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Abstract

Urban green spaces (UGS), like most managed land covers, are getting progressively

affected by water scarcity and drought. Preserving, restoring and expanding UGS require

sustainable management of green and blue water resources to fulfil evapotranspiration

(ET) demand for green plant cover. The heterogeneity of UGS with high variation in their

microclimates and irrigation practices builds up the complexity of ET estimation. In over-

sized UGS, areas too large to be measured with in situ ET methods, remote sensing

(RS) approaches of ET measurement have the potential to estimate the actual ET. Often

in situ approaches are not feasible or too expensive. We studied the effects of spatial

resolution using different satellite images, with high-, medium- and coarse-spatial resolu-

tions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI-based ET,

over a 780-ha urban park in Adelaide, Australia. We validated ET with the ground-based

ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and

MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI),

Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to

assess long-term changes of VIs and ET calculated from the different imagery acquired

for this study (2011–2018). We found high correspondence between ET-MODIS and

ET-Landsat (R2 > 0.99 for all VIs). Landsat-VIs captured the seasonal changes of green-

ness better than MODIS-VIs. We used artificial neural network (ANN) to relate the RS-

ET and ground data, and ET-MODIS (EVI2) showed the highest correlation (R2 = 0.95

Received: 4 September 2019 Accepted: 20 April 2020

DOI: 10.1002/hyp.13790

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.

Hydrological Processes. 2020;34:3183–3199. wileyonlinelibrary.com/journal/hyp 3183

https://orcid.org/0000-0002-7424-5030
https://orcid.org/0000-0002-5568-4732
https://orcid.org/0000-0002-3724-2586
mailto:hamideh.nouri@uni-goettingen.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hyp


andMSE =0.01 for validation). We found a strong relationship between RS-ET and in situ

measurements, even though it was not explicable by simple regressions; black box

models helped us to explore their correlation. The methodology used in this research

makes a strong case for the value of remote sensing in estimating and managing ET of

green spaces in water-limited cities.
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1 | INTRODUCTION

Newly emerged and still evolving concepts of “greening cities” and “mov-

ing towards carbon neutrality” are getting more attention in recent times.

The benefits of urban green spaces (UGS) and their significance to public

health and wellbeing are getting more recognized (Elgström, Erman,

Klindworth, & Koenig, 2014; Li, Sutton, Anderson, & Nouri, 2017; Li, Sut-

ton, & Nouri, 2018). The sustainable green city concept based on SDG–

Goal 11 of “sustainable cities and communities” should not be limited to

a narrow scope of only expanding UGS; sustainability scope must be

expanded to the urban water system to avoid a possible conflict

between “water-saving” and “greening cities” goals.

UGS are crucial elements in urban ecohydrology (linkage of water

cycles and urban landscape) and their ecosystem services, which

include their potential to mitigate climate change impacts and make

cities more inhabitable and sustainable (Costanza & Liu, 2014; Wag-

ner & Zalewski, 2009). Evaluation and enhancing their services require

a better understanding of their metrics and indicators such as their

extent and greenness, evapotranspiration (ET) and water use. These

metrics help ecohydrological models to quantify the ecosystem ser-

vices provided by UGS (Revelli & Porporato, 2018).

Water consumption, known as water lost to the atmosphere, or ET,

takes a vital role in urban water management focused on UGS, particularly

in dry regions where green plant covers are more affected by water scar-

city and drought. In arid and semi-arid regions, UGS are mostly irrigated,

thus making UGS a significant competitor for other water-demand sectors

(Evans & Sadler, 2008; Nouri, Chavoshi Borujeni, & Hoekstra, 2019).

Greenness, shading and ET play key roles in the cooling effect of the

green spaces, and in mitigating the urban heat island (UHI) effects, and

reduction of energy consumption. These roles mean that maintaining and

expanding green plant covers of trees, shrubs and grasses require more

water resources (Maheng, Ducton, Lauwaet, Zevenbergen, &

Pathirana, 2019; Qiu et al., 2017; Skelhorn, Lindley, & Levermore, 2018).

To balance urban greening and blue water saving, the water footprint of

urban green cover – and in particular their ET, needs to be quantified.

