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Abstract Recent advances in machine learning open new opportunities to gain deeper insight into
hydrological systems, where some relevant system quantities remain difficult to measure. We use deep
learning methods trained on numerical simulations of the physical processes to explore the possibilities
of closing the information gap of missing system quantities. As an illustrative example we study the
estimation of velocity fields in numerical and laboratory experiments of density-driven solute transport.
Using high-resolution observations of the solute concentration distribution, we demonstrate the capability
of the method to structurally incorporate the representation of the physical processes. Velocity field
estimation for synthetic data for both variable and uniform concentration boundary conditions showed
equal results. This capability is remarkable because only the latter was employed for training the network.
Applying the method to measured concentration distributions of density-driven solute transport in a
Hele-Shaw cell makes the velocity field assessable in the experiment. This assessability of the velocity field
even holds for regions with negligible solute concentration between the density fingers, where the velocity
field is otherwise inaccessible.

1. Introduction
Gaining a quantitative understanding of hydrological systems is difficult and relies on the availability of
accurate measurements that are dense in space and time. More and more of such data become available with
increasing deployment of sensors, for example, satellite-based observations or embedded sensor networks.
However, some relevant system quantities, for instance, local flow velocities, remain difficult to measure.
On the other hand, simulations offer the advantage of detailed information, also of the quantities that are
difficult to measure. They are often based on a good physical understanding, but the presence of nonlin-
ear processes and multiscale heterogeneities typically impedes accurate prediction (e.g., Clark et al., 2011;
Nowak & Cirpka, 2006; Vogel et al., 2018).

Advances can be made by closing the information gap of missing system quantities with consistent infor-
mation transfer from simulation of relevant physical processes to the real world. Associated with this is the
evaluation of the representation of relevant physical processes in the simulation. As elucidated in Marçais
and de Dreuzy (2017), Shen (2018), and Shen et al. (2018), the progress and increasing availability of modern
deep learning algorithms combined with the increasing availability of measured data open new possibilities
to address these challenges.

To explore these possibilities, we focus on a comparably simple problem as an example: velocity field esti-
mation on density-driven active solute transport observed in a small-scale laboratory experiment within a
Hele-Shaw cell, where high-resolution measurements of the solute concentration distribution are available.

Density-driven active solute transport is a relevant process for geological storage of anthropogenic CO2
(Ennis-King & Paterson, 2003, 2005; Lindeberg & Wessel-Berg, 1997; Weir et al., 1995). Capturing atmo-
spheric CO2 and storing it in 1- to 3-km-deep geological brine formations is, among others, one proposed
technique to mitigate climate change (IPCC, 2005). At the prevalent conditions in these depths the super-
critical CO2, being trapped underneath impermeable cap rock, overlies the resident brine. The CO2 dissolves
into the brine leading to a local density increase at the interface. Eventually, this gives rise to density-driven
instabilities drastically shortening the time scale of the mixing process in contrast to pure diffusion
(Ennis-King & Paterson, 2003; Farajzadeh et al., 2007; Hassanzadeh et al., 2005; Kneafsey & Pruess, 2010;
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Pau et al., 2010; Pruess & Zhang, 2008; Yang & Gu, 2006). Density-driven flow is a key process in several other
settings beyond CO2 sequestration. Examples include the description of water dynamics beneath saline lake
formations (Wooding, Tyler, & White,1997; Wooding, Tyler, White, & Anderson, 1997), toxic and radioac-
tive waste disposal (Kolditz et al., 1998), and saltwater intrusion into exploited coastal aquifers (Diersch &
Kolditz, 2002).

To investigate the dynamics of density-driven flow, several experimental studies using optical observation
of CO2 and brine analogous solutions in Hele-Shaw cells have been conducted at the laboratory scale (Back-
haus et al., 2011; Ecke & Backhaus, 2016; Faisal et al., 2013, 2015; Fernandez et al., 2002; Kneafsey & Pruess,
2010, 2011; Oltean et al., 2004; Rasmusson et al., 2017; Slim et al., 2013; Thomas et al., 2018). As shown
by Thomas et al. (2015), the use of color indicators often fails to completely visualize the flow patterns in
Hele-Shaw cell experiments. Using a colored solute in water to introduce the density contrasts simultane-
ously allows the accurate visualization of the solute concentration distribution with high-resolution light
transmission measurements (Slim et al., 2013). Contrary to the dense measurements of the concentration
distribution, the velocity field that describes the movement of the fluid is experimentally inaccessible.

Optical flow estimation is a classical task in computer vision with the aim of estimating the two-dimensional
vector field representing the apparent motion of objects in an image sequence. Typical applications are in
autonomous driving (Janai et al., 2017) and action recognition (Simonyan & Zisserman, 2014a). The intro-
duction of supervised deep learning using convolutional neural networks (CNNs) to the field of optical flow
estimation in conjunction with training on synthetic data (Fischer et al., 2015) has led to a paradigm shift
(Ilg et al., 2017). CNNs with an encoder-decoder architecture to estimate motion showed state-of-the-art
results on benchmark data sets, while enabling the estimation in real time.

De Bezenac et al. (2017) applied an adapted encoder-decoder CNN to a related system, the prediction of syn-
thetically generated sea surface temperature data described by convection-diffusion. For this example they
showed that the method can learn the underlying processes such that it is competitive with a numerical
assimilation method. Zhu and Zabaras (2018) used encoder-decoder CNNs as surrogate models for uncer-
tainty quantification in modeling steady-state single-phase flow in heterogeneous media. With Bayesian
treatment of the CNN by adopting the variational inference method of Liu (2017) and Liu and Wang (2016),
they showed improved scalability to high-dimensional problems with limited training data. Mo et al. (2019)
adopted the network architecture of Zhu and Zabaras (2018) and extended the model as a surrogate for
uncertainty quantification of transient multiphase flow in heterogeneous media. Whereas these studies
focus on replacing the forward models of related physical systems using an encoder-decoder CNN, in our
work we use similar deep learning methods to aim at the estimation of missing system quantities. Generally,
these challenges are subject to methods like inverse modeling and data assimilation.

In this study, we explored the information transfer from synthetically generated data, representing the pro-
cess understanding, to laboratory experiments with missing velocity field data using recent deep learning
methods. For the information transfer to be coherent, this requires (i) the physical processes that occur
in the laboratory experiment to be represented completely and faithfully in the physical model and there-
fore in the synthetic data and (ii) the experimental and the synthetic data to have the same, in our case
image-like, structure. In a first step we generated a set of synthetic training data through numerical simula-
tion of density-driven active solute transport. Based on FlowNet by Fischer et al. (2015) and FlowNet 2.0 by
Ilg et al. (2017) and analogously to de Bezenac et al. (2017), Zhu and Zabaras (2018), and Mo et al. (2019),
we trained an encoder-decoder CNN, an adaption of the FlowNet2-s (Ilg et al., 2017), on the synthetic train-
ing data in an end-to-end fashion. In the encoder high-level features in the input concentration fields are
extracted and transferred to a coarse abstract representation that is refined in the decoder to reconstruct
the output velocity fields. The trained CNN was then used to estimate velocity fields from concentration
measurements of a synthetic test data set. This test data set was again obtained from numerical simulation,
but with the concentration boundary condition being modified to test the generalization of the method. In
the next step we applied the CNN to concentration measurements of a Hele-Shaw cell experiment. This
way we estimated the velocity fields that are otherwise inaccessible for density-driven flow and assessed the
representation of the relevant physical transport processes in the numerical simulation.

