemes. The most complete study on WRF sensitivity in
East Africa was conducted by Pohl et al. (2011), using
WRF3.1. They included physics parameterization,
domain size, land-surface model, land-use, lateral bound-
ary conditions (LBCs) and number of vertical levels.
When comparing several climate model at 50 km resolu-
tion, WRF simulates the highest amount of precipitation
in East Africa (Endris et al., 2013).The new ECMWF
SEAS5 ensemble for global seasonal forecast is opera-
tional since 2018, and due to the increased resolution of
0.3� (�36 km at the equator) it is possible to force a
convection-permitting RCM without any intermediate
nested domains using a cumulus scheme.

This work has two goals: firstly, we want to investi-
gate the possible improvements in temperature and pre-
cipitation values through downscaling the new seasonal
forecasts at the CP scale over the Horn of Africa, which is
a very promising testing ground. Secondly, we aim to
quantify the relative influence of physics and boundary
condition perturbations on the model output. This allows
us to assess the largest source of uncertainty once the
cumulus scheme is removed. For ensemble forecasts it is
important to know how much spread can be generated in
a limited-area model (LAM), whereas for regional model-
ling it is useful to understand the relative uncertainty
magnitude.

The following scenario was prepared: using the WRF
3.8.1 model, a multi-physics ensemble was initialized and

forced using four SEAS5 ensemble members, on a
limited-area domain, to downscale the forecast for June–
July–August (JJA) 2018.

The paper is structured as follows: in Section 2 the
experimental set-up, including reference datasets and
the ensemble composition, is described. In Section 3 the
convection-permitting ensemble biases and reliability for
2-m temperature (T2m) and precipitation are assessed
and the effects of model settings on the ensemble spread
are evaluated. In Section 4 we discuss the results. Conclu-
sions and outlook are presented in Section 5.

2 | DATASETS AND METHODS

2.1 | Experimental set-up

The WRF-ARW model 3.8.1 was used to downscale the
SEAS5 global seasonal ensemble forecasts for sum-
mer 2018.

2.1.1 | ECMWF SEAS5: Initial conditions
and boundary forcing

The SEAS5 seasonal ensemble forecast was used to force
the LAM at the boundaries.

The ECMWF system has a T319 spectral horizontal
resolution for model dynamics and a O320 Gaussian grid
for the physical parameterization, which corresponds to
an approximate resolution of 36 km. A global simulation
of 7 months is initialized at the first day of each month
using operational analysis for the atmosphere and the
land-surface variables. The “Nucleus for European
modelling of the ocean” (NEMO) model is initialized
using the operational sea-surface temperature and sea-ice
analysis (OSTIA) real-time product and initial conditions
are perturbed to obtain a 5-member ensemble. This is
then extended to a 51-members ensemble including the
atmospheric model perturbations. Further details are
given in Johnson et al. (2019).

Due to storage constraints, only a small sub-set of ver-
tical model levels is available for the downscaling: half of
them (46 of 91), and for 11 out of 51 ensemble members.
Lateral boundary conditions and SST for the downscaling
were prepared using the control run (member 0) and
3 perturbed members (members 1, 2, and 3) of the SEAS5
ensemble. The perturbed members 1, 2, and 3 saw less
abundant precipitation than the control in the summer
months and they have very similar mean temperature.
Together with the control run, they provided a good rep-
resentation of the ensemble spread for SSTs and atmo-
spheric fields (not shown).
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Since the SEAS5 system has been operational since
December 2017, only 1 year of data archived on model
levels was available for downscaling. Vertical pressure
level only are provided for re-forecasts, which are insuffi-
cient for dynamical downscaling.

2.1.2 | The WRF model

WRF is a community numerical weather prediction
model with many available parameterizations for atmo-
sphere and land-surface physics, suitable for sensitivity
tests. The chosen land-surface model NOAH-MP has
been developed with the purpose to facilitate climate pre-
dictions with physically-based ensembles (Niu, 2011).
However, the land-surface model perturbation in a multi-
physics ensemble is left for future work.

The LAM (Figure 1) was centred over the Ethiopian
highlands and the Horn of Africa. One of the main con-
cerns was to account for the spatial spin-up of the low-
level westerly winds flowing in from the Atlantic Ocean
because of their crucial role in transporting moisture to
the region in summer. Therefore, the western boundary
of the domain was kept far apart from the region of inter-
est, reducing numerical artefacts that would degrade the
simulation.

The grid increment was 3 km with 56 vertical levels
up to 10 hPa. The model domain consisted of
1500 × 750 × 56 grid points. The resolution jump was
higher than the optimal ratio but it was considered
acceptable in past RCM studies (Denis et al., 2003; Antic
et al., 2004).

LBCs were interpolated by the WRF preprocessing
system and updated every 6 hr. The lower boundary was

updated every 24 hours. The land-use data were derived
from IGBP-Modified MODIS and the standard WRF soil
categories were used.

To give the LAM a sufficient spin-up time from a cold
start, the forecast initialized on the first of March 2018
was used to investigate summer (JJA) of 2018.