There are numerous studies on the water use of UGS (Hilaire

et al., 2008; Mini, Hogue, & Pincetl, 2014; Ouyang, Wentz, Ruddell, &

Harlan, 2014). The majority of these studies refer to water withdrawal

or water application/use of UGS rather than water consumption that

is measured by ET. Total water consumption includes both blue water

(irrigation water from surface and groundwater resources) and green

water (rainwater) (Nouri et al., 2019; Velpuri & Senay, 2017). The

available literature on UGS ET estimation is mainly limited to small

scales, for example, backyard gardens, due to the complication of

making ET measurements in heterogeneous urban vegetation. For

instance, an in situ method of soil water balance was established in an

urban park in Adelaide – Adelaide Parklands – and was compared with

three observational factor-based methods of Water Use Classifica-

tions of Landscape Species (WUCOLS), Irrigated Public Open Space

program (IPOS), and Plant Factor (Nouri et al., 2016). Two factor-

based approaches of Landscape Irrigation Management Program

(LIMP) and WUCOLS were compared in two green spaces, a botanic

garden and an urban forest in Isfahan, Iran (Shojaei, Gheysari, Nouri,

Myers, & Esmaeili, 2018). Two methods of WUCOLS and portable

chambers were used to measure ET from eight irrigated turfgrass

regions in the Los Angeles Metropolitan area (Litvak, Bijoor, &

Pataki, 2014; Litvak & Pataki, 2016). The outcomes of this later study

were compared with an approach that calculates total ET by adding

ET of both grasses and trees using empirical models and remote sens-

ing maps of land covers (Litvak, Manago, Hogue, & Pataki, 2017). By

this approach, a considerable portion of green shrubbery was not

included in the total ET of these irrigated sites. This work did illustrate

the necessity for proper spatial scale when assessing the ET of over-

sized UGS (i.e., UGS that are too large and complex to be studied by

in situ approaches of ET estimation).

In the last two decades, remote sensing (RS) has introduced inno-

vative approaches to measuring ET in large-scale regions, but it was

primarily applied to agricultural systems, and to a lesser extent in

riparian and lowland/upland forests, yet remote sensing-based ET has

rarely been applied to UGS (Bastiaanssen, Menenti, Feddes, &

Holtslag, 1998; Huete et al., 2002; Nagler et al., 2005; Nagler,

Jarchow, & Glenn, 2018; Nouri, Beecham, Kazemi, & Hassanli, 2013;

Su, 2002). Nouri, Beecham, Anderson, Hassanli, and Kazemi (2015)

reviewed the potential of optical remote sensing to facilitate ET mea-

surements in heterogeneous urban vegetation and later they

employed remote sensing-based ET estimation methods in a small

urban park (�10 ha) using high-resolution images of WorldView 2 &

WorldView 3 (Nouri et al., 2017; Nouri, Beecham, Anderson, &

Nagler, 2014).

Land cover mapping from free satellite imagery, such as MODIS,

has been practised for decades (García et al., 2013; Yebra, Van Dijk,

Leuning, Huete, & Guerschman, 2013). While free of charge, this class
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of synoptic sensors is usually too coarse to accurately map UGS

(Gómez, White, & Wulder, 2016; Grekousis, Mountrakis, &

Kavouras, 2015; Xian, Shi, Dewitz, & Wu, 2019). The high-frequency

and high-quality MODIS data and VI time series (1–2 days) make it a

promising tool to study vegetation change (greenness changes over

time) in UGS, including their ET. Similarly, free images of Landsat with

a higher spatial resolution (compared to MODIS) has the potential of

supporting a more accurate estimation of green covers. Both of these

advantages need to be tested in the context of an oversized urban

landscape.

A new class of high-resolution, space-borne sensors, such as

WorldView, IKONOS, Quickbird, and GeoEye with sub-meter resolu-

tion, can resolve biophysical parameters of the heterogeneous urban

environment and bring a new dimension to the mapping of UGS.

However, the cost of these images, their limited availability and foot-

print and associated processing make them not suitable for mapping

of oversized UGS in cities.

In all remote sensing-based efforts, the Normalized Difference

Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and

improved version of the Enhanced Vegetation Index 2 (EVI2), from

high, medium and coarse resolution images, showed promising results

in monitoring greenness and ET of large green covers in non-urban

landscapes (Glenn, Neale, Hunsaker, & Nagler, 2011; Groeneveld,

Baugh, Sanderson, & Cooper, 2007; Jarchow et al., 2020; Nagler

et al., 2005). This research investigated the value of estimating green-

ness (VIs) and ET of oversized UGS using freely available remote sens-

ing imagery. In this study, we evaluated the relationship between VIs

from WorldView2, Landsat and MODIS and their VI-based ET for the

oversized heterogeneous urban green space in order to understand

the impact of spatial resolution. The aim was to: (a) compare different

VIs from satellites with different spatial resolutions (WorldView2,

Landsat and MODIS), (b) estimate the ET of large UGS using RS-ET

methods and VIs, (c) assess the long-term intra- and inter-annual vari-

ations of VIs and ET, (d) compare RS-ET against the in situ ET method,

(e) monitor changes in the greenness of the Adelaide Parklands, and

(f) explore how local climate impacts of the VIs and ET on a seasonal

scale.

