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Abstract The Indonesian Throughflow (ITF) operates as an important link in global thermohaline
circulation, and ITF variability probably modulated Pliocene climate change. Yet, whether ITF
variability accounted for oceanographic change south of Northwest Cape remains controversial. Here, we
present a multiproxy oceanographic reconstruction from the Perth Basin and reconstruct the Pliocene
history of the Leeuwin Current (LC). We show that the LC was active throughout the Pliocene, albeit
with fluctuations in intensity and scope. Three main factors controlled LC strength. First, a tectonic ITF
reorganization caused an abrupt and permanent LC reduction at 3.7 Ma. On shorter timescales, eustatic
sea level and direct orbital forcing of wind patterns hampered or promoted the LC. At 3.3 Ma, for
instance, LC intensity plunged in response to a eustatic ITF restriction. Site U1459 then fell outside the
extent of a weakened LC, and the latitudinal sea surface temperature gradient along West Australia
doubled its steepness.

Plain Language Summary The Leeuwin Current (LC) transports warm, low-salinity, nutrient-
deficient water poleward along Australia's west coast. The current is remarkable because eastern
boundary currents usually flow equatorward (e.g., Benguela, California Current). The LC extends modern
coral reef development to 29°S, but its geological history remains controversial. We use a sediment core
(International Ocean Discovery Program Site U1459) from the Perth basin to reconstruct the Pliocene
history of the LC. Based on variations in the multiproxy geochemical records of Site U1459 and
comparison with contemporaneous sediment cores off northwest Australia, we show that poleward
flowing warm waters reached the site throughout the Pliocene. The current's intensity exhibits a stepwise
decline at 3.7 Ma though, in response to a tectonic reorganization around Indonesia, and a short-lived
dramatic downturn during global glaciation event marine isotope stage M2 (3.3 Ma), in response to a sea
level drop.

1. Introduction

The Indonesian Throughflow (ITF) connects the equatorial Pacific to the Indian Ocean and forms a cru-
cial link in the global thermohaline conveyor. The ITF consists of numerous shallow currents that trans-
port warm, low-salinity, nutrient-deficient water from the Indo-Pacific warm pool region into the Indian
Ocean. Next, the warm water serves as a source for the South Equatorial Current, as well as for the
Leeuwin Current (LC; Figure 1). The LC is a surface current that is up to ~300 m deep (Furue et al.,
2017; Wijeratne et al., 2018; Woo & Pattiaratchi, 2008) and flows southward along the western coast of
Australia. The LC is an eastern boundary current that meanders near the continental shelf break
(Pearce, 1991; Smith et al., 1991) but differs from other eastern boundary currents in the fact that it flows
poleward rather than equatorward. This implies that today's LC has to overcome the equatorward wind
stress, Ekman-induced upwelling, and friction along the seafloor to maintain its southward flow over
the continental shelf (Feng et al., 2007; Holloway, 1995; Pearce, 1991; Thompson et al., 2011; Waite
et al.,, 2007; Weaver & Middleton, 1990; Wijeratne et al., 2018). An important driver for the LC is the
steric height difference between low-density, low-salinity water in the ITF region and cooler, denser, sal-
ine waters off Cape Leeuwin (Godfrey & Ridgway, 1985). The LC strength exhibits significant seasonal
variability (Ridgway & Godfrey, 2015): At a cross section along 28°S, perpendicular to the West
Australian coast, the mean annual transport amounts to 2.9 Sv but this value increases to more than 8
Sv in June (Wijeratne et al., 2018). A combination of two seasonal factors is responsible for the enhance-
ment of the LC in austral autumn and winter: the fading of the opposing wind stress and a further
increase in the steric height gradient along the pathway of the LC (Feng et al., 2003; Godfrey &
Ridgway, 1985; Ridgway & Godfrey, 2015).
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Figure 1. Site localities, major currents, and present-day (1971-2000) mean annual sea surface temperature (SST;
Reynolds et al., 2002) in the Indo-Pacific region. The LC is indicated in blue. Surface transport across cross sections
along the LC path are given in sverdrups (data from Wijeratne et al., 2018). LC = Leeuwin Current. SEC = South
Equatorial Current.