2.1.3 | The ensemble set-up

The ensemble was designed to compare the effects of
boundary conditions and parameterizations on the LAM
uncertainties. In the following, ensemble spread is inter-
preted as the perturbation effects on model output Initial
terrestrial lower boundary conditions have little to no
impact on the forecast as the spin-up time is longer than
the soil-moisture memory. Therefore only SSTs and lat-
eral boundaries matter in practice, involving the 3D
atmospheric fields. For consistency, only changes of
atmospheric parameterization are considered, and we
omitted land-surface perturbations in this experiment.
Once the cumulus scheme is turned off, the other rele-
vant atmospheric physics schemes are: short-wave
(SW) radiation scheme, surface layer and planetary
boundary layer (PBL), and microphysics (MP) (Pohl
et al., 2011).

Parameterization uncertainties affect the atmospheric
model and precipitation is especially sensitive to model
configuration. Next we describe the characteristics of the
physics schemes included in the multi-physics ensemble.

The total amount of energy available at the surface
skin is the fundamental starting point to simulate all
atmospheric processes. Therefore, the incoming SW radi-
ation influences skin temperature, the consequent

FIGURE 1 WRF model

topography at 3 km resolution. The

study area is depicted in the red box.

Weather stations are marked by

black dots [Colour figure can be

viewed at wileyonlinelibrary.com]
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partition of energy into sensible heat and latent heat
fluxes, outgoing long-wave radiation, and turbulence,
with various consequences on temperature and precipita-
tion patterns. One large source of uncertainty is the inter-
action of radiation with hydrometeors: the community
atmospheric mode (CAM) scheme simulates radiation
interactions with three hydrometeors types: cloud water,
cloud ice and snow (Collins et al., 2004), whereas the
Rapid radiative transfer model for GCMs (RRTMG) adds
the interaction with rain (Iacono et al., 2008).

The PBL scheme deals with energy, moisture and
momentum fluxes near the Earth's surface, where turbulent
mixing is responsible for thermodynamic and kinematic
profiles. The transport of moisture and heat through the
boundary layer is a key factor for initiation of convection
and cloud development. A local scheme and a non-local
one were used to address the differences in the turbulence
parameterization. YSU is a non-local scheme that treats the
turbulence by a first order closure (Hong et al., 2006). On
the contrary, MYNN is a local scheme based on the Mellor-
Yamada parameterization and a Turbulent Kinetic Energy
closure of order 2.5 (Nakanishi and Niino, 2009). The sur-
face scheme is an independent source of uncertainty as it
deals with the exchange of heat, moisture and momentum
between the land-surface model and the PBL. However, for
technical reasons, it cannot always be changed indepen-
dently from the PBL. In this specific case, we chose to cou-
ple the PBL with the suitable surface schemes, namely the
MM5 surface scheme for YSU and the MYNN surface
scheme for the MYNN PBL parameterization.

Microphysics schemes deal with phase transitions
and phenomena related to hydrometeors, like collision
and coalescence. Approximations in the parameterization
have strong consequences on rainfall timing, intensity,
and duration. The complex relationships between the
water phases in a cloud are not yet completely under-
stood, therefore there is a large variety of microphysics
schemes using different approaches. The Thompson
scheme defines five hydrometeor classes: cloud water,
cloud ice, rain, snow and graupel, having rain and cloud-
ice double-moment schemes (Thompson et al., 2008).
Morrison 2-moments uses the same classification but the
explicit treatment of hydrometeors' mass and number
variables is expanded to four types, namely cloud ice,
rain, graupel, and snow (Morrison and Gettelman, 2008).
In case of deep convection, the Thompson scheme tends
to produce higher cooling at and below the cloud base,
reducing the convection strength and the cell lifetime
with respect to Morrison. The latter shows a second peak
in convective activity after about 1 hr from the convec-
tion initiation (Heikenfeld et al., 2019): this potentially
results in more intense convective precipitation when the
Morrison parameterization is used.

The RRTMG scheme for short-wave radiation, the
MYNN PBL scheme and Morrison microphysics are used
for the reference ensemble member (Table 1). The long-
wave radiation scheme is RRTMG for all ensemble
members. The NOAH-MP switches are the same for all
ensemble members, including the vegetation option, the
stomatal resistance (Ball-Berry), the surface layer drag
coefficient (Monin-Obukhov), and the radiative transfer
option.

In order to investigate the effects of the different
parameterization involved systematically, the schemes
were changed individually. On the one hand, this choice
reduced the number of total schemes included and poten-
tially a lower spread is achieved. On the other hand, it
allowed for a separation of the effects due to every single
perturbation. Hence, it became possible to assess the con-
figuration choice responsible for the largest contribution
to model uncertainty. Combining the four physics with
the four boundary perturbation yields in total 16 mem-
bers, listed in Table 2.

2.2 | Validation datasets

Surface observations available for the Horn of Africa are
not suitable to validate a model with a resolution of some
kilometres, due to the lack of a dense weather station
network. Only Ethiopia has a good infrastructure, includ-
ing about 1,200 rain gauges and 200 high-quality weather
stations (Berhanu et al., 2016). However, the number of
stations is in steady decline since the 1990s, they suffer
from gaps in time series and the network is unevenly dis-
tributed (Dinku et al., 2014; Berhanu et al., 2016). The
station network alone is not sufficient to provide a refer-
ence dataset with the suitable spatial resolution.