This research study is timely as cities continue to explore carbon-

neutral management strategies. Accurate estimation of the ET of large

UGS is particularly important for Adelaide and other water-limited cit-

ies that have increasingly suffered from aridity and drought. These cit-

ies are rapidly expanding and are in pressing need for more proactive

and sustainable water management strategies.

2 | STUDY AREA

The city of Adelaide is surrounded by green infrastructure known as

the Adelaide Parklands (called “Parklands” in this study) consisting of

29 parks covering approximately 780 ha (Figure 1). The Adelaide Park-

lands is one of the largest urban parks in the world; it is almost three

times larger than London's Hyde Park and is called “The heart and

lungs of Adelaide”. Over 510 plant taxa, about 40% native and 60%

introduced species, are reported to exist in the Parklands. This diverse

and distinctive landscape provides urban habitat for more than

150 species of birds, 33 species of mammal, 18 species of reptiles and

six species of amphibian. This internationally unique green belt pro-

vides a precious social, environmental and recreational resource. Due

to the expanse and heterogeneity of species, microclimate, plant den-

sity, and accessibility, we hypothesize that remote sensing data and

tools would be a useful, practical for studying the water demand of

this green belt.

3 | METHOD AND DATA

3.1 | Input data

3.1.1 | Satellite images

Three satellite sensors with different temporal and spatial resolutions

of high-, medium- and coarse-pixel sizes were selected. These include

WorldView2 (WV2), Landsat Operational Land Imager (OLI) and The-

matic Mapper 5 and 7 (TM5 and ETM+), and Aqua MODIS; their rele-

vant specifications are summarized in Table 1.

Worldview2 (8 bands, spatial resolution of 0.46 m panchromatic

and 1.85 m multispectral); WorldView2 images were pre-processed

(orthorectified and atmospherically corrected), NDVI from band 5 and

7 were calculated, and the Modifiable Areal Unit Problem (MAUP)

effects on vegetation pixels in NDVI calculation were tested (Nouri

et al., 2017). Bands 5 (red) and 7, near-infrared1 (NIR1), of WV2 were

selected as the most accurate combination to calculate the ET of UGS

(Nouri et al., 2014).

Landsat (ETM+ and OLI sensors with 11 bands, spatial resolu-

tion of 30 m); Landsat images were acquired for the period of

2011–2013 and 2013–2018, respectively. Landsat 8/OLI, data col-

lection 1, Level-2 from Path 97 and Row 84 were obtained from the

USGS Land Processes Distributed Active Archive Center (LP-DAAC)

Earth Explorer (https://earthexplorer.usgs.gov/). Each scene con-

sisted of individual GeoTIFF bands files (surfaces reflectance, VIs

and pixel quality information). All scenes were then subset to a com-

mon geographic region of interest, and cloudy and poor quality

pixels were removed based on the per-pixel QA information. Due to

gaps in the data resulting from the Scan Line Corrector issue in

Landsat 7 ETM+ (Storey, Scaramuzza, & Schmidt, 2005), we simply

ignored the missing data and averaged whatever was present within

the scene.

Aqua MODIS (with 36 bands, spatial resolution of 250 m for the

red and NIR bands, 500 m for the remaining land bands, and 1 km for

all other bands); MODIS Aqua data from tile h29v12 (collection 6) for

the period 2011–2018 were downloaded from the LP DAAC (https://

lpdaac.usgs.gov/) data pool.

All images were re-projected to a common geographic lat/lon grid

using the WGS84 datum.
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3.1.2 | Meteorological data

Meteorological data for the Kent Town Station within the Adelaide

Parklands (Station ID# 023090; Lat: −34.92, Lon: 138.62; Height:

48.0 m) were downloaded from the prerequisite dataset at the Bureau

of Meteorology – BOM (www.bom.gov.au, last accessed date:

03.04.2019). The variables included precipitation, minimum tempera-

ture, maximum temperature, minimum relative humidity, maximum

relative humidity, average wind speed and solar radiation.