The modern oceanography of the “unusual” LC is well studied but the pre-Quaternary history of this current
remains contentious. The onset of “LC-style” circulation around Australia has been suggested as early as the
Late Eocene (Diester-Haass & Zahn, 2001; McGowran et al., 1997). This timing corresponds to the beginning
of a long-lasting tectonic evolution in the area, whereby the northward movement of Australia leads to a
widening of the Tasman Street and a gradual restriction and reorganization of the ITF (Wyrwoll et al.,
2009). By the time of the Pliocene, the paleogeographic setting of the Indo-Pacific was comparable to today,
albeit with a smaller area above sea level within the throughflow region (Molnar & Cronin, 2015). From the
Pliocene onward, ITF connectivity is a function of two distinct mechanisms: eustasy-driven ITF restriction
through the emergence of shelf areas during sea level low stands (De Vleeschouwer et al., 2018; Di Nezio
et al., 2016; Holbourn et al., 2011; Xu et al., 2006; Xu et al., 2008) and tectonic reorganization of the ITF net-
work (Cane & Molnar, 2001; Christensen et al., 2017; Karas et al., 2009; Karas et al., 2011b; Karas et al., 2017,
Molnar & Cronin, 2015).

International Ocean Discovery Program Expedition 356 Gallagher, Fulthorpe, Bogus, and the Expedition
356 Scientists (2017) obtained sediment cores along the LC pathway: on the northwest Australian shelf
(Site U1463) and in the Perth Basin (Site U1459; Figure 1). The cored transect provides a Miocene-to-
recent history of ITF, LC, and Australian climate evolution (Auer et al., 2019; Christensen et al., 2017;
De Vleeschouwer et al., 2018; Groeneveld et al., 2017; Ishiwa et al., 2019) and complement sediments
from previous drilling initiatives that have been employed to chart ITF variability (Karas et al., 2009,
2011a, 2011b, 2017). Based on Site U1463, Christensen et al. (2017) identified a major reorganization of
Indian Ocean circulation around 3.3 Ma. Subsequently, De Vleeschouwer et al. (2018) used U1463 to
detail a significant contraction of the LC at exactly that time and Auer et al. (2019) demonstrated the con-
nection with the Sahul-Indian Ocean Bjerknes mechanism (Bjerknes, 1969; Di Nezio et al., 2016).
However, the Pliocene variability of the LC south of the North West Cape remains undocumented to date
and the effect of ITF variability on Indian Ocean circulation remains debated. Some authors suggest it as
a major factor (Karas et al., 2017), while others find little influence (Petrick et al., 2015). To close this gap,
we present multiproxy records from Site U1459 (Figure 1) detailing oceanographic conditions in the Perth
Basin throughout the Pliocene. The U1459 Pliocene sedimentary archive documents LC variability at 28°S
and allows for the assessment of consequences for ocean and climate.
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shelf, offshore the Houtman-Abrolhos reef complex. The modern-day LC
system thus dictates characteristics of the overlying water column. During
the Pliocene, Site U1459 was located at slightly greater water depth, on the
outer shelf to upper slope. This is deduced from planktic/benthic forami-
nifera ratios, as well as from the somewhat steeper layering of Pliocene
] strata on the seismic profile across Site U1459 (see Table T10 and Figure
] F3 in Gallagher, Fulthorpe, Bogus, Auer, et al., 2017).

Two holes yield Pliocene sediments (Figure 2). A shipboard correlation
L between both holes was made using color reflectance data, resulting in
% } composite depth scale (mcd) in which U1459A cores are shifted to fit with
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U1459B (Gallagher, Fulthorpe, Bogus, Auer, et al., 2017). A shipboard
splice for Site U1459 was not constructed. Instead, we filled up strati-
graphic gaps in U1459B with core sections from U1459A, where possible.

\
N
nNta - iz N

The X-ray fluorescence (XRF)-derived Ca/Fe shows an overall increase
n | throughout the Pliocene. Superimposed on the long-term trend, signifi-
cant meter-scale variability in Ca/Fe reflects fluctuations in carbonate
content. We use the changes in Ca/Fe, in combination with geochronolo-
gic constraints from shipboard biostratigraphy (Gallagher, Fulthorpe,
Bogus, Auer, et al., 2017), for astronomically tuning the U1459 strati-
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T : graphic column to the LR04 benthic oxygen isotope stack (Lisiecki &
1000 Ca,}‘ﬁ ° Ag: (Ma§ Raymo, 2005) and a southern hemisphere eccentricity-tilt-precession

composite (Laskar et al., 2004; Figures 2 and S1 in the supporting informa-

Figure 2. The U1459 lower Pliocene consists of unlithified light gray pack-  tion). Carbonate-rich intervals generally correspond to low TEXgs tem-