Therefore, the only alternative is the 2-m temperature
provided by ECMWF operational analyses (cycles 43r3,
and 45r1 from 5/06/2018; retrieved 5/11/19). They pro-
vide hourly values of atmospheric variables at about
10 km resolution. Even at a resolution coarser than WRF,

TABLE 1 Physics schemes included in the WRF ensemble:

control member in the central column, alternative

parameterization on the right

Physics
parameterization

Control
member

Ensemble
variation

Planetary boundary layer
(surface scheme)

MYNN
(MYNN)

YSU (MM5)

Microphysics Morrison
2-mom

Thompson

Short-wave radiation RRTMG CAM
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this is the best gridded dataset available. However, we
must take into account that analyses are not equivalent
to measurements since they are the result of data assimi-
lation and thus a model run. A small number of weather
stations, for which NMA provided complete time series,
was used for point-like comparisons to assess the bias of
analysis and model temperature in different parts of the
model domain. Temperature data sets (both analysis and
WRF output) were interpolated to the SEAS5 resolution
using the bilinear interpolation method provided by the
Earth System Modelling Framework package included in
the Ncar Command Language (NCL, 2019).

Satellite-based measurements are available for precip-
itation with good spatial resolution. Considering the
requirements on spatial resolution (order of few km),
time period and temporal frequency, the global precipita-
tion mission - integrated multi-satellite retrieval for GPM
(GPM-IMERG) V06B Half-Hourly Precipitation Final
Run ([Huffman et al., 2019] retrieved on 05/08/2019) was
the best choice to validate precipitation among the avail-
able data sets at the time of writing, notwithstanding
their known uncertainties and limitations, that is, condi-
tional bias (Xu et al., 2016). The GPM-IMERG V06B
half-hourly early run is produced using only satellite
observations but the research-level product is adjusted to
produce a monthly accumulation equal to the monthly
Final Run. This bias calibration is based on gauge mea-
surements, namely the monthly product by the Global
Precipitation Climatology Centre precipitation data set.
GPM-IMERG spatial resolution is 0.1� with coverage
from 60�S to 60�N.The Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) is obtained by
merging satellite Cold Cloud Duration measurements
and gauges. The final research-level product is available
at 0.05� resolution in pentads and monthly accumulation,
while daily values are only available as a preliminary prod-
uct. More details can be found in (Funk et al., 2015). In
order to show the relative uncertainty in observations, the
seasonal accumulated values of GPM-IMERG and CHIRPS
were considered, but only the former was used for further
model evaluation. The GPM-IMERG grid is the reference

used to compare the precipitation data sets to take advan-
tage of its high resolution: the SEAS5 model output is dis-
aggregated using the nearest-neighbour method while the
WRF output is regridded using bilinear interpolation.

2.3 | Partition of Ethiopia in
homogeneous sub-regions for the analysis

The model domain included diverse climates due to the
high mountains influencing temperatures, wind patterns
and rainy seasons' timing, duration and accumulated
values. As Ethiopian highlands are the region receiving
most of the precipitation during summer in East Africa,
the analyses focused on this area. Ethiopia was partitioned
into four regions identified using Principal Component
Analysis and the k-means clustering method on monthly
mean precipitation amounts with results similar to
Nikulin et al. (2018). The clusters are depicted in Figure 2.

TABLE 2 Summary of the 16

members of the WRF ensemble
Name LBC PHYS Name LBC PHYS

Std0 0 MOR,RRTG,MYNN CAM0 0 MOR,CAM,MYNN

Std1 1 MOR,RRTG,MYNN CAM1 1 MOR,CAM,MYNN

Std2 2 MOR,RRTG,MYNN CAM2 2 MOR,CAM,MYNN

Std3 3 MOR,RRTG,MYNN CAM3 3 MOR,CAM,MYNN

Thom0 0 THOM,RRTMG,MYNN YSU0 0 MOR,RRTMG,YSU

Thom1 1 THOM,RRTMG,MYNN YSU1 1 MOR,RRTMG,YSU

Thom2 2 THOM,RRTMG,MYNN YSU2 2 MOR,RRTMG,YSU

Thom3 3 THOM,RRTMG,MYNN YSU3 3 MOR,RRTMG,YSU

FIGURE 2 Ethiopia is partitioned in four clusters, based on

climatic and precipitation patterns. In blue the Somali region

(cluster 1), in green the South-West (cluster 2), in yellow the

Western highlands (cluster 3) and in red the Afar region (cluster 4).

Black curves show WRF model elevation, 0–4,000 m by 800 [Colour

figure can be viewed at wileyonlinelibrary.com]
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Figure 3 shows their climatology (1985–2018), using
CHIRPS for precipitation and CRU (Harris et al., 2014) for tem-
perature. Spatially averaged temperature has a weak annual
cycle, in the range of 2�C, in southern Ethiopia. Clusters 3 and
4 show stronger seasonal variations: 3 and 6�C respectively.
The hottest periods are registered just before the beginning of
the rainy season. Precipitation patterns are more articulated:

1. South Eastern Ethiopia, the Somali region, is dry during
summer. It has a well-defined bi-modal distribution of
precipitation: long (MAM) and short (ON) rainy seasons
when large-scale conditions allow the moisture to flow
in from the Indian Ocean to transform into rainfall.