With this approach, the CNN implicitly learns, relying purely on synthetic data, the phenomenology of a
class of physical processes on a broad parameter spectrum. This incorporated representation of the physical
processes can then be directly utilized to estimate missing system quantities on measurements. In this sense
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we see this as a complementary approach to inverse modeling and data assimilation of physical processes.
These methods are based on accurate models of the processes, where the missing system quantities are
reconstructed by calibrating the forward model on the measured data.

2. Materials and Methods
2.1. Physical Representation
2.1.1. Dynamics
Fluid flow in saturated isotropic porous media is governed by Darcy's law

u = − k
𝜇

[
∇p − 𝜌gez

]
(1)

and the continuity equation

∇ · u = 0 (2)

using the Boussinesq approximation. Note that for the special case of a Hele-Shaw cell, the description
is reduced to two dimensions with the z direction chosen to coincide with the direction of gravity. Then
u = (u,w) denotes the Darcy velocity, k the permeability, 𝜇 the fluid viscosity, p the pressure, and g the
acceleration due to gravity. The density of the fluid 𝜌 is considered to only depend on the concentration of
the solute C. Solute transport is represented by the convection-dispersion equation

𝜙
𝜕C
𝜕t

= −u · ∇C + 𝜙D∇2C (3)

with porosity 𝜙, effective dispersion coefficient D, and Darcy velocity u, given by equation (1). The coupling
between (1) and (3) is described by a linearized relation for the density

𝜌(C) = 𝜌0 + Δ𝜌 C̃ (4)

with the dimensionless concentration

C̃ = [C − C0]∕[Cmax − C0]. (5)

This linearization is considered to be valid for small concentration variations within a range from the initial
base density 𝜌0 at the initial concentration C0 to the maximum density 𝜌max = 𝜌0 + 𝛥𝜌 at the maximum
concentration Cmax.
2.1.2. Dimensionless Formulation
The dimensionless formulation then facilitates the comparison of the numerical and the laboratory experi-
ment. Following the usual procedure (e.g., Riaz et al., 2006; Wooding et al., 1997), we choose to rescale by the
depth of the flow domain H as the characteristic length scale Lc. As characteristic velocity Uc we choose the
buoyancy velocity of a fluid element with maximum concentration Cmax. For the remaining characteristic
quantities this choice results in

Lc = H, Uc =
Δ𝜌gk
𝜇

, Tc =
Lc

Uc
, Pc =

𝜇UcLc

k
, Cc = Cmax − C0 (6)

with characteristic time Tc, characteristic pressure Pc, and characteristic concentration Cc. For the rescaling
of equations (1) to (3) we choose

u = Ucũ, x = Lcx̃, t = 𝜙Tc t̃, p − 𝜌0gzez = Pcp̃, C − C0 = CcC̃ (7)

with ·̃ denoting dimensionless quantities. The governing equations take the form

ũ = −∇̃p̃ + C̃ez (8)

∇̃ · ũ = 0 (9)

𝜕C̃
𝜕t̃

= −ũ · ∇̃C̃ + 1
Ra

∇̃2C̃, (10)
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Figure 1. Illustration of the experimental setup: The Hele-Shaw cell (50 × 30 cm) is placed in front of the LED light
source. During the evaporation-induced density-driven instability experiments the external fluid reservoir keeps the
fluid level inside the Hele-Shaw cell stable. The CCD camera captures the transmitted light. The red rectangle
highlights the observation area used for the velocity estimation.

where the Rayleigh number

Ra =
Δ𝜌gkH
𝜇𝜙D

(11)

emerges in the convection-dispersion equation as the scaling parameter between the convective and the
dispersive terms.

2.2. Laboratory Experiment
The experimental setup (Figure 1) is composed of a Hele-Shaw cell, an LED light source, an optical band-pass
filter, and a CCD camera to observe the solute concentration distribution by employing light transmission
measurements.

The Hele-Shaw cell is made from two 8-mm-thick glass plates with the dimensions of 500×300 mm. Spacers
of 0.4-mm thickness and sealing material along the left, right, and lower edges hold the glass plates apart to
create a narrow gap d that serves as the quasi two-dimensional flow domain. In this narrow gap, the fluid
flow is described by the same governing equations as for porous media (see section 2.1) with porosity 𝜙 = 1.
We ensured that the gap width satisfies d < 10(𝜙D∕Uc), as deduced by Slim et al. (2013) from the results of
Fernandez et al. (2002), in order to reduce the influence of possible three-dimensional effects.

Three inlet ports at the lower edge were connected to an external fluid reservoir to keep the fluid level stable
during the course of the experiment. The fluid used in the experiment is deionized water with Brilliant Blue
FCF (BB) as a tracer and solute simultaneously that allows to observe the dynamics as well as to introduce
density contrasts depending on the BB concentration. Based on the Beer-Lambert law, we determined the
absorption coefficient of BB using the measured light extinction in a spectrometer.

The light source consists of an LED array and a translucent acrylic glass plate as optical diffuser up front to
create a homogeneous illumination of the Hele-Shaw cell. The LEDs match the maximum light absorption
wavelength of BB (630 nm) in their maximum emission wavelength (625 nm). The optical band-pass filter
in front of the CCD camera (2,452× 2,054 pixels) was chosen accordingly with a transmission band of 632±11
nm.
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Table 1
Summary of the Synthetic Data Sets

Characteristics Training data set Validation data set Test data set
Number of image pairs 5,347 269 829
Range of Ra [2,000, 27,000] [2,000, 27,000] [3,750, 13,750]
Resolution 768 pixels × 384 pixels 768 pixels × 384 pixels 768 pixels × 384 pixels
Upper boundary condition C̃ = 1 C̃ = 1 C̃ = 1 for 230 pixels < x < 538 pixels and t̃ < 5

6 Tc; C̃ = 0 else

To determine the spatially resolved gap width of the Hele-Shaw cell, we performed calibration measure-
ments using two uniform BB concentration solutions. By measuring the light intensity with the CCD camera
the width can be inferred by the Beer-Lambert law. This calibration for the gap width allowed for the spatially
resolved determination of the BB concentrations during the experiment.

For the density-driven instability experiment, the flow domain was initially completely filled with uniform
BB concentration solution (C0 = 86.5kg∕m3). Through water evaporation at the upper unsealed edge of the
Hele-Shaw cell, BB accumulated locally up to Cmax = 154.4kg∕m3. This set the upper boundary condition for
the experiment. The fluid loss due to evaporation was compensated by inflow of BB solution with C0 through
the three inlet ports at the bottom. Note that this increased the total BB amount in the cell over time. The
increased BB concentration at the top altered the density (𝛥𝜌 = [12.9±2.8]×10−3 kg∕m3) of the solution there
leading to an unstable layering within the fluid. Subsequent to this the evaporation-induced density-driven
instability developed in its full beauty (video available at https://doi.org/10.11588/data/7NEEKF). For the
laboratory experiment we estimated the Rayleigh number to be Ra = 6, 600 ± 2, 700, where the large
uncertainties are mainly attributed to large uncertainties in the diffusion coefficient D.

2.3. Numerical Experiment
To simulate the dynamics of the problem as formulated by (8)–(10), we used a numerical solver implemented
by P. Bastian in Dune (Bastian et al., 2008a, 2008b; Blatt & Bastian, 2007, 2008; Blatt et al., 2016). We ran the
simulations on a two-dimensional rectangular structured 768× 384 grid to generate three distinct data sets:
(i) the training data set, (ii) the validation data set, and (iii) the test data set each containing the concentration
fields and their underlying velocity fields grouped into image pairs of consecutive time steps. Examples of a
concentration field and the corresponding velocity field are shown in Figure 3a.