stone with euhedral dolomite crystals. From 140 mcd upward, the sedi-
ment's color changes to light brown, dolomite content decreases, and
glauconite content increases. Toward the uppermost Pliocene, glauconite

peratures, more positive 5180Gmm,ﬁ, values and lower K/Al. These
relationships become particularly clear during the glacial events, indi-

becomes discernible macroscopically and occurs as scattered lenses and as  cated by gray bands on Figures 3 and S1. We associated the carbonate-rich
glauconite-rich intervals. We refined the shipboard biostratigraphic age intervals with cool intervals of the LR04 stack and minima in the
model (red diamonds) through astronomically tuning the Ca/Fe record eccentricity-tilt-precession composite. The tuning was constrained by six

(Figure S1). PF = planktonic foraminifer; NN = calcareous nannofossil; sed.
rate = sedimentation rate; mcd = meter composite depth.

biostratigraphic datums, five from calcareous nannofossil, and one from
planktonic foraminifera (see Table T8 in Gallagher, Fulthorpe, Bogus,
Auer, et al.,, 2017) and consists of 15 age-depth tie points between 64
and 161 mcd, or 2.51 and 5.46 Ma (Table S1 and Figure S1). The shipboard Reticulofenestra pseudoumbilicus
datum at 115.87 med (3.7 Ma in Gradstein et al., 2012] falls off the orbitally tuned age model (Figure 2). Yet,
we deem our age model in this interval trustworthy because R. pseudoumbilicus is a last occurrence datum
that indicates a minimum age. This datum was moreover assigned an older age of 3.82 Ma by Backman et al.
(2012), reducing the discrepancy with our age model. Third, the orbital tuning between 100 and 125 mcd is
robust with seven well-expressed 100-kyr eccentricity cycles between 3.7 and 4.4 Ma in the astronomical
solution as well as in the Ca/Fe data (Figure S1).

Our age-depth model indicates highest sedimentation rates, around 4 cm/kyr, where CaCO; content is low-
est, in the lower Pliocene. Therefore, we interpret the Ca/Fe fluctuations as dilution cycles, forming in
response to recurring variations in clastic supply (Figure 2). Elemental Fe moreover shows strong covaria-
tion with Ti and Si (Figure S2), supporting the interpretation of those elements as tracers of detrital material.

2.2. Oxygen and Carbon Stable Isotope Analyses

A total of 143 stable carbon (513C) and oxygen (5'%0) isotope measurements were made on calcite tests of the
shallow dwelling planktonic foraminifer Globigerinoides sacculifer (without sac-like chamber). In the frame-
work of this study, we sampled the stratigraphic interval between 83.4 and 106.41 mcd from Hole U1459B at
a median spatial resolution of 15 cm. Specimens were picked from the 315-355-um-size fraction to avoid size
effects in 8'%0 values (Elderfield et al., 2002) and to be methodologically consistent with the nearby 5'%0¢
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Figure 3. U1459 proxy time series. (a) XRF-derived Ca/Fe, proxy for detrital input. (b) Low-resolution TEXgs and high-
resolution 5180(;_ sacculifer Teflect sea surface temperature (SST) evolution at different timescales. (c) 513CG_ sacculifer time
series. (d) XRF-derived K/Al time series compared to a tilt-precession composite (Laskar et al., 2004). (e) LR04 stack
indicates the global climate state. Horizontal gray bands highlight globally recognized glacials at 4.9, 4.0, 3.7-3.6, and 3.3
Ma (De Schepper et al., 2014) and 2.53 Ma (marine isotope stage 100). XRF = X-ray fluorescence.

saccutifer T€COrd for ODP Site 763A and International Ocean Discovery Program Site U1463 (De Vleeschouwer
et al., 2018; Karas et al., 2011b). All samples were measured on a Finnigan MAT 251 gas isotope ratio mass
spectrometer connected to a Kiel III automated carbonate preparation device at the Center for Marine
Environmental Sciences (MARUM). Data are reported in standard delta-notation versus V-PDB. We
calibrated all measurements against the in-house standard (ground Solnhofen limestone), which in turn is
calibrated against the NBS-19 reference. Over the measurement period the standard deviations of the in-
house standard (N = 41) were 0.04%o for 8*>C and 0.06%. for §'%0.