3.2 | NDVI, EVI, and EVI2 vegetation indices

From a broad range of VIs (Barati, Rayegani, Saati, Sharifi, &

Nasri, 2011; Glenn, Nagler, & Huete, 2010), NDVI, EVI, and EVI2 were

selected to proxy the greenness of UGS in the Adelaide Parklands.

NDVI, a normalized ratio of the NIR and red bands [Equation (1)], has

been successfully used and established as a reliable monitoring and

change detection tool of vegetation health and growth (Huete, Didan,

van Leeuwen, Miura, & Glenn, 2011; Nagler et al., 2016; Nguyen,

Glenn, Nagler, & Scott, 2015).

NDVI =
NIR−Red
NIR+Red

: ð1Þ

The EVI was designed to complement NDVI over denser canopies

with more sensitivity as a result of the de-coupling of the canopy

background signal and a reduction in atmosphere influences (Huete

et al., 2002, Glenn et al., 2015). Similar to NDVI, EVI uses a ratio of

NIR, red, and blue bands [Equation (2)].

EVI=G×
NIR−Red

NIR+C1 Redð Þ−C2 Blueð Þ+ L : ð2Þ

The coefficients adopted in the MODIS-EVI algorithm are L = 1,

C1 = 6, C2 = 7.5 and G (gain factor) = 2.5.

EVI2, a two-band EVI version (Jiang, Huete, Didan, &

Miura, 2008; Kim, Huete, Miura, & Jiang, 2010) removes the blue

band from the formulation to address the lack of blue band and/or

blue bandpass variation across sensors. EVI2 is functionally the same

as EVI (Jiang et al., 2008) is expressed as [Equation (3)].

EVI2=2:5×
NIR−Red

NIR+2:4 Redð Þ+1 : ð3Þ

A binary geographic mask, containing only the boundary of the

Parklands, was created for WorldView2 (1.85 m), Landsat (30 m) and

MODIS (250 m), respectively, using a majority intersection method,

where if a pixel spills outside the area only those pixels with more

than 50% overlap are retained. This mask was then used to indicate

which pixels within the overlapping area from each MODIS and

Landsat scene are to be used in further analysis. A data filtering mask

based on the per-pixel QA was applied to all scenes, and only clear

and low-aerosol-load observations were retained. To limit hypersensi-

tivity to data noise, especially in ETM and OLI data, we implemented

a statistical filtering strategy that removes all outliers, which are

F IGURE 1 Adelaide Parklands in Adelaide, Australia (34.9403�S, 138.5930�E). The Park straddles the River Torrens and is centrally located
serving the whole city. The park suffers continuous encroachment and land loss
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observations that stray far away from the normal trends in the data

using an envelope of ±1.5 σ (standard deviation). And while this data

filtering strategy tends to be too conservative, we hypothesised that

sacrificing good observations is more prudent than ingesting poor

quality data. A long-term (2011–2018) average profile for each pixel

in the Parkland was generated using the simpler QA filtering approach

described above. Any observation that falls outside the +/−1.5σ enve-

lope is then removed unless the deviation persists in subsequent

images, which indicates disturbance and not noise.

Furthermore, Landsat 8 (OLI) and Landsat 7 (ETM+) have slightly

different NDVI dynamic ranges, and scales, which creates bias. To

address this bias and correct the range and scale issues, we removed

discontinuity across sensors by applying a seasonal-based, per-pixel,

across-sensors continuity-transfer equation modelled using 4 years of

overlap between OLI and ETM+ (2013–2016). These continuity func-

tions were simple linear regression models that relate the two sensors

and were applied to all ETM+ datasets to create an OLI like data

record for years 2011 and 2012, effectively creating a sensor inde-

pendent, seamless, OLI like time series. Any resulting temporal gaps

were interpolated from adjacent observations.

3.2.1 | Vegetation index scaling

To address scene-to-scene variability resulting from atmosphere cor-

rection and/or sun and viewing geometry, we removed NDVI outliers

at the high and low ends, by calculating the max/min NDVI values for

each scene using barren soil or verdant (green vegetation) pixels, typi-

cally from agricultural fields (Groeneveld et al., 2007). We identified

the barren soil area within the scene and averaged all NDVI pixels to

generate the NDVImin. Similarly, using verdant agricultural fields in the

scene, we determined the absolute highest NDVI value; we then aver-

aged all pixels within 95% of that absolute value to generate NDVImax.