2. The South Western highlands have a constant temper-
ature and abundant precipitation from March to
October: the long rainy season (MAM) is followed by
less intense precipitation during summer and autumn.

3. The Western mountains are most influenced by the
West-African monsoon (WAM): during the summer
moist air is advected in by the low-level westerly
winds. The orographic lifting triggers convection and
then intensifies precipitation from June to September.
The overall precipitation distribution is unimodal,
with maximum in July and August.

4. In the north-east lies a lowland area, the Afar region,
encircled by some of the highest mountain peaks.
Intense precipitation and storms hit the mountains
during mid-to-late summer generating a unimodal
precipitation distribution with peak in August. The
low Afar area remains in the rain shadow.

3 | RESULTS

In this work, we focus on T2m and accumulated precipita-
tion as the main variables of interest in a seasonal forecast.

3.1 | Temperature

Figure 4 shows the mean summer temperature of 2018
ECMWF analysis, SEAS5 four-member ensemble forecast
and 16-member WRF ensemble. Due to the limited reso-
lution of the archived SEAS5 data, the mean temperature
in Figures 4 and 5 was calculated as the average of values
at 00:00 and 12:00 UTC. The model biases are calculated
with respect to the ECMWF analysis. The SEAS5 forecast
(Figure 4d) reveals a 1�C bias over most of the Horn of
Africa, mainly east of the Rift Valley. Lowlands in North-
ern Ethiopia are subject to a cold bias of about 2�C and
the Ethiopian highlands and the area to their west are
well represented. The WRF ensemble mean (Figure 4e)
has a stronger warm bias in the Somali region and at the
border between Ethiopia and Kenya but the intensity
decreases approaching the Indian Ocean coastline. The
cold bias in the northern coastline is reduced while a
warm bias is seen in the Gulf of Aden and some parts of
Yemen. A 2�C warm bias is instead produced in the
northwestern part of the domain, near the Ethiopia-
Sudan border. On average, the Ethiopian mountains have
a slightly higher temperature than in the analysis. In
Table 3 the seasonal T2m average of a selected group of
weather stations is compared to analysis and model aver-
ages. Weather stations in south Ethiopia (Moyale, Burji)
prove that both models are warmer than measurements,
with WRF showing a larger bias than SEAS5. A similar
situation occurs in the western part of the domain: the
measurements in Khartoum, Gimbi, and Dangala con-
firm the WRF warm bias in the area, larger than 2�C
compared to the station measurements, which are close
to the analysis. However, the SEAS5 temperature is com-
parable to WRF in Gimbi and Dangala but colder in Khar-
toum, which closer to observations. In the north-east
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plain (Dalli Fage), the WRF T2m is very close to the obser-
vation and the analysis, while SEAS5 suffers a cold bias.
In the highlands the situation is more complex, given the
sharp changes in elevations: SEAS5 and analysis have
lower mean T2m than the measurements in both stations
(Ambo, Weliso). The WRF warm bias in this area is there-
fore overestimated when compared to the analysis rather
than the observations. Average summer temperature for
the four regions is displayed in Table 3. The results for
Ethiopia show a split between the southern and the north-
ern half: in the south, WRF follows the SEAS5 output,
yielding warmer temperatures than the analysis (Table 3).
In the northern half the SEAS5 forecast is much better
than WRF. The GCM forecast has no bias, whereas the
WRF ensemble has +1�C bias in north-west Ethiopia and
almost +2�C in the north-eastern quadrant (Table 3).

All WRF ensemble members are displayed in
Figure 5: in order to make the inter-ensemble variations
easier to visualize and link to the member perturbation,
the ensemble mean, instead of observations, is taken as
reference. Depending on model physics, fluctuations in
the 2�C range are visible on the south-eastern portion of
the Horn of Africa. The same bias is seldom reached else-
where: most members do not exceed a 1�C bias. Crucially,
only two members, namely CAM0 (Figure 5c) and YSU0
(Figure 5d), have a significantly reduced warm bias in

Sudan (or cold bias with respect to the ensemble-mean).
The impact of LBCs is evident only when comparing the
control member with the perturbed ones: Ethiopian high-
lands are generally warmer (up to 1�C with respect to the
ensemble mean) while the Horn tip is about 0.5�C colder
in the perturbed runs.

3.2 | Precipitation

GPM-IMERG and CHIRPS accumulated precipitation are
shown in Figure 6a,b, respectively. The large scale distri-
butions are in good agreement, meaning that any of the
two can be used as reference without affecting the results
in the following. However, there are some differences:
CHIRPS has more homogeneous north–south distribu-
tion over the Ethiopian highlands but differs from GPM
which displays larger accumulated values in excess of
1,200 mm in the northern area. Compared to GPM, the
accumulated precipitation predicted by the SEAS5 JJA
(Figure 6c) mean is larger over the southern part of the
Ethiopian highlands, with a generally good match in spa-
tial distribution due to the presence of orographic forcing.
The WRF ensemble mean (Figure 6d) has very high pre-
cipitation totals in the vicinity and to the west of the
highest peak in the region. Similarly to the parent model,

FIGURE 4 Mean JJA 2 m temperature for (a) ECMWF analysis T2m JJA (�C), (b) the SEAS5 T2m ensemble mean (�C), and (c) the