For the training data set the concentration was set to a constant value of C̃ = 1 at the upper bound-
ary. The upper and lower boundaries were set to be impermeable to the fluid flow. In the range of Ra ∈
[2, 000, 27, 000] we ran 27 individual simulations to generate the training data set. Out of these image pairs
we equidistantly excluded 269 image pairs, which will subsequently be used as the validation set, resulting in
a training data set of 5,347 image pairs. The test data set was generated in the range of Ra ∈ [3, 750, 13, 750]
over the course of six simulation runs yielding 829 image pairs. In contrast to the training and validation
data sets, here the concentration was set to C̃ = 1 only in the middle two fifths of the upper boundary (cf.
Figure 4a) and a temporal cutoff was introduced as the concentration was set to C̃ = 0 at t̃ = 5

6
Tc. This dif-

ference in the boundary conditions was introduced to test the generalization of the velocity field estimation.
A summary of the training, validation, and test data set is given in Table 1.

The amount of data available for training is crucial to the performance of a supervised deep learning method.
Larger data sets like Flying Chairs (Fischer et al., 2015) (22,872 image pairs for training) and FlyingTh-
ings3D (Mayer et al., 2016; over 35,000 image pairs for training) are beneficial over smaller sets like KITTI
(Geiger et al., 2013; 194 image pairs for training) and MPI-Sintel (Butler et al., 2012; 1,041 image pairs for
training) for optical flow. On the other hand, the generation of larger data sets requires additional compu-
tational resources. Our chosen data set size (5,347 image pairs for training) balances the two aspects for this
exploratory case.

2.4. Data Preprocessing
To prepare the data of the laboratory experiment for the velocity field estimation, we used the following
preprocessing steps. To reduce the image noise, we used a standard median filter with a kernel size of 5 × 5
pixels. A median image filter, in comparison to a Gaussian image filter, keeps the blurring minimal and
therefore reduces the introduced error with respect to the dispersive transport process. Additionally, we used
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Figure 2. Architecture of the convolutional neural network (details in Table A1): Two subsequent concentration fields
are fed into the network. Feature maps are depicted as light gray boxes. Convolution layers are depicted as boxes with
red faces indicating their mapping from the respective feature map to the next. Transposed convolution layers are
depicted as boxes with blue faces indicating their mapping from the previous to the respective feature map. Asterisks
indicate convolution layers without leaky rectified linear unit activation function. The dotted red lines indicate slicing
of the feature map into x and y components of the predicted velocity field. Bilinear interpolation as postprocessing of
the predicted velocity field is used to recover the full input resolution (not depicted).

a threshold filter slightly above the base concentration of C0 = 86.5kg∕m3, setting all concentration values
beneath C = 90.0 kg∕m3 to 0 to extract the density fingers only.

To enable the direct comparison to the numerical experiment, we rescaled the measured concentration fields
according to equation (5). As we are only interested in the early to intermediate development of the system,
we chose to restrict our observations to the upper 9.7 cm of the Hele-Shaw cell with an observation window
width of 19.3 cm (cf. Figure 1). With this we received the resolution of 768×384 pixels for the concentration
fields.

2.5. Velocity Field Estimation
The architecture we used for the CNN is an encoder-decoder very similar to the FlowNet2-s architecture as
proposed in Ilg et al. (2017). An illustration of our CNN is given in Figure 2, and a detailed description of
the architecture and the training scheme is given in Appendix A. Our architecture differs in the following
aspects: (i) We omitted the skip connections, as we did not encounter high-frequency features in our data.
(ii) For data augmentation we solely accounted for image noise. (iii) We introduced a convolution layer with
a single 1 × 1 convolution filter for the individual velocity components right before the loss to enhance the
networks adaptability of the velocities specific to our data. Additionally, internal parameters to scale the
data range were adapted to allow for good information propagation through the network.

As input the CNN takes two subsequent concentration fields, concatenated to produce the input image, and
outputs a velocity field (cf. Figure 2). For the training of the CNN we used the modified version of the Caffe
framework (Jia et al., 2014) as provided by Ilg et al. (2017) on a single Nvidia GTX 1080 Ti graphics processing
unit. The trained CNN was then deployed to estimate the velocity field that accounts for the solute transport
between the two input concentration fields. Since the encoder and the decoder of the CNN are asymmetric,
the resolution of the data from input to output is coarsened by a factor of 4. To restore the original resolution,
we used bilinear interpolation of the predicted velocity fields as a postprocessing step.

KREYENBERG ET AL. 7280
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Figure 3. Estimated velocity field on the synthetic validation data set example: truth (a) and estimation (b) of the velocity field shown as streamlines (red color
intensity indicates absolute velocity) on top of the color-coded prior concentration field. Velocity field divergence of the true (c) and estimated (d) velocity field.
Concentration isolines are given at levels C̃ = (0.25, 0.5, 0.75). Note that for better visibility of low values the scales for the divergence differ by 2 orders of
magnitude, while the actual deviation between maxima and minima is lower.

2.6. Concentration Field Propagation
When estimating the velocity fields with the trained CNN, ground truth is only available for the numer-
ical experiment but not for the laboratory measurements. To be able to evaluate the performance of the
estimation, we propagated the concentration fields forward in time using the estimated velocity fields. The
resulting estimated concentration fields were then compared to the concentration fields of the correspond-
ing time step as a basis for the performance evaluation of the velocity field estimation. The propagation was
performed through two subsequent processing steps: (i) We used warping, the bilinear interpolation of the
propagated concentration values (Ilg et al., 2017), to account for the convective transport process, and (ii)
we used a standard Gaussian image filter to account for the dispersive transport process.

As the training of the CNN was performed based on dimensionless simulations, the estimations contain
dimensionless velocities ũ. Therefore, we needed to rescale these velocities with the dimensionless time step
dt̃ to get the displacement for the warping method. For the synthetic data this is given by the time step of
the numerical simulation dt̃ = 0.02. With the known dispersion coefficient of D = 1∕Ra in the numerical
simulations the standard deviation for the Gaussian image filter is given by 𝜎 =

√
2dt̃∕Ra.

For the laboratory experiment we lack the accurate knowledge of the dimensionless time step dt̃ and the
standard deviation for the Gaussian blurring 𝜎, because of uncertainties in the experimental determination
of Tc = 𝜇H∕𝛥𝜌gk and D. For the estimated time step we received dt̃ = dt∕Tc = 0.039. Optimizing the values
of time step and standard deviation for the warping and Gaussian filtering of the measured data such that
the mean squared difference between the propagated and the corresponding measured concentration field
is minimized resulted in dt̃ = 0.0438 and 𝜎 = 2.6 pixels. When comparing the value of the time steps, we
encountered a deviation of 11% between the estimated value and the value from optimization. This deviation
lies well in the uncertainties of the experimentally determined value. We chose the optimized time step since
the estimation from the measurements is expected to be biased.
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Figure 5. Error distributions of the mean endpoint error for the validation
data set (a) and the test data set (b). Mean endpoint error values of the
synthetic data set examples, shown in Figures 3 and 4, respectively, are
indicated by the red dashed lines.