This process was only applied to NDVI following Jarchow, Didan,

Barreto-Muñoz, Nagler, and Glenn (2018). A scaled Landsat NDVI*

was then computed using Equation(4).

NDVI� =
NDVI−NDVIminð Þ

ðNDVImax−NDVImin
: ð4Þ

Equation (4) is the fractional vegetation cover (Gutman &

Ignatov, 1998; Jiapaer, Chen, & Bao, 2011; Montandon &

Small, 2008; Zeng et al., 2000; Zhang, Liao, Li, & Sun, 2013); however,

in this work, it is used to scale the NDVI value in order to remove the

scene-to-scene variation related to variable atmosphere and observa-

tion conditions.

3.3 | ET computation

We estimated the greenness using NDVI, EVI, and EVI2 and then cal-

culated ET by Equations (5) and (6) (Nagler, Glenn, Nguyen, Scott, &

Doody, 2013).T
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ET = ETo�1:65 1−e−2:25�EVI or EVI2ð Þ
� �

−0:169: ð5Þ

The ET0 refers to the reference ET defined as “the rate of evapo-

transpiration from a hypothetical reference crop with an assumed

crop height of 0.12 m, a fixed surface resistance of 70 sec m-1 and an

albedo of 0.23, closely resembling the ET from an extensive surface of

green grass of uniform height, actively growing, well-watered, and

completely shading the ground” (Irmak & Haman, 2003). Daily ET0

data were acquired from the Kent-Town weather station in Adelaide.

EVI and EVI2 were calculated from Equations (2) and (3).

Landsat NDVI based ET was calculated using Equation (6) (Nagler,

Nguyen, et al., 2018; Nagler, Jarchow, & Glenn, 2018) as a function of

reference ET (ET0) and scaled NDVI from Equation (4).

ET = ETo�NDVI�: ð6Þ

The long-term trend and correlation between RS-ET including ET-

MODIS (EVI), ET-MODIS (EVI2), ET-Landsat (NDVI), ET-Landsat (EVI)

and ET-Landsat (EVI2) during 2011–2018 within the study area were

investigated.

3.4 | Ground data

The ground data were collected using the soil water balance (SWB)

method to quantify the main components of the water budget equa-

tion (Glenn et al., 2013). ET was calculated from the mass balance of

water inflows and outflows over the study period using in situ mea-

surements from the experimental site; a full description of the meth-

odology and data are available from Nouri et al. (2016).

Water balance in the root zone, for a given time period, is calcu-

lated by Equation (7).

P+ IR−ET−DR−RO+CR=ΔS, ð7Þ

where P is precipitation, ET is evapotranspiration, IR is irrigation, DR

is drainage, RO is runoff and δS is the change in soil moisture status.

To capture the heterogeneity of landscape plant species, density

and microclimate within the Parklands, two layers of data for soil salin-

ity – using proximal sensing by electromagnetic – EM38 – and land-

scape cover – using airborne images to differentiate turfgrasses from

trees and shrubs – were overlapped and four sampling zones were

defined. These four zones included 1 – low salinity (<1.2 dS/m) – pri-

marily covered with turf grasses with few trees and shrubs, 2 – high

salinity (>1.2 dS/m) – primarily covered with turf grasses with few trees

and shrubs, 3 – low salinity (<1.2 dS/m) – mostly trees and shrubs with

intermittent turf grasses, and 4 – high salinity (> 1.2 dS/m) – mostly

trees and shrubs with intermittent turf grasses. Samples for drainage

and soil moisture status were collected from these four zones, and the

average was assumed a representative for the full site.

Meteorological data were acquired from two stations, an in situ

wireless weather station in the Parkland and the closest station of the

Australian Bureau of Meteorology (BOM, 34.92�S, 138.62�E; Eleva-

tion 48 m) which is located 2.9 km from the Parklands. Precipitation

data (P) were recorded by these weather stations. Four zero-tension

pan lysimeters were installed in the Parkland to monitor drainage

quality and quantity (DR). Details of design, structure, installation,

data collection and maintenance of these lysimeters were fully

described by Nouri, Beecham, Hassanli, and Ingleton (2013). The cap-

illary rise (CR) was monitored every 3 months through monitoring

wells. Soil moisture status (δS) was regularly measured by the in situ

method of neutron moisture meter (NMM) in different soil depths,

down to 4-m, at 12 points in the study site. Irrigation data (IR) were

obtained from the local authority, Adelaide City Council. Monthly ET

was estimated as the residual in the SWB equation by monitoring the

inflows, precipitation, irrigation and capillary rise, and outflows − run-

off, drainage, and soil moisture.