WRF T2m ensemble mean (�C). Model temperature biases are calculated with respect to the analysis: (d) SEAS5 - analysis T2m bias (�C) and
(e) WRF - analysis T2m bias (�C). The bias for the study area is 0.17�C for SEAS5 and 1.14�C for WRF, which is 0.65% and 4.3% warmer,

respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 2 m temperature bias of individual WRF ensemble members with respect to the WRF ensemble mean. Boundary conditions

(LBC) perturbation are arranged in rows, with the control in the top row. Physics perturbations are organized in columns, with the control

(Std.) to the left [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Cluster averaged mean

2 m temperature in summer 2018 ± SD
ECMWF analysis (�C) SEAS5 mean (�C) WRF mean (�C)

Somali 24.5 26.2 ± 0.6 26.3 ± 0.5

South 18.3 19.2 ± 0.2 19.9 ± 0.2

West 19.8 20.2 ± 0.2 21.6 ± 0.3

North 23.3 23.0 ± 0.3 24.4 ± 0.3
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FIGURE 6 Accumulated JJA precipitation for (a) GPM-IMERG JJA pre (mm), (b) CHIRPS JJA pre (mm), (c) the SEAS5 ensemble

mean JJA pre (mm), and (d) the WRF ensemble mean JJA pre (mm). Model bias is calculated with respect to the GPM-IMERG observation:

(e) SEAS5 ‑ GPM-IMERG pre bias (mm) and (f) WRF ‑ GPM-IMERG pre bias (mm). The bias over the study area is 12.28 mm for SEAS5

and 28.10 mm for WRF, which means 5.2% and 11.9% wetter compared to GPM-IMERG, respectively [Colour figure can be viewed at

wileyonlinelibrary.com]
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the wet bias is larger over the southern part of the high-
lands than in the northern half, but the WRF accumu-
lated values are significantly higher. A dry bias is
present in the northwestern part of the domain for both
SEAS5 and WRF (Figure 6e,f), but in the latter case a
bigger area at the foot of the Ethiopian highlands is
affected. Depending on the cluster considered, a maxi-
mum of four ensemble members have a large wet bias
(Figure 7a,b,d,p), of which only one does not come from
the control (LBC0) boundary conditions: the downscal-
ing does not change the drier/wetter trends of forcing
members.

3.2.1 | Number of wet days

As precipitation intensity is generally subject to significant
variations between models or on the interannual time-
scale, the number of wet days (defined as number of days
with precipitation larger than 1 mm) provides additional
and less noisy information about seasonal precipitation
patterns (Moron et al., 2006; Moron et al., 2007). Figure 8
shows that Sudan and nearby areas see a shorter precipita-
tion period in the WRF downscaling with respect to the
observations. The eastern part of the Rift Valley is instead
subject to a longer wet period. Concerning the SEAS5

FIGURE 7 Same as in Figure 5, but for total precipitation [Colour figure can be viewed at wileyonlinelibrary.com]
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forecast, the very limited spatial variability over the high-
lands and the overestimation of wet days over southern
Ethiopia is apparent. The global model is, however, well-
tuned to produce a proper total amount of precipitation.

3.2.2 | Rain belt movement and
extension

To assess whether the rain belt movement in the WRF
ensemble is guided by the boundary conditions or the LAM
has the capacity to significantly change its pattern, we com-
pared IMERG, SEAS5, and WRF ensemble mean of zonally
averaged (35–40�E) precipitation over time in Figure 9. (See
Appendix S1 for more details on model circulation.) The
LAM closely follows the large-scale circulation movement

imposed by the global model: the center of the rain belt is
stationary at about 10–11�. On the contrary, observations
measure a movement up to 13�N in July and August. In
addition, the rain belt cover in the north is reduced: the
1 mm�day–1 running average exceeds 19�N in the observa-
tion, reaches 18�N in the WRF ensemble and 17.5�N in
SEAS5. The 3 mm�day–1 line, which is a better indicator of
useful rainfall amount (Lélé and Lamb, 2010), remains
about 1� to the south of the 1 mm�day–1 threshold for GPM
and SEAS5, 2� to the south for WRF. However, the WRF
ensemble remains at the maximum latitude for longer in
late July and early August, similarly to the GPM reference.
It is important to note that the comparison to previous
years' GPM measurements reveals an unusual deviation of
the rain belt to the north in 2018 compared to the climato-
logical mean (not shown) (Table 4).

(a) (b) (c)

FIGURE 8 Number of wet days (precipitation�day–1 > 1 mm) during June–July–August 2018. The total number of days in the season is

92. (Left) GPM-IMERG observations, (Centre) SEAS5 ensemble mean, and (Right) WRF ensemble mean [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 Hovmoeller plots of meridional movement of the rain belt from the 01/06 to 31/08, averaged over the Ethiopian highlands

(35�E–40�E). (Left) GPM-IMERG, (Centre) SEAS5 mean, and (Right) WRF mean. Colours indicate daily precipitation intensity (mm�day–1).
The black line shows the northern limit of the rain belt, defined by the 1 mm�day–1 value in a 10-day running average; the red line marks

the 3.5 mm�day–1 threshold [Colour figure can be viewed at wileyonlinelibrary.com]
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To summarize, precipitation patterns in the north and
in the south clusters have opposite behaviours: to the south
the global model overestimates the number of wet days but
it produces a correct amount of rainfall (Table 5), while the
downscaling is able to correctly reduce the number of wet
days to match observations (Table 6). The WRF ensemble
mean is however always overestimating precipitation inten-
sity, leading to a wet bias there. North of 8�, SEAS5 matches
the average number of rainy days (Table 6) because of the
slightly displaced rain belt. For the same reason, WRF
largely underestimates wet days but it is closer to the refer-
ence in total precipitation amount (Table 5).