Figures 3c, 3d, 4c, and 4d present the corresponding velocity field diver-
gence values for the true and the estimated velocity fields for the valida-
tion data set and the test data set examples. For the true velocity fields
from numerical simulation we find divergences in the range [−9.3, 8.6] ·
10−3 and divergences in the range [−30.0, 9.0] · 10−3 for the estimated
velocity fields. The larger range of divergences for the estimated velocity
fields arises from the imperfect estimation of the CNN and is related to
the velocity errors occurring per characteristic time period Tc. Still, the
encountered values are at least 2 orders of magnitude smaller than the
encountered typical velocities of |ũ| ≈ 3.5.

As a quantitative error measure we took the mean endpoint error
(MEPE =

∑N
𝑗=1

√
[ũest

𝑗
− ũtrue

𝑗
]2 + [w̃est

𝑗
− w̃true

𝑗
]2∕N with N being the

number of pixels in the images) between the estimated and the true veloc-
ity field. The distributions of this error measure over the validation data
set and the test data set are shown in Figures 5a and 5b, respectively. The
MEPE is given in the units of the characteristic velocity Uc and is a mea-
sure of the error in velocity averaged over all pixels of the respective image
pair. Typical absolute velocity values encountered after the onset of the
instability are in the range of |ũ| ≈ 0.5Uc … 0.8Uc. Note that the MEPE
is expected to result in low values for image pairs with very little to no
movement and hence for the very early development of the instability.

For the training data set the MEPE remains below 0.022 for all the image
pairs suggesting a good agreement between the estimation and the truth.
Image pairs with very little movement result in low values beneath 0.001.
In fact, the majority of the data count in this range originated from image

pairs during the purely diffusive regime. For the image pairs after the instability onset, the majority is
contained within the MEPE range from 0.007 to 0.022.

The distribution of the MEPE over the test data set (Figure 5b) is similar to the distribution over the valida-
tion data set with the maximum MEPE being 0.021. Note that for the test data set the flow is being contained
in smaller regions, given the nonuniform boundary condition (see section 2.3). In contrast to the MEPE
distribution over the validation data set, the portion of image pairs with mean endpoint error below 0.001
is lower. This is due to the composition of the test data set. With the nonuniform boundary condition we
introduced an earlier onset of the instability there. In the range between 0.001 and 0.021 we observe a broad
distribution of the MEPE. Overall, the distribution exhibits that the estimation performs well on the test
data set, showing the robustness of the method toward the spatial and temporal variability introduced by
the different upper boundary conditions.

Limitations of the velocity field estimation with the implementation of the CNN we used are in the accurate
estimation of the absolute values of the flow velocities. This is especially true in regions with large velocities.
To get an assessment of the spatial distribution of the errors, we calculated the normalized velocity error as
local error measure. Additionally, we give the angular error. The results for the validation data example and
the test data example are shown in Figures 6 and 7, respectively, whereas the respective MEPE is indicated
in Figures 5a and 5b by the dashed red lines. The normalized velocity error is the difference between the
absolute estimated velocity field and the absolute true velocity field normalized by the maximum absolute
value of the true velocity field [|ũest| − |ũtrue|]∕max(|ũtrue|) and yields structurally similar results to the L2

error often used in the field of deep learning. The angular error shows the angular difference between the
estimated velocity direction and the true velocity direction for each pixel and is given in degrees. To show
the contributions of the individual velocity components to the normalized velocity error, we additionally
present the normalized x and z velocity differences [ũest

i − ũtrue
i ]∕max(|ũtrue|) with i = x, z in Figures 6c, 6d,

7c, and 7d, respectively.

Figures 6a and 7a show that the direction of the velocity is generally estimated accurately, where informa-
tion is given by the concentration. The CNN is even capable of estimating the velocity direction accurately
in larger regions surrounding the density fingers. Areas where the estimation of the velocity direction fails
are located directly at the flanks of density fingers, where the velocity is typically small and deviates from
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Figure 6. Error measures for the validation data set example: angular error (a), normalized velocity error (b; negative for |ũest| < |ũtrue|), normalized x velocity
difference (c), and normalized z velocity difference (d). Concentration isolines are given for the levels C̃ = (0.25, 0.5, 0.75).

being parallel to the orientation of the density fingers. Additionally, the concentration values are low. The
combination of these two factors results in low dynamics impeding the velocity field estimation there. Also,
boundary effects become apparent in the validation data example (Figure 6a) at the rightmost density fin-
ger. There the flow points downward directly at the right boundary causing the shape of the finger to be
structurally different as it appears to be cut in half. In the regions further away from the density fingers, the
velocity is close to 0, the angle correspondingly ill defined.

Figures 6b and 7b show that the method predominantly underestimates the velocity values. Apart from
the boundary effects on the rightmost density finger in the validation data set example (Figure 6b), large
portions of the region where C̃ > 0 exhibit a normalized velocity error roughly in the range between −13%
and 6% also with a strong tendency to underestimate the velocity. Locally, the error can exceed these values.
For instance, at the seeding point of the second density finger from the left the normalized velocity error
ranges down to −23%. Also, the velocities are underestimated in the regions with upward flow between the
density fingers. There the normalized velocity error roughly ranges from −7% to −4%. Figure 7b shows that
the underestimation is generally less pronounced for the test data set example. This is mainly due to the
predominantly lower velocities (cf. Figures 3a and 4a). However, the span of the normalized velocity error
is similar to the validation data set example with a range from −20% to 6%.

To be able to compare the quality of the results on synthetic and real data (where the ground truth is inac-
cessible), we used concentration field propagation by subsequent warping and Gaussian image filtering
(see section 2.6). We investigated the concentration field propagation on the synthetic data to obtain a ref-
erence. The upper boundary condition for the concentration was set to C̃ = 1 resembling the boundary
condition in the numerical simulation. We chose one distinct concentration field with the propagation time
t̃p = 0 as the starting point. The concentration field was then iteratively propagated by the propagation time
step dt̃ = 0.02, since the true concentration field was present in this temporal resolution. For the chosen
concentration field, the given propagation time step resulted in 𝜎 = 2.43 pixels for the Gaussian blurring.

Example results of the concentration field propagation for propagation times t̃p = 0.04, t̃p = 0.08, and t̃p =
0.22 are presented in Figure B1. The true concentration fields are shown in Figures B1a–B1c, the concen-
trations field propagated with the true velocity fields are shown in Figures B1d–B1f, and the concentration
fields propagated with the estimated velocity fields are shown in Figures B1g–B1i.
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Figure 7. Error measures for the test data set example. Same representation as in Figure 6.

A detailed look at the deviations between the concentration fields propagated with the estimated velocity
fields and the true concentration fields is presented in Figures 8a–8c as the normalized concentration errors
([C̃est − C̃true]∕max(C̃true)) for the same propagation times t̃p = 0.04, t̃p = 0.08, and t̃p = 0.22, respectively.
At t̃p = 0.04 the deviations in the middle region, where the velocities are relatively small, roughly range
from −1.5% up to 1.5%. In regions with higher velocities on the left the concentration field deviates stronger.
Especially at the tip of the furthest developed density finger (at x = 50) the normalized concentration error
is−3%. This is consistent with the already observed underestimation of the absolute velocities (cf. Figures 6b
and 7b). The solute there is not transported as far as in the true concentration field. For the subsequent
propagation times the estimated and the true concentration fields diverge even further, also as expected due
to the underestimation of the velocity fields.