2.3. TEXgs Paleothermometry

TEXjge analyses were carried out in Max-Planck-Institute for Chemistry. Lipids were extracted from the
sediment samples using a Dionex accelerated solvent extractor (ASE 350). The extraction was performed
using a method of simultaneous extraction and chromatographic separation of different fractions by
polarity during the extraction process. After the extraction, the samples were dried using a roto-
evaporative system. The polar fraction was then analyzed using high-performance liquid chromatography
mass spectrometry following the methods described by Hopmans et al. (2004). The TEXgq sea surface tem-
perature (SST) data set was subjected to a number of tests to check the marine origin of the glycerol dia-
lkyl glycerol tetraethers (GDGTs), as well as other potential nonthermal influences in the reconstructed
SST. We estimated the GDGT-0% (Weijers et al., 2006), methane index (Zhang et al., 2014), %GDGTgg
(Inglis et al., 2015), branched and isoprenoid tetraether (Schouten et al., 2013; Weijers et al., 2006), and
ring index (Zhang et al., 2016). All samples were within the recommended values for reliable paleo-SST
reconstructions. SST estimates were obtained from the TEXgq values using the BAYSPAR calibration
(Tierney & Tingley, 2014). The 5th and 95th percentiles of the BAYSPAR calibration are plotted in
Figure S3. Based on the observation of the variability of the in-house standard within this batch, the ana-
lytical precision for TEX86 is +0.4 °C (20).
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2.4. XRF Core Scanning

The elemental composition of U1459 sediments was measured on the archive-half core surfaces using the
third-generation Avaatech XRF core scanner at the XRF Core Scanning Facility of the Gulf Coast
Repository at Texas A&M University in July 2016. Measurements were taken at a spatial resolution of 3
cm, at source energies of 9 kV (no filter, 0.25 mA) and 30 kV (Pd filter, 1.25 mA) and a 6-s count time for each
measurement at each energy. Where possible, stratigraphic gaps in the recovery in Hole U1459B were closed
with sections from Hole U1459A (Figure 2). Element intensities were obtained by processing raw X-ray spec-
tra using the iterative least square software (WIN AXIL) package from Canberra Eurisys.

3. Reconstructing the Pliocene Climate of southwest Australia

The low-resolution TEXg4 SST reconstruction for Site U1459 suggests temperatures between 23.8 and 28.9 °C
throughout the Pliocene. The lowest Pliocene TEXs4 temperature occurs during marine isotope stage (MIS)
KM2, at 3.13 Ma, one of the cool spells during the mid-Pliocene warm period. This lowest temperature (23.8
°C) is however still warmer than today's mean annual SST at Site U1459 of about 22.8 °C (Reynolds et al.,
2002). The Pliocene Model Intercomparison project suggests SSTs in the Perth basin to be 1-3° warmer dur-
ing the Pliocene compared to the preindustrial (Figure 1 in Dowsett et al., 2013 [405 ppm CO,]; Figure 2c in
Haywood et al., 2013 [405 ppm CO,]; Figure 9 in Hunter et al., 2019 [450, 400, 350, and 280 ppm CO,]). We
report temperatures up to 6 °C warmer than the present day, particularly for the early Pliocene. We ascribe
this additional amplitude to long-term changes in the boundary conditions (paleogeography, gateways, and
atmospheric chemistry) and short-term changes in orbital forcing that were not considered in the climate
simulations. The high-resolution 5180(;_mmufer record exhibits covariation with the low-resolution TEXgg
temperatures (Figures 3b and S4), suggesting minimal contribution from global and/or local changes in
the 8'%0 of seawater 5'04y,) to the measured 5'®0 of calcite. The total algoasamlife, range amounts to
1.2%o0, which translates to ~6 °C temperature amplitude, regardless of whether we use a constant 61805“,,
or the Pliocene global 8'804,, reconstruction of Rohling et al. (2014); Figure S5, if the effects of salinity
change are considered negligible. The 518065,160,,,%, amplitude is thus of the same order of magnitude as
TEXge temperature variability. Despite the large uncertainty on the BAYSPAR TEXg, calibration and the
fact that Pliocene 8'®0y, is unknown, the consistency between the two temperature proxies suggests that
SSTs in the Perth basin were significantly warmer than today throughout the entire Pliocene. This would
imply that the LC was active during the entire epoch. Nevertheless, both proxies indicate significant SST
variability, up to 5 °C, hinting toward Pliocene LC variability. This variability is discussed further in
the manuscript.