3.3 | Ensemble spread

3.3.1 | Reliability differences in
temperature and precipitation

An ensemble is considered to be reliable when the spread
matches the mean error. Combined with the relatively large
temperature biases found for the WRF ensemble mean, the

LAM limited spread does not improve ensemble reliability.
As revealed in Figure 10, the ensemble spread does not vary
in time and does not match the ensemble-mean error fluctu-
ations. The SEAS5 ensemble does not show larger spread,
but the mean error is generally lower, in particular in clusters
3 and 4, thus providing a better match to the ensemble
spread. Concerning precipitation, the ensemble extracted
from the SEAS5 forecast is under-dispersed in all clusters
(Figure 11). On the contrary, the WRF ensemble variability
is comparable to the ensemble-mean error in all cases, with
the spread growing enough to account for the model errors
when necessary. On average over Ethiopia, the spread is 70%
larger in the WRF ensemble compared to SEAS5. The full
SEAS5 ensemble reliability might be higher, but testing on
the 10 available members did not reveal any differences with
respect to the four-members reduced ensemble (not shown).

3.3.2 | Effects of lateral boundaries and
physics schemes

This ensemble forecast allows to evaluate the different
contributions to the ensemble spread of physics

TABLE 6 Same as Table 3, for

total number of wet days

(pre > 1 mm�day–1)

GMP IMERG (n days) SEAS5 mean (n days) WRF mean (n days)

Somali 5 10 ± 2 8 ± 3

South 46 56 ± 5 52 ± 5

West 77 79 ± 4 63 ± 5

North 54 54 ± 4 45 ± 5

TABLE 5 Same as Table 3, for

precipitation
GPM-IMERG (mm) SEAS5 mean (mm) WRF mean (mm)

Somali 31.6 40 ± 12 60 ± 20

South 402 420 ± 40 680 ± 130

West 844 950 ± 60 1,000 ± 120

North 475 500 ± 40 530 ± 70

TABLE 4 JJA average of T2m for weather stations, ECMWF analysis, SEAS5 mean and WRF mean

Station
location

Lat
(�N)

Lon
(�E)

Station T2
mean (�C)

Analysis T2
mean (�C)

SEAS5 T2
mean (�C)

WRF T2
mean ( Ĉ)

Moyale 3.55 39.03 20.8 20.9 24.76 ± 0.07 24.0 ± 0.6

Burji 5.08 37.85 18.1 20.9 20.9 ± 0.5 23.4 ± 0.3

Gimbi 9.17 35.78 18.1 17.8 19.9 ± 0.1 19.9 ± 1.0

Ambo 8.98 37.83 17.2 14.6 15.7 ± 0.2 9.0 ± 1.4

Weliso 8.55 37.97 17.5 16.6 15.2 ± 0.1 18.6 ± 1.3

Dangala 11.25 36.85 16.9 16.0 18.0 ± 0.6 18.7 ± 1.2

Dalli Fage 11.81 40.19 32.1 32.0 31.0 ± 0.3 31.8 ± 0.4

Karthoum 15.59 32.55 33.3 33.3 32.26 ± 0.04 36.0 ± 0.5

Note: SD is included for SEAS5 and WRF ensembles. Due to the limitation in the SEAS5 data sets, daily mean is always calculated as mean
of values at 00 and 12 UTC.
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parameterization and boundary conditions perturba-
tions. For short, when boundary properties are con-
cerned, the terms “LBC” spread or variability are used.
Likewise, when the physics schemes are considered we
refer to “PHYS”. This spread is the average value of the
root mean square difference (rmsd) of sub-ensembles

constituted by ensemble members with one rotated
component, that is, {std0, std1, std2, std3}, as in (Klein
et al., 2015).

Figure 12 shows the spatial distribution of the
ensemble spread components. Model physics varia-
tions lead to a larger temperature spread in the Somali

A
bs

ol
ut

e 
m

ea
n 

er
ro

r 
/ E

ns
em

bl
e 

sp
re

ad
 (

°C
)