3.2. Laboratory Experiment
For the laboratory experiment the velocity fields were estimated with the trained CNN, and bilinear inter-
polation was used to recover the original data resolution. Figure 9 shows the results on an exemplary
concentration field. The quality of the velocity field estimation is consistent with the estimation for the
numerical experiment (cf. Figures 9a, 3b, and 4b). Predominantly the estimation of the flow structures seems
to be reliable. Also, the resulting divergence of the estimated velocity field (Figure 9b) is consistent with the
synthetic case (cf. Figure 3d). Nevertheless, the ground truth for the laboratory experiment is inaccessible
for direct performance evaluation. To assess the performance on the real data, we propagated the measured
concentration fields forward in time using the estimated velocity fields (see section 2.6). The propagated
concentration fields were then compared to the respective measured concentration fields.

As described in section 2.6 we chose to optimize for the propagation time step and the Gaussian image filter
standard deviation, although we are aware that this alleviates the expected underestimation of the veloc-
ity field with the CNN. On the other hand, the physically rescaled value for dt̃ introduces estimation biases
that cannot be assessed. Our choice results in dt̃ = 0.0438 and 𝜎 = 2.6 pixels. Additionally, in the labora-
tory experiment we do not know the upper boundary condition for the concentration. Therefore, we took
the upper 10 pixel lines of the measured concentration field and set these pixel lines as the upper bound-
ary condition before every warping step. Using these parameters for the concentration field propagation,
we received the estimated concentration fields as shown in Figures 10d–10f together with the respective
measured concentration fields in Figures 10a–10c. The propagation times are t̃p = 0.0438, t̃p = 0.0876, and

KREYENBERG ET AL. 7285



Water Resources Research 10.1029/2019WR024833

Figure 8. Normalized concentration errors for propagated concentration fields. Numerical experiment: (a) at t̃p = 0.04,
(b) at t̃p = 0.08, and (c) at t̃p = 0.22. Laboratory experiment: (d) at dt̃ = 0.0438, (e) at t̃p = 0.0876, and (f) at t̃p = 0.219.
Normalized concentration errors are chosen to be negative for C̃est < C̃true. Black dashed lines indicate the initial
position of the respective density finger seeding point (cf. red dashed line in Figure 10). For the laboratory experiment
only the central region is presented (cf. blue dotted lines in Figure 10).

t̃p = 0.219, respectively. These propagation times were chosen to closely match the propagation times for the
numerical experiment as shown in Figures B1 and 8a–8c. To the eye the concentration fields at t̃p = 0.0438
do agree in general, although slight deviations at the leftmost and rightmost density fingers already become
apparent. At t̃p = 0.0876 and t̃p = 0.219 these deviations become even larger until the concentration fields
do not agree very well anymore. In the center region the agreement in the shape is still very good despite
the appearance of the slightly pointier finger tips as already seen in Figure B1i for the synthetic data. We
assume that the outermost fingers in the laboratory experiment are additionally affected by boundary effects.
Therefore, we chose to limit the evaluation of the normalized concentration errors to the region between
x = 180 pixels and x = 570 pixels as indicated in Figure 10 by the blue dotted lines.

Figures 8d–8f show the normalized concentration errors at t̃p = 0.0438, t̃p = 0.0876, and t̃p = 0.219, respec-
tively. At t̃p = 0.0438 the normalized concentration error is generally low with values in the larger portion
roughly ranging from −10% to 10%. For the longer propagation times the errors increase, as the estimated
concentration field diverges more and more from the measured one. Compared to the normalized concen-
tration errors of the numerical experiment (Figures 8a–8c), the errors are typically larger for the laboratory
experiment. Nevertheless, in regions with higher velocities, as seen in the region with x < 200 pixels for the
numerical experiment, errors can reach similar values in both cases for all the presented propagation times.
The qualitative structure of the errors differs as well. For the numerical experiment the concentrations are

Figure 9. Estimated velocity field on the laboratory experiment (a) shown as streamlines (red color intensity indicates absolute velocity) on top of the
color-coded prior concentration field. Velocity field divergence of the estimated velocity field (b). Concentration isolines are given at levels C̃ = (0.25, 0.5, 0.75).
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Figure 10. Concentration field propagation on the laboratory experiment: true concentration fields (a–c) and
concentration fields propagated with estimated velocity fields (d–f) at propagation times t̃p = 0.0438 (top row),
t̃p = 0.0876 (center row), and t̃p = 0.219 (bottom row). The red dashed line marks the initial position of the respective
density finger seeding point. The blue dotted lines indicate the region of concentration error evaluation presented in
Figures 8d–8f.

underestimated in front of the density finger tips, whereas for the laboratory experiment the concentrations
are underestimated on the right flank of the fingers while being overestimated on left flank. This shows
that for the numerical experiment the downward flow is too slow whereas for the laboratory experiment the
estimation is unable to predict a general rightward flow. As the rightward drift there seems to affect all the
fingers quite uniformly we attribute this to convection currents in the Hele-Shaw cell independent of the
density-driven flow. Most prominently, the convection is seen in Figures 10a–10c where not only the seed-
ing point of the density finger, initially located at the red dashed line, but the complete finger shifts to the
right. The corresponding position in Figures 8d–8f is indicated by the black dashed line. This kind of global
convection is not represented in the training data set; hence, the method cannot estimate the velocity fields
in this respect.

4. Summary and Conclusion
Based on the work on optical flow estimation using deep learning methods (Fischer et al., 2015; Ilg et al.,
2017), we presented a new approach for the estimation of velocity fields for density-driven instabilities. We
used numerical simulations to generate a synthetic training data set to train a CNN, which was applied to
estimate velocity fields on both synthetic and real-world data without the explicit knowledge of boundary
conditions. With this we assessed the consistency of the incorporated physical processes and the information
transfer from synthetic to real world data.

Application of the method to synthetic data generally resulted in the reliable estimation of the velocity field
directions, showing the structurally correct incorporation of the physical processes in the method. Even the
flow directions in regions between density fingers, where no information is given by moving solute, were
estimated correctly. So far this was not possible with the application of classical optical flow estimation
methods to density-driven instabilities. However, systematic deviations were found in the estimation of the
absolute flow velocities, which the method tended to underestimate. This indicates a quantitatively incorrect
incorporation of the processes. We mainly attribute this to the specific characteristics of the density-driven
instabilities. Unlike in the data usually used in optical flow problems, we only encounter smooth concen-
tration gradients impeding the quantitative correct detection of fluid motion between two subsequent time
steps. To resolve the biases, a better adaptation of the deep learning method to the characteristics of the
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physical problem is necessary. First adaptations have already been proposed, for instance, loss regularization
based on the differential equations for convection-dispersion problems (de Bezenac et al., 2017).

The introduction of spatial and temporal nonuniform concentration boundary conditions in the synthetic
test data set showed the potential of the approach. The results agree with the results on the synthetic val-
idation data with uniform boundary condition, demonstrating the robustness of the method toward the
introduced variability. This indicates that indeed the underlying physical process was structurally incorpo-
rated reasonably well into the CNN, which then can be applied to similar situations. Still, issues with flow
boundary conditions were suspected for the laboratory experiment's analysis.

By applying the velocity field estimation to real world data, we transferred information learned on the
numerical experiment to the laboratory experiment and assessed the limitations of the method. We investi-
gated the results through propagating the concentration fields with warping and Gaussian image filtering.
This showed that the method yielded worse results on real world data than on the synthetic reference. Still,
in regions with typically higher velocities, the errors found can be similar. In the laboratory experiment we
encountered large-scale convection currents resulting in sideward drift of entire density fingers. This was
not covered by the simulations, as the numerical experiment accounted for density-driven flow only. As a
consequence, the introduced lateral flow could not be estimated accurately revealing relevant transport pro-
cesses to be not represented in our case. Nevertheless, we were able to estimate the previously inaccessible
main velocity field characteristics for the laboratory experiment.