The K/Al proxy provides insight in hydroclimate changes throughout the Pliocene in the hinterland.
Minima in K/Al indicate periods with an increased kaolinite share in the clay mineral assemblage at Site
U1459. In the marine basins surrounding southwest Australia, kaolinite is sourced from the deeply weath-
ered, kaolinite-rich, lateritic residuum of the Yilgarn Craton (Anand, 2001). This kaolinite is primarily trans-
ported through wind erosion when the vegetation cover is reduced (Mallinson et al., 2003). For the
Pleistocene, the collapse of forest vegetation in southwest Australia happens under glacial conditions
(Sniderman et al., 2019, and references therein) and the covariation between 880 and K/Al in our data
set suggests that this phase relationship remained constant over the Plio-Pleistocene (Figure S6). Under
warm and wet conditions, to the contrary, the vegetation cover would increase, the eolian flux of kaolinite
to the Perth basin would decrease, but the fluvial transport of clays would significantly increase. This climate
mechanism fits the U1459 XRF records, as maxima in K/Al (low kaolinite in clay assemblage) correspond to
minima in Ca/Fe (high detrital input).

We observe a long-term decrease in K/Al over the course of the Pliocene, suggesting a progressive drying of
the climate in southwest Australia, which continues into the Pleistocene. In fact, Groeneveld et al. (2017)
showed that the hydroclimate of southwest Australia was perennially wet in the Late Miocene (8 Ma), as
it was under the direct influence of the Westerlies. Since 8 Ma, the latitudinal position of the Westerlies
remained more or less stable, but Australia traveled northward tectonically with ~70 km/Myr. This gradu-
ally moved southwest Australia out of the ever-wet Westerlies into a more Mediterranean-style climate with
seasonal aridity. The long-term Pliocene decrease in K/Al at U1459 is thus the expression of this long-term
regional climate development. This interpretation is also in agreement with an upper Pliocene lake sequence
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in southwestern Australia, suggesting a warm and seasonally wet climate between 3.6 and 2.5 Ma (Dodson &
Macphail, 2004; Dodson & Ramrath, 2001).

Superimposed on the long-term decreasing K/Al trend, clear astronomically paced variations in K/Al show
remarkable covariability with a tilt-precession (TP) composite (Figure S7). Insolation regimes that are char-
acterized by high seasonality (high TP values) correspond to less eolian kaolinite fluxes (high K/Al). The
explanation for this pattern likely involves an intensification of winter precipitation under such an insola-
tion regime. The potential nullification of summer precipitation does not have much influence, as the sub-
tropical woodland, scrub and heath vegetation is resistant to amplified seasonal drought. Hence, we
hypothesize that high-seasonality orbital configurations resulted in a denser vegetation cover and less eolian
erosion. Low-seasonality configurations (low TP), on the other hand, likely had a negative impact on the
amount of winter precipitation, and therefore annual precipitation. This more arid hydroclimate regime
led to a reduced total detrital input at Site U1459 but to an increase in eolian flux, rich in kaolinite. We thus
interpret carbonate-rich intervals to reflect dampened winter precipitation and, as explained above, we
assume these intervals to correspond with Pliocene glacials in the LR04 stack. Moreover, this interpretation
sheds new light on the work of Dodson and Macphail (Dodson & Macphail, 2004) who reported two “aridity
events” in southwest Australia between ~2.6 and 2.5 Ma. At U1459, one of these events could find its expres-
sion in a distinct high-carbonate interval just above the Plio-Pleistocene boundary that corresponds to the
MIS 100 glacial in our orbitally tuned age model.

4. Drivers of LC Variability

The Pliocene variability of the LC south of the Northwest Cape remains undocumented to date. Here, we
compare the high-resolution 5180G,mculife, record of U1459 to its contemporaneous counterparts at Site
763 (Exmouth Plateau) and Site U1463 (Northwest Shelf) between 3.9 and 3.1 Ma. The latter two sites,
both north of the Northwest Cape, have nearly identical isotopic signatures during the studied time slice
(De Vleeschouwer et al., 2018). Their isotopic offset with U1459 ranges between 0.8%. and 2%. and is
independent of global changes in ice volume, as the associated changes in the 8180y, would affect all
sites equally (Figures 4a and 4c). Therefore, relatively small isotopic offsets between the northern sites
and Site U1459 are indicative of a strong LC, since a stronger current transports more hot water faster
from the Northwest Shelf toward the Perth basin, flattening out the isotopic gradient. The U1459 versus
Site 763 comparison (Figures 4a and 4b) exhibits a stepped increase in isotopic offset just prior to the glo-
bal glaciation event at 3.7-3.6 Ma. This 0.6%. increase marks a regime shift after which the LC never
returns to its early Pliocene state. The TEXgs SST at Site U1459 exhibit a 2 °C temperature drop at the
same time, also marking a permanent change toward cooler SSTs. A tectonic reorganization of the ITF
is the likely cause of this abrupt shift, as the timing corresponds to the collision of the Banda volcanic
arc with the Australian margin in Timor (Hall, 2009). We compare this step increase in A8"®0 to a mod-
eling results by Song et al. (Figure 4C in Song et al., 2007), despite some important differences in bound-
ary conditions. These authors report a 1.5 °C cooling in the Perth Basin, but only a 0.5 °C cooling north of
the Northwest Cape, after a complete closure of the ITF with respect to the present-day situation. The
model predicts an equal increase in salinity at both sites in response to the closure. This comparison indi-
cates that the observed 0.6%. step increase and the 2 °C temperature drop are consistent with the expected
response to a tectonic reorganization of the ITF region.