FIGURE 10 Comparison of 2 m temperature

ensemble spread and mean error for each of the

four Ethiopian clusters. Ensemble spread is the

mean distance between each member and the

ensemble mean, mean error is the distance

between ensemble mean and observations. An

ensemble is considered to be reliable when the

spread matches the mean error. The left side

displays the SEAS5 four-member ensemble, the

right side the 16-member WRF ensemble [Colour

figure can be viewed at wileyonlinelibrary.com]
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region, southern Ethiopia and South Sudan. Over the
Ethiopian highlands, though, the lateral boundary
conditions are the major source of variability. A simi-
lar pattern appears for precipitation: the model phys-
ics is responsible for larger spread over flat regions
part or near to the Sahel, the Somalian coast, the Afar
region of Ethiopia and part of Yemen coastline. In
general, LBC spread is larger than PHYS, being

dominant over the highlands in Ethiopia and the Ara-
bic peninsula and the Indian Ocean. Concerning the
four clusters, LBCs are responsible for most of the
precipitation-related uncertainty in the Ethiopian
mountainous region. Western foothills are an excep-
tion: PHYS spread is locally higher, resulting in a sim-
ilar averaged spread contribution from LBC and PHYS
in cluster 3.
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FIGURE 11 As Figure 10, but for precipitation

[Colour figure can be viewed at

wileyonlinelibrary.com]
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When considering the influence of single physics
parameterizations, the variation of PBL, MP and SW radi-
ation schemes produce variability patterns which are not
significantly different from each other (not shown). In
terms of bias, the SW radiation scheme is responsible for
the largest impact on T2m. In Ethiopia, 2-m temperature
is on average 0.38�C colder when CAM substitutes
RRTMG. Both the microphysics and the PBL scheme
changes lead to very small average differences, 0.05 and
−0.005�C, respectively. For precipitation, a change in
microphysics leads to the largest difference, with

29 mm�month–1 on average over Ethiopia, the Morrison
scheme being wetter than Thompson. MYNN is
19 mm�month–1 drier than YSU, while the SW radiation
schemes are the closest at 7 mm�month–1 (RRTMG wet-
ter than CAM).

4 | DISCUSSION

The results have shown that the T2m and precipitation
bias present in the GCM is not reduced by downscaling

FIGURE 12 Masked areas show where the given source of variability is at least 50% larger than the other. The top row shows the

results for temperature, the bottom row for precipitation. %Colour contours show the model elevation, 0–4,000 m by 500 m.

(a) Predominance of LBC variability for T2m; (b) Predominance of PHYS variability for T2m; (c) Predominance of LBC variability for pre;

(d) Predominance of PHYS variability for pre [Colour figure can be viewed at wileyonlinelibrary.com]
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using the current experimental setup. The sign of the bias
is the same of the GCM model, but the intensity is gener-
ally higher. A known weak point in mesoscale models is
the lack of a proper microphysics scheme for convection-
permitting scale. The wet model bias is found in many
other studies and it can be related to the parameters cali-
bration not suitable for the resolution (Hong and
Kanamitsu, 2014). Even if the WRF ensemble mean
shows a wet and warm tendency, a few ensemble mem-
bers agree much better with observations. It should be
possible to identify model schemes to downscale SEAS5
forecasts with lower biases through a sensitivity study.

At the same time, improvements in satellite-based
observation datasets are also crucial for areas where an
extended network of reliable rain gauges is missing. The
limited spatial and temporal resolution of many products,
together with the documented conditional biases, put
strong limitations to model verification at the kilometre
scale, where convection-permitting models have the larg-
est improvement potential. In addition to the general ten-
dency, it is useful to compare Figures 5 and 7 in order to
understand the effects of perturbations on the LAM. T2m
of individual WRF members is displayed in Figure 5: the
large T2m change in Somalia, up to 2�C (compare
Figure 5c, g, k, o with the plots in the respective lines)
can be attributed to the change in short-wave radiation
scheme from RRTMG to CAM in dry areas, like Somalia
and Sudan. We find no effect of this type for the Ethio-
pian highlands, and also precipitation-wise the change in
SW parameterization is not very impactful in the WRF
ensemble (Figure 7), contrary to what previously found
(Pohl et al., 2011). The substitution of the microphysics
scheme has much stronger consequences on rainfall: the
Thompson scheme results in a significantly drier summer
(Figure 7b,f,j,n compared to maps in the same lines) in
agreement with (Heikenfeld et al., 2019).

Although less strong, a T2m modification due to the
change from Morrison to Thompson is apparent over
Sudan, South-Sudan and Eritrea (Figure 5b,f,j,n): it seems
that the difference in moisture leads to higher tempera-
ture in these areas over the entire season.

Considering the PBL scheme, YSU tends to produce a
dipole when compared to MYNN (Figure 5d,h,l,p): colder
on the western side and warmer on the eastern one. The
effect is however less pronounced than the other physic
parameterization changes.

Precipitation-wise, YSU leads to increased precipita-
tion and number of wet days (not shown), especially on
the western and northern sides of the domain. The
changes could be explained by differences in mixing layer
moisture content, which tends to be wetter for YSU
(Hariprasad et al., 2014) while keeping a similar bound-
ary layer height.

It is worth noting that the PBL parameterization has
a remarkable influence on the precipitation amount in
the CP model even at the seasonal scale. In fact, the SW
parameterization has a strong influence on T2m but a
weaker impact on rainfall than the PBL scheme. As only
two SW schemes have been used in this study, the gener-
alization is limited.

Analysing boundary conditions, large-scale regular
patterns are not common. However, one clear change is
apparent: the WRF members forced by the control run
(SEAS5 member 0) are substantially different compared
to the members with a similar physics configuration
(Figures 5a–d and 7a–d compared with the respective col-
umns), whereas the three perturbed runs are much more
alike. The LBC0 runs have a strong warm bias in Somalia
and eastern Ethiopia, and generally a larger excess of
rainfall with respect to other WRF runs.