3.5 | Comparison of RS-ET and ground data

To relate RS-ET dataset to in situ measurement, both, linear and non-

linear, approaches of modelling were studied and compared. In model-

ling domains, linear regression technique has well-known optimization

strategies that tend to the significant outcome, when the underlying

relationship between input/output variables is linear. While neural

networks usually outperform linear regression where the linear

approximation is not valid, that is, the nature of data is unknown,

complex and non-linear. Neural networks are versatile, more flexible

and resistant to outliers and use nonlinear activation functions to han-

dle multidimensional dependencies of data. They can be employed as

an efficient alternative to the linear regression when the model per-

formance is evaluated only based on “goodness of fit” criteria without

the need to interpret the model. Regression models were not well-

suited for these relationships; hence a black box approach was

employed to develop a prediction model. A feedforward multi-layer

perceptron (MLP), with backpropagation learning algorithm, was used

to model the relationship between SWB and ET from Landsat and

MODIS. Several inputs including different combination of ET-Landsat

(NDVI), ET-Landsat (EVI), ET-Landsat (EVI2), ET-MODIS (EVI) and ET-

MODIS (EVI2), in addition to varying numbers of hidden layers (1–5),

different number of neurons per hidden layer (1 to 10), and several

activation functions (Sigmoid or Logistic, Linear, Tanh or hyperbolic

tangent), as well as numerous scenarios (architectures) were defined

and tested, and their performances were compared. To ensure suc-

cessful modelling with MLPs, an important generalization step was

considered. The Levenberg–Marquardt algorithm, the modification of

the classic Newton algorithm for finding the optimum solution, was

employed as the most common method for adjusting the weights in

the MLP and training the network. The dataset, including input and

output, were initially normalized over the range of [0,1] and divided

into two random subsets of calibration (80% of data), and validation

(20% of data). The calibration set was used to find the parameters of

the optimum MLPs and the validation set was employed to check the

generalization potential of the selected MLPs.
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The performances of scenarios were evaluated by conventional

statistical criteria of goodness of fit, including mean squared error

(MSE), and the coefficient of determination (R2) using Equations (8)

and (9).

MSE =
Ei− bEi
n

ð8Þ

R2 =

Pn
i=1 Ei− bEi� �

: bEi− ~Ei
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 Ei− �Ei

� �2
:
Pn

i=1
bEi− ~Ei

� �2
r

2
664

3
775
2

, ð9Þ

where Ei, bEi , �Ei and ~Ei are the observed, simulated, mean of observed

and mean of simulated values, respectively, and n denotes the number

of data.

The training phase stops when the mean square error (MSE)

reaches zero, or a predefined maximum number of epochs is

reached. A MATLAB code was developed to run these models. The

optimum MLP topology was determined by trial and error, including

an input layer (SWB), one hidden layer (with varying number of

neurons in different optimum scenarios), one output layer

(an individual satellite index in each individual scenario), tangent

hyperbolic transfer function, and Levenberg–Marquardt learning

algorithm.

4 | RESULTS

4.1 | Vegetation indices from WV2, Landsat and
MODIS

4.1.1 | Time series of VIs from Landsat and
MODIS (2011–2018)

Long-term trends of NDVI, EVI, and EVI2 from Landsat and MODIS

(2011–2018) were investigated. Time series of VIs helped to explain

the variation of greenness throughout the year and observe seasonal

changes of UGS. All VIs, those from Landsat (NDVI), Landsat (EVI),

Landsat (EVI2), MODIS (NDVI), MODIS (EVI), and MODIS (EVI2),

showed inter- and intra-annual variations (Figures 2 and 3). Seasonal

variations were better captured by the finer Landsat-VIs time series

compared to MODIS. Intra-annual graphs of NDVI, EVI and EVI2 from

Landsat revealed that from January all VIs monotonically increased

over summer and autumn to peak in winter (July–August) and slowly

dipped to their lowest values in December, corresponding to the

beginning of summer time in Adelaide. Medians of NDVI, EVI and

EVI2 from Landsat varied from 0.55 to 0.36 to 0.34, respectively. For

Landsat, NDVI presented the largest range in amplitude and reached

0.70 towards late June. Year-to-year variations of VIs in Landsat were

relatively similar except during the following times: EVI2 in November

2011, both NDVI and EVI in May 2016, and all three VIs, NDVI, EVI

and EVI2, in January 2017.