We assess LC variability in the subsequent period (3.7-3.1 Ma) through the comparison of Site U1459 and
U1463. The isotopic offset between both sites is characterized by intriguing variability. Here, we postulate
that a large part of this variability can be described by a combination of only two factors. The first factor
(Figures 4d and 4e) is the 21 June interhemisphere insolation gradient (SITIG, 23°N to 23°S; Bosmans et al.,
2015; Reichart, 1997). When the interhemisphere gradient is large during austral winter, the Hadley cell
above Australia is strengthened (Bosmans et al., 2015). As a consequence, the southeasterly winds blowing
off the Australian continent during winter are intensified (Bosmans et al., 2015), leading to LC favorable
wind stress and Ekman transport. Moreover, the SITIG series in Figure 4e resembles the time series of the
length of the austral winter half year (Laskar et al., 2004). This means that during maxima in SITIG, the
duration of the season of maximum LC strength is prolonged. The second factor (Figures 4d and 4f) is sea
level as a modulator of ITF connectivity. Weaker ITF connectivity during sea level lowstands leads to a
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763 (Exmouth Plateau; Karas et al., 2011b) and Site U1459. (c, d) Comparison of the st OG sacculifer Detween Site U1463
(Northwest Shelf; De Vleeschouwer et al., 2018) and Site U1459. The gradient between both sites resembles a combination
of (e) 21 June interhemisphere insolation gradient (SITIG; Reichart, 1997) and (f) eustatic sea level (de Boer et al., 2010).
Gray bands highlight globally recognized glacials at 3.7-3.6 and 3.3 Ma (De Schepper et al., 2014). ITF = Indonesian

Throughflow.
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reduction in source waters for the LC. As a result, the current will be weakened and the reduction in over-
spill of warm equatorial water from the Pacific into the Indian Ocean will propagate along the LC pathway
(Schneider, 1998; Song et al., 2007). This mechanism operates in response to relative sea level changes in the
archipelago, as already became clear with the stepwise LC weakening around 3.7 Ma. However, we approach
this mechanism through the eustatic sea level reconstruction of de Boer et al. (2010); Figures 4d and 4f), as
relevant relative sea level reconstructions are not available. We opted for the de Boer et al. (2010) reconstruc-
tion because it has conservative low sea level variability except for the globally recognized glaciation events.
Indeed, the globally recognized glaciation events at 3.3 (MIS M2) and 3.7-3.6 Ma are marked maxima of the
A8'80y1463.U1450. At 3.3 Ma, the isotopic gradient between both sites amounts 2.01%., which is twice as
much as the equivalent value 100 kyr earlier. This change in gradient implies that the latitudinal SST gradi-
ent doubled its steepness during MIS M2, compared to the preceding interglacial. These results highlight the
importance of Pliocene global sea level lows on Southern Hemisphere ocean circulation. A secondary max-
imum in A8'"®0y1463-U1450 OCcurs at 3.43 Ma, when a minor sea level low and a SITIG minimum reinforce
each other to force a LC intensity minimum.

5. Conclusions

The LC transported warm waters into the Perth basin throughout the entire Pliocene but experienced signif-
icant variability in its intensity. We disentangled Pliocene LC variability in three main drivers: tectonic reor-
ganizations, sea level variability on orbital timescales, and direct orbital forcing of wind patterns that
hampered or promoted the LC. The first two drivers are directly linked to the connectivity between the
Pacific and Indian Oceans through the Indonesian gateway. This study thus shows that ITF connectivity
influences Indian Ocean circulation, also outside its immediate outflow region.
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