Concerning the ensemble dispersion, downscaling
improves the under-dispersive precipitation global ensem-
ble. Although the WRF ensemble-mean error is slightly
larger than in the global model, the ensemble spread
matches the error fluctuations in all clusters of Ethiopia
(Figure 11). The contribution given by lateral boundary
conditions to the ensemble spread is critical to achieve the
right ensemble spread for precipitation. Only few and
small regions see a larger variability due to model physics:
for instance the western side of the domain includes part
of the Sahel (Figure 12d), a region where strong land-
surface feedback is expected to influence the atmosphere
enough to partially control rainfall. The Horn of Africa
sees a widespread prevalence of boundary conditions influ-
ence (Figure 12a,c), with the only exception being the Afar
region and the Somalian coast. These are very dry areas in
summer, thus not a main focus for seasonal forecasters.
Even if increased reliability does not actually mean that
additional information is provided, a more robust probabi-
listic forecast would nonetheless benefit the users.

We can conclude that physics parameterization is less
relevant where orographic lifting is the main trigger:
moisture transport is decisive in determining whether the
right conditions for precipitation occur. Therefore wind
intensity and direction are crucial. Given that the exact
location of precipitation is also influenced by the winds,
it is not surprising that the lateral boundary conditions
have such a large influence in rainfall variability. Addi-
tional material on how perturbations influence model cir-
culation is included in Appendix S2.

The rain belt movement simulated by the WRF
ensemble is similar to the global model forecast, except
for minor details (Figure 9). This is in contrast with the
results in (Siegmund et al., 2015), where the rain belt in
the limited area model did not behave correctly in mid to
late summer in West Africa. Although no definitive
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explanation for the problem was given in that work, it
was concluded that changes in model physics would
modify the model dynamics as demonstrated in (Klein
et al., 2015). In our experiment, model physics did not
account for relevant modifications in the rain-belt pattern
(as can be deduced by Figures S5–S7).

The northern extension of the WRF ensemble rain
belt is slightly improved, as it reaches farther north than
in the GCM during July and August. However, on the
Ethiopian foothills and in Sudan there is a significant
lack of precipitation in WRF in June during the monsoon
onset, causing a warm and dry bias in the area. Since
WRF largely underestimates the number of wet days, the
lack of cloud cover and moisture, concentrated mainly in
June, amplify the warm bias. In the following months,
July and August, the GCM and LAM ensembles show a
very similar behaviour even when mediated by the influ-
ence of topography at different resolutions. This means
that boundary conditions strongly guide the rain-belt
characteristics. Potential errors in the large-scale circula-
tion in SEAS5 are carried into the CP model, where the
internal model variability does not substantially deviate
from the forcing. The high-resolution model might not be
able to improve the forecasts. In fact, in this case it
responds poorly to the imperfect boundary conditions.

WRF model climatology would be necessary to cali-
brate the model output to assess whether downscaling
actually improves or degrades the skill of a probabilistic
seasonal forecast. Thus, to draw significant conclusions
on actual forecast skills achieved by downscaling, several
years of hindcasts are needed and that is beyond the pur-
pose of this research project.

5 | CONCLUSIONS AND OUTLOOK

We have presented the experimental design and the initial
results of the dynamical downscaling of SEAS5 global sea-
sonal forecasts using WRF at the CP scale. The main goal
was to understand the model capability to improve simula-
tions over the Horn of Africa and the model variability
related to physics schemes and boundary conditions.

The WRF ensemble reveals that perturbed boundary
conditions are necessary to achieve the right ensemble
spread over the Ethiopian highlands where most of the
summer rains in the Horn of Africa take place. Although
model physics is generally less effective in producing
ensemble spread, it has an important role in the western
and southern part of the domain, where it largely affects
temperature variability. Our suggestion to optimize com-
putational resources for any forecast downscaling effort
in Ethiopia or a similar mountainous region is to set up a
single-physics (or single model) ensemble with a large

number of perturbed LBCs. This is also advantageous in
general because hindcasts for only one model configura-
tion would be needed, limiting overall computational
costs. It should be noted that we included only perturba-
tion of atmospheric physics and did not consider any
effects related to the land-surface model, land use, and
other known sources of model uncertainties. This could
be the subject of further research.

Further analyses on the added value provided by the
forecast downscaling are ongoing: the precipitation distri-
bution at the grid scale can be investigated to measure
the models' performance and the influence of resolution
on the variable distribution and its extreme values. Bene-
fits of downscaling can also be assessed identifying tem-
poral and spatial scales at which added variability over
the GCM model is provided, for instance by means of the
potential added value score.

To complement this study, ECMWF SEAS5 or
another suitable ensemble seasonal forecast (or hindcast)
could be downscaled over the Colorado Basins. Down-
scaling of reanalysis to the CP scale has shown strong
improvement in precipitation bias at the seasonal scale,
thus it is an ideal spot to investigate whether the poten-
tial skill is transferred to actual forecasts. At the same
time, it would allow for testing our findings on the neces-
sity of boundary conditions perturbations.
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ENDNOTE

The name consists of the alternative physics scheme and the num-
ber of the boundary condition
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