The seasonal profiles and changes derived from MODIS were not

as strong or well-defined, likely due to pixel mixing resulting from the

larger pixel sizes. Inter-annual variations from year-to-year were rela-

tively similar. Medians of NDVI, EVI and EVI2 varied from 0.49 to

0.32 to 0.29, respectively; NDVI showed the largest range that

reached to 0.68 towards mid-July (Figure 3).

4.1.2 | Comparison of NDVI from WorldView2,
Landsat, and MODIS

A set of five cloud-free WorldView2 (WV) images (March 18, 2012,

June 29, 2012, August 17, 2012, November 9, 2012, and January

16, 2013) over the Parklands were pre-processed and compared with

Landsat and MODIS imagery. The WV2 images covered only the

southern half of the Parklands; additional images were not acquired

due to the prohibitively high cost. To compare NDVI from WV with

Landsat and MODIS, we clipped Landsat and MODIS images to match

the coverage of WV2 scenes (Figure 4). NDVIs from these three

sources of imagery were compared; the closest values were seen in

March, where WV2-NDVI was slightly higher than Landsat-NDVI and

marginally lower than MODIS-NDVI. For the rest of the year, Landsat

had the highest NDVI, and WV the lowest, but closer to MODIS.

4.2 | Comparison of RS-ET

The trends of ET from time-series data produced using EVI, EVI2 and

NDVI from Landsat (ETM+ and OLI) and MODIS for the period

2011–2018 were observed, and their correlations were tested. The cor-

relation between ET-MODIS (EVI) and ET-MODIS (EVI2) was very high

(R2 = 0.99; p < .05). ET-MODIS (EVI) ranged from 0.44 to 7.57 with a

mean of 2.9, and mean SD of 0.72 compared to ET-MODIS (EVI2) that

ranged from 0.41 to 7.16 with a mean of 2.72, and mean SD of 0.67.

ET-MODIS (EVI) was consistently higher than ET-MODIS (EVI2). Both

ET estimates were lowest in June and July (wintertime in Adelaide) and

largest in December and January (summertime in Adelaide).

The correlation between ET-Landsat (NDVI), ET-Landsat (EVI)

and ET-Landsat (EVI2) was very high (R2 = 0.99; p < .05) with a range

of 0.91–9.57 (mean 4.00 and mean SD 0.85) for ET-Landsat (NDVI)

compared to a range of 0.64–7.54 (mean 3.03, and mean SD 0.92) for

ET-Landsat (EVI), and a range of 0.61–7.26 (mean 2.89, and mean SD

0.91) for ET-Landsat (EVI2). ET-MODIS (EVI) was consistently higher

than ET-MODIS (EVI2).

ET from Landsat and MODIS were lowest in June, July, and

August, the winter in Adelaide, and highest in late November,

December, January, and sometimes early February, the summer in Ade-

laide (Figures 5 and 6). Comparing ET from Landsat, ET-Landsat (NDVI)

was consistently highest, and ET-Landsat (EVI2) was lowest. These

trends had substantial agreements with observational methods of ET

estimation in the Parklands (Nouri, Beecham, Hassanli, & Kazemi, 2013)

and our ground data. Irrigation of the Parklands usually stops in winter;

water resource for the Parklands in winter is limited to green water.
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4.3 | Validation of RS-ET against SWB

RS-ET derived from Landsat (NDVI, EVI, and EVI2) and MODIS (EVI and

EVI2) were compared against ground data of SWB from December 2011

to November 2012. Monthly RS-ET rates were calculated and evaluated

in comparison with SWB measurements, as presented in Figure 7. RS-ET

and SWB showed similar trends throughout the study period; the highest

ET occurred in summer, and lowest ET in winter, as expected.