Given the limitations described above, we showed that the information transfer from synthetic data to real
world data with recent deep learning methods can be possible. Still, it is crucial to better adapt the methods
to physical problems. In our exploration we were able to show that the representation of density-driven
flow can be incorporated into the method, allowing the application to experiments with variability in the
concentration boundary conditions. Further, we were able to identify physical processes in the laboratory
experiment that were missing in the numerical experiment.

Appendix A: Network Architecture
Our adaptation of the FlowNet2-s (Ilg et al., 2017) consists of an encoder of 10 convolution layers fol-
lowed by a decoder of 4 transposed convolution layers, with a leaky rectified linear units (leaky ReLU)
activation function (Maas et al., 2013) with negative slope of 0.1 following the individual layers. Additional
convolution layers were used to predict the estimated velocity fields. Detailed information of the network
hyperparameters are summarized in Table A1, and a schematic of the architecture is shown in Figure 2.

At the input of the network we added Gaussian noise with standard deviation uniformly sampled from [0,
0.04] as data augmentation to the concentration fields. As illustrated in Figure 2, each of the first three
convolution layers reduces the resolution of the feature maps by a factor of 2. In the following convolution
layers, only every second layer reduces the resolution to increase the depth of the network while keeping the
resolution at the bottle neck reasonably fine. Including more layers and therefore increasing the nonlinearity
with the according leaky ReLU layers is beneficial as it makes the decision function more discriminative
(Simonyan & Zisserman, 2014b). In the decoder each of the four transposed convolution layers increases the
resolution by a factor of 2. Following the decoder a convolution layer without leaky ReLU layer predicts the
velocity estimation and the velocity is split in its x and z components. We introduced another convolution
layer (without leaky ReLU layer) with a single 1 × 1 convolution for each velocity component. This enables
the CNN to adapt a scaling of the velocity vector components and leads, in our case, to better estimation of
the absolute velocities (comparison not shown).

The coarsening in the encoder effectively reduces the resolution by a factor of 64, while the decoder refines
the resolution by a factor of 16, resulting in a total resolution decrease by a factor of 4. We used bilinear
interpolation as a postprocessing step on the estimated velocity fields to recover the original resolution of the
input concentration fields during deployment of the CNN. Further upsampling using additional transposed
convolution layers in the decoder does not necessarily produce significantly better results (Fischer et al.,
2015), which is also true in our case. During training we did sample down the true velocity field to match
the resolution of the estimated velocity field before the loss was calculated. As training loss we calculated
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Table A1
Network and Training Hyperparameters

Layer Nfilter, kernel size, stride, pad Resolutiona

Network architecture
Encoder
Input — 768 × 384
conv1b 24, 7 × 7, 2, 3 384 × 192
conv2b 48, 5 × 5, 2, 2 192 × 96
conv3b 96, 5 × 5, 2, 2 96 × 48
conv3_1b 96, 3 × 3, 1, 1 96 × 48
conv4b 192, 3 × 3, 2, 1 48 × 24
conv4_1b 192, 3 × 3, 1, 1 48 × 24
conv5b 192, 3 × 3, 2, 1 24 × 12
conv5_1b 192, 3 × 3, 1, 1 24 × 12
conv6b 384, 3 × 3, 2, 1 12 × 6
conv6_1b 384, 3 × 3, 1, 1 12 × 6
Decoder
convT5b 192, 4 × 4, 2, 1 24 × 12
convT4b 96, 4 × 4, 2, 1 48 × 24
convT3b 48, 4 × 4, 2, 1 96 × 48
convT2b 24, 4 × 4, 2, 1 192 × 96
Prediction
Predict_conv 2, 3 × 3, 1, 1 192 × 96
Slice — 192 × 96; 192 × 96
Scale_X_conv; Scale_Z_conv 1, 1 × 1, 1, 0; 1, 1 × 1, 1, 0 192 × 96; 192 × 96
Training hyperparameters
Optimization algorithm Adamc 𝛽1 = 0.9, 𝛽2 = 0.999
Learning rate 10−5

Batch size 24
Training epochs 540
Weight decay 4 · 10−4

aRefers to the resolution of the feature map after the respective network layer. bLayer is
followed by a leaky ReLU activation function with negative slope of 0.1. cKingma and Ba
(2014).

the L2 regularized sum of squares error of the velocity field components:

J(w) =
Nest∑
𝑗=1

[[
ũest
𝑗

− ũtrue
𝑗

]2
+
[

w̃est
𝑗

− w̃true
𝑗

]2
]
+ 𝛼

2
w⊤w (A1)

with network weights w, weight decay 𝛼 = 4 · 10−4, and the number of pixels Nest of the estimated, coarse
velocity fields. For the training scheme we used a batch size of 24 and a learning rate of 10−5 over 540 training
epochs. Following Fischer et al. (2015), we used the Adam optimization algorithm (Kingma & Ba, 2014)
with 𝛽1 = 0.9 and 𝛽2 = 0.999 for the optimization during the training.

Appendix B: Concentration Field Propagation: Synthetic Reference
Figures B1a–B1i present exemplary results of the concentration field propagation on synthetic data.
Figures B1a–B1c show the true concentration fields at the propagation times t̃p = 0.04, t̃p = 0.08, and
t̃p = 0.22, respectively. Note that for all Figures in the same row the propagation time step is the same. In
Figures B1d–B1f the concentration fields are warped with the true synthetic velocity fields and then blurred
with the Gaussian filter. The upper boundary condition for the concentration is set to be C̃ = 1 resembling
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Figure B1. Concentration field propagation by t̃p = 0.04 (top row), 0.08 (center row), and 0.22 (bottom row) on the numerical experiment: true concentration
fields (a–c), concentration fields propagated with true velocity fields (d–f), and concentration fields propagated with estimated velocity fields (g–i).

the boundary condition in the numerical simulation. The resulting concentration fields for warping with
the true velocity fields mainly match the true concentration fields very accurate. However, investigation of
the normalized concentration error locally reveals large deviations of up to 50% (comparison not shown)
confined in the upper left corner. This indicates issues due to warping where pixel values with velocities
pointing outward of the domain are set to 0. Focusing on the interior of the domain and excluding this small
region results in a maximum absolute normalized concentration error of 4.7% at dt̃ = 0.22. This sets the
lower boundary for the relative errors we can expect from the estimated velocity fields after this time.

Figures B1g–B1i show the results of the concentration fields with warping by the estimated velocity field.
Also here, the general shape of the concentration distribution is reproduced very well. At propagation times
t̃p = 0.04 and t̃p = 0.08 barely any differences are noticeable, whereas for propagation time t̃p = 0.22 first
deviations become apparent. For instance, the finger tip at (50, 200) differs in shape as it becomes pointier
through the warping with the estimated velocity field. Still, the overall flow characteristics are described
very well as it is seen for the coalescence of three density fingers at around x = 400.

Acronyms
CNN Convolutional neural network
Dune Distributed and Unified Numerics Environment.
MEPE Mean endpoint error.

Notation
C solute concentration (kg∕m3).
C̃ dimensionless concentration.
C0 initial solute concentration (kg∕m3).
Cc characteristic concentration (kg∕m3).
Cmax maximum solute concentration (kg∕m3).
D effective dispersion coefficient (m2∕s).
dt̃ dimensionless time step.
ez unit vector pointing in z direction.
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g gravitational acceleration (m∕s2).
H depth of the flow domain (m).
k isotropic permeability (m2).