Since the regression coefficients of daily and monthly RS-ET

against SWB data was not strong (R2 � 0.41), the black box models

F IGURE 2 Seasonal trends of NDVI,
EVI, and EVI2 from Landsat during
2011–2018. We note the high similarity
between EVI and EVI2. All indices show
higher VI values in the Winter/Spring (J–O)
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were tested. Based on a different number of inputs (a combination of

NDVI, Landsat EVI, Landsat EVI2, MODIS EVI and MODIS EVI2), in

addition to varying numbers of hidden layers (1–5), number of neu-

rons per hidden layer (1–10), as well as different activation functions

(Sigmoid or Logistic, Linear, Tanh or hyperbolic tangent), numerous

scenarios (architectures) were defined and tested. Among the studied

scenarios and based on the goodness of fit criteria, five topologies

were selected as the optimum MLP models. The MSE and R2 values in

both, calibration and validation, phases for selected MLPs scenarios

are shown in Table 2. The high values of R2, as well as low values of

MSE in the selected scenarios, reflect the reliable performance of

MLPs models. Also, these acceptable values of the indices in the vali-

dation phase indicate the expedient process of a generalization step.

Figure 8 shows the correlation as well as the equation between actual

F IGURE 3 Seasonal trends of NDVI,
EVI, and EVI2 from MODIS during
2011–2018. All indices are highly similar
as with Landsat, however, due to the
mixing resulting from the larger MODIS
pixel size the data is noisier, especially EVI
and EVI2. All indices show higher values
in the Winter/Spring months (J–O)
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(X-axis) and predicted (Y-axis) values in both training (left) and valida-

tion (right) steps for the selected models.

The ANN models show that SWB agrees with ET-Landsat (NDVI),

ET-Landsat (EVI), ET-Landsat (EVI2), ET-MODIS (EVI) and ET-MODIS

(EVI2). The high coefficient of determination, model efficiency and

low RMSE confirmed a significant agreement between input/output

datasets during both calibration and validation phases. According to the

goodness of fit table and performance graphs, the fifth scenario, the

SWB versus ET-MODIS (EVI2), showed the best relationship with the

lowest MSE (1.4e−4 and 0.01) and highest R2 (0.99 and 0.95) during

both calibration and validation.

5 | DISCUSSION

Climate change is expected to impact urban water cycles and put

extra pressure on cities that are already vulnerable to water scarcity.

Many cities in arid and semi-arid lands, like Adelaide, South Australia,

are exploring solutions to maintain and expand their green spaces

with more sustainable strategies in the context of a changing and

often drying, climate. Adelaide, like all other water-stressed cities in

arid and semi-arid climates, is facing mounting water scarcity pressure,

particularly in recent years. This ET pressure was measured by

Landsat and MODIS particularly in the summer time when demand is

highest. Adelaide city managers' response to drought has been the

introduction of new and stricter regulations for water usage, for

example, cutting irrigation in public green spaces (Cindri�c, Armour,
F IGURE 4 Comparison of NDVI from WV2, Landsat and MODIS
in the southern half of the Adelaide Parklands

F IGURE 5 Comparison of ET-Landsat (NDVI), ET-Landsat (EVI), and ET-Landsat (EVI2) during 2011–2018 in the Adelaide Parklands

F IGURE 6 Comparison of ET-MODIS (EVI), and ET-MODIS (EVI2) during 2011–2018 in the Adelaide Parklands
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Frost, & McGregor, 2018). Trends depicted in our VIs as time-series

data, throughout the years, showed how the Parklands were affected

by water limitations. These trends showed minimum greenness in

summer when benefits and services by green spaces are highly

desired and valuable (e.g., cooling effect).

Our analysis shows a strong agreement between ET-Landsat

(EVI) & ET-MODIS (EVI) (R2 = 0.95) and ET-Landsat (EVI2) and ET-

MODIS (EVI2) (R2 = 0.94). While 30 m remains coarse for an urban

setting, Landsat outperformed MODIS (250 m) by capturing the finer-

scale, seasonal variation of VIs across this complex Parklands. The

250 m MODIS footprint was too coarse with poor adjacency and

mixing effects. Landsat imagery makes more sense when assessing

the greenness and ET of UGS with a strong recommendation for

ground-based validation.

Inter- and intra-annual variation of the greenness of urban vege-

tation highlights the importance of an accurate assessment of ET and

water demand in UGS at different times of the year. Figure 9 shows

the changes in NDVI of the Parklands between two consecutive years.

Some years were greener compared to their previous years, for exam-

ple, 2014 compared to 2013, or 2016 compared to 2015, in the

southern half of the park and some years were less greener such as

2018 compared to 2017. While these annual changes are usually pro-

foundly impacted by the local climate and green water availability, the

restriction on blue water resources may also be playing a role in the

Parklands. The Parklands is greatly dependent on