Lc characteristic length scale (m).
N number of pixels in images.
p pressure (Pa).
p̃ dimensionless pressure.

Pc characteristic pressure (Pa).
Ra Rayleigh number.
Tc characteristic time scale (s).
t̃p propagation time.
u = (u,w) Darcy velocity (m/s).
ũ = (ũ, w̃) dimensionless Darcy velocity.
Uc characteristic velocity (m/s).
w weights of the convolutional neural network.

Greek Letters
𝛼 weight decay.
𝛽1, 𝛽2 parameters for Adam optimization scheme.
𝚫𝜌 maximum fluid density contrast (kg∕m3).
𝜇 fluid viscosity (Pa s).
𝜌(C) solute concentration dependent density (kg∕m3).
𝜌0 initial fluid density (kg∕m3).
𝜌max maximum fluid density (kg∕m3).
𝜎 standard deviation of Gaussian image filter.
𝜙 porosity.

Superscripts
est denotes estimated quantities.
true denotes true quantities.
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Applied parallel computing. State of the art in scientific computing (Vol. 4699, pp. 666–675). Berlin, Heidelberg: Springer Berlin Heidelberg.

Blatt, M., & Bastian, P. (2008). On the generic parallelisation of iterative solvers for the finite element method. International Journal of
Computer Science & Engineering Technology, 4(1), 56–69. https://doi.org/10.1504/IJCSE.2008.021112

Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., et al. (2016). The distributed and unified numerics environment,
version 2.4. Archive of Numerical Software, 4(100), 13–29. https://doi.org/10.11588/ans.2016.100.26526

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, & et al. (Eds.), Computer vision-ECCV 2012 (Vol. 7577, pp. 611–625).
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33783-3_44

Clark, M. P., Kavetski, D., & Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological modeling. Water
Resources Research, 47, W09301. https://doi.org/10.1029/2010WR009827

de Bezenac, E., Pajot, A., & Gallinari, P. (2017). Deep learning for physical processes: Incorporating prior scientific knowledge.
arXiv:1711.07970 [cs, stat].

Diersch, H.-J. G., & Kolditz, O. (2002). Variable-density flow and transport in porous media: Approaches and challenges. Advances in Water
Resources, 25(8-12), 899–944. https://doi.org/10.1016/S0309-1708(02)00063-5

Ecke, R. E., & Backhaus, S. (2016). Plume dynamics in Hele-Shaw porous media convection. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 374(2078), 20150420. https://doi.org/10.1098/rsta.2015.0420

Ennis-King, J., & Paterson, L. (2003). Rate of dissolution due to convective mixing in the underground storage of carbon dioxide. In J. Gale
& Y. Kaya (Eds.), Greenhouse gas control technologies—6th international conference (pp. 1653–1656). Oxford: Pergamon. https://doi.org/
10.1016/B978-008044276-1/50268-3

Acknowledgments
The authors thank Peter Bastian at the
Interdisciplinary Center for Scientific
Computing (IWR), Heidelberg
University, Germany, for providing the
implementation of the numerical
solver. The authors also thank Editor
Chaopeng Shen and three anonymous
reviewers for their constructive
comments, which helped to improve
this paper. This research is funded by
the Ministerium für Wissenschaft,
Forschung und Kunst
Baden-Württemberg
(Az 33-7533.-30-20/6/2). Hannes H.
Bauser was funded in part by the
Deutsche Forschungsgemeinschaft
(DFG) through Project BA 6635/1-1.
The underlying data are available
online (https://doi.org/10.11588/data/
7NEEKF; Kreyenberg et al., 2019).

Author Contributions
Conceptualization: P. J. K., H. H. B.,
and K. R.; formal analysis: P. J. K.;
funding acquisition: K. R.;
investigation: P. J. K.; software: P. J. K.;
supervision: K. R.; validation: P. J. K.;
visualization: P. J. K.; writing—original
draft: P. J. K.; writing—review and
editing P. J. K., H. H. B., and K. R.

KREYENBERG ET AL. 7291

https://doi.org/10.1103/PhysRevLett.106.104501
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1007/s00607-008-0003-x
https://doi.org/10.1504/IJCSE.2008.021112
https://doi.org/10.11588/ans.2016.100.26526
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1029/2010WR009827
https://doi.org/10.1016/S0309-1708(02)00063-5
https://doi.org/10.1098/rsta.2015.0420
https://doi.org/10.1016/B978-008044276-1/50268-3
https://doi.org/10.1016/B978-008044276-1/50268-3
https://doi.org/10.11588/data/7NEEKF
https://doi.org/10.11588/data/7NEEKF


Water Resources Research 10.1029/2019WR024833

Ennis-King, J. P., & Paterson, L. (2005). Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations.
SPE Journal, 10(03), 349–356. https://doi.org/10.2118/84344-PA

Faisal, T. F., Chevalier, S., Bernabe, Y., Juanes, R., & Sassi, M. (2015). Quantitative and qualitative study of density driven CO2 mass transfer
in a vertical Hele-Shaw cell. International Journal of Heat and Mass Transfer, 81, 901–914. https://doi.org/10.1016/j.ijheatmasstransfer.
2014.11.017

Faisal, T. F., Chevalier, S., & Sassi, M. (2013). Experimental and numerical studies of density driven natural convection in saturated porous
media with application to CO2 geological storage. Energy Procedia, 37, 5323–5330. https://doi.org/10.1016/j.egypro.2013.06.450

Farajzadeh, R., Salimi, H., Zitha, P. L. J., & Bruining, H. (2007). Numerical simulation of density-driven natural convection in porous media
with application for CO2 injection projects. International Journal of Heat and Mass Transfer, 50(25-26), 5054–5064. https://doi.org/10.
1016/j.ijheatmasstransfer.2007.08.019

Fernandez, J., Kurowski, P., Petitjeans, P., & Meiburg, E. (2002). Density-driven unstable flows of miscible fluids in a Hele-Shaw cell.
Journal of Fluid Mechanics, 451, 239–260. https://doi.org/10.1017/S0022112001006504

Fischer, P., Dosovitskiy, A., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., et al. (2015). FlowNet: Learning optical flow with convolutional
networks. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 2758–2766). Santiago: IEEE. https://doi.org/10.1109/
ICCV.2015.316

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics
Research, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297

Hassanzadeh, H., Pooladi-Darvish, M., & Keith, D. W. (2005). Modelling of convective mixing in CO2 storage. Journal of Canadian
Petroleum Technology, 44(10), 43–51. https://doi.org/10.2118/05-10-04

IPCC (2005). IPCC special report on carbon dioxide capture and storage. UK: Cambridge University Press.
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). FlowNet 2.0: Evolution of optical flow estimation with deep

networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1647–1655). Honolulu, HI: IEEE. https://
doi.org/10.1109/CVPR.2017.179

Janai, J., Güney, F., Behl, A., & Geiger, A. (2017). Computer vision for autonomous vehicles: Problems, datasets and state-of-the-art.
arXiv:1704.05519 [cs].

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe: Convolutional architecture for fast feature
embedding. arXiv:1408.5093 [cs].

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980 [cs].
Kneafsey, T. J., & Pruess, K. (2010). Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection.

Transport in Porous Media, 82(1), 123–139. https://doi.org/10.1007/s11242-009-9482-2
Kneafsey, T. J., & Pruess, K. (2011). Laboratory experiments and numerical simulation studies of convectively enhanced carbon dioxide

dissolution. Energy Procedia, 4, 5114–5121. https://doi.org/10.1016/j.egypro.2011.02.487
Kolditz, O., Ratke, R., Diersch, H. G., & Zielke, W. (1998). Coupled groundwater flow and transport: 1. Verification of variable density flow

and transport models. Advances in Water Resources, 21(1), 27–46. https://doi.org/10.1016/S0309-1708(96)00034-6
Kreyenberg, P. J., Bauser, H. H., & Roth, K. (2019). Velocity field estimation on density-driven solute transport with a convolutional neural

network [dataset] heiDATA. https://doi.org/10.11588/data/7NEEKF
Lindeberg, E., & Wessel-Berg, D. (1997). Vertical convection in an aquifer column under a gas cap of CO2. Energy Conversion and

Management, 38, S229–S234. https://doi.org/10.1016/S0196-8904(96)00274-9
Liu, Q. (2017). Stein variational gradient descent as gradient flow. Advances in neural information processing systems, 3115–3123.
Liu, Q., & Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference algorithm. Advances in neural

information processing systems, 2378-2386.
Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. International Conference

on Machine Learning, 30, 3.
Marçais, J., & de Dreuzy, J.-R. (2017). Prospective interest of deep learning for hydrological inference. Groundwater, 55(5), 688–692. https://

doi.org/10.1111/gwat.12557
Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox, T. (2016). A large dataset to train convolutional networks

for disparity, optical flow, and scene flow estimation. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 4040–4048) Las Vegas, NV. https://doi.org/10.1109/CVPR.2016.438

Mo, S., Zhu, Y., Zabaras, N., Shi, X., & Wu, J. (2019). Deep convolutional encoder decoder networks for uncertainty quantification of
dynamic multiphase flow in heterogeneous media. Water Resources Research, 55, 703–728. https://doi.org/10.1029/2018WR023528

Nowak, W., & Cirpka, O. A. (2006). Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer
data. Water Resources Research, 42, W08416. https://doi.org/10.1029/2005WR004832

Oltean, C., Felder, Ch., Panfilov, M., & Buès, M. A. (2004). Transport with a very low density contrast in Hele-Shaw cell and porous medium:
Evolution of the mixing zone. Transport in Porous Media, 55(3), 339–360. https://doi.org/10.1023/B:TIPM.0000013332.08029.af

Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of
density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455. https://doi.org/10.1016/j.advwatres.
2010.01.009

Pruess, K., & Zhang, K. (2008). Numerical modeling studies of the dissolution-diffusion-convection process during CO2 storage in saline
aquifers (LBNL-1243E, 944124). CA, USA. https://doi.org/10.2172/944124

Rasmusson, M., Fagerlund, F., Rasmusson, K., Tsang, Y., & Niemi, A. (2017). Refractive-light-transmission technique applied to
density-driven convective mixing in porous media with implications for geological CO2 storage. Water Resources Research, 53, 8760–8780.
https://doi.org/10.1002/2017WR020730

Riaz, A., Hesse, M., Tchelepi, H. A., & Orr, F. M. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous
media. Journal of Fluid Mechanics, 548, 87–111. https://doi.org/10.1017/S0022112005007494

Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources
Research, 54, 8558–8593. https://doi.org/10.1029/2018WR022643

Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., et al. (2018). Hess opinions: Incubating deep-learning-powered
hydrologic science advances as a community. Hydrology and Earth System Sciences, 22(11), 5639–5656. https://doi.org/10.5194/
hess-22-5639-2018

Simonyan, K., & Zisserman, A. (2014a). Two-stream convolutional networks for action recognition in videos. arXiv:1406.2199 [cs].
Simonyan, K., & Zisserman, A. (2014b). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:

1409.1556 [cs].

KREYENBERG ET AL. 7292

https://doi.org/10.2118/84344-PA
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.017
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.017
https://doi.org/10.1016/j.egypro.2013.06.450
https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.019
https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.019
https://doi.org/10.1017/S0022112001006504
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1177/0278364913491297
https://doi.org/10.2118/05-10-04
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1007/s11242-009-9482-2
https://doi.org/10.1016/j.egypro.2011.02.487
https://doi.org/10.1016/S0309-1708(96)00034-6
https://doi.org/10.11588/data/7NEEKF
https://doi.org/10.1016/S0196-8904(96)00274-9
https://doi.org/10.1111/gwat.12557
https://doi.org/10.1111/gwat.12557
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1029/2018WR023528
https://doi.org/10.1029/2005WR004832
https://doi.org/10.1023/B:TIPM.0000013332.08029.af
https://doi.org/10.1016/j.advwatres.2010.01.009
https://doi.org/10.1016/j.advwatres.2010.01.009
https://doi.org/10.2172/944124
https://doi.org/10.1002/2017WR020730
https://doi.org/10.1017/S0022112005007494
https://doi.org/10.1029/2018WR022643
https://doi.org/10.5194/hess-22-5639-2018
https://doi.org/10.5194/hess-22-5639-2018


Water Resources Research 10.1029/2019WR024833

Slim, A. C., Bandi, M. M., Miller, J. C., & Mahadevan, L. (2013). Dissolution-driven convection in a Hele-Shaw cell. Physics of Fluids, 25(2),
024101. https://doi.org/10.1063/1.4790511

Thomas, C., Dehaeck, S., & De Wit, A. (2018). Convective dissolution of CO2 in water and salt solutions. International Journal of Greenhouse
Gas Control, 72, 105–116. https://doi.org/10.1016/j.ijggc.2018.01.019

Thomas, C., Lemaigre, L., Zalts, A., D'Onofrio, A., & De Wit, A. (2015). Experimental study of CO2 convective dissolution: The effect of
color indicators. International Journal of Greenhouse Gas Control, 42, 525–533. https://doi.org/10.1016/j.ijggc.2015.09.002

Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., et al. (2018). A systemic approach for modeling soil functions.
Soil, 4(1), 83–92. https://doi.org/10.5194/soil-4-83-2018

Weir, G. J., White, S. P., & Kissling, W. M. (1995). Reservoir storage and containment of greenhouse gases. Energy Conversion and
Management, 36(6), 531–534. https://doi.org/10.1016/0196-8904(95)00060-Q

Wooding, R. A., Tyler, S. W., & White, I. (1997). Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water
Resources Research, 33(6), 1199–1217. https://doi.org/10.1029/96WR03533

Wooding, R. A., Tyler, S. W., White, I., & Anderson, P. A. (1997). Convection in groundwater below an evaporating salt lake: 2. Evolution
of fingers or plumes. Water Resources Research, 33(6), 1219–1228 en. https://doi.org/10.1029/96WR03534

Yang, C., & Gu, Y. (2006). Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures
and elevated temperatures. Industrial & Engineering Chemistry Research, 45(8), 2430–2436. https://doi.org/10.1021/ie050497r

Zhu, Y., & Zabaras, N. (2018). Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty
quantification. Journal of Computational Physics, 366, 415–447. https://doi.org/10.1016/j.jcp.2018.04.018

KREYENBERG ET AL. 7293

https://doi.org/10.1063/1.4790511
https://doi.org/10.1016/j.ijggc.2018.01.019
https://doi.org/10.1016/j.ijggc.2015.09.002
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.1016/0196-8904(95)00060-Q
https://doi.org/10.1029/96WR03533
https://doi.org/10.1029/96WR03534
https://doi.org/10.1021/ie050497r
https://doi.org/10.1016/j.jcp.2018.04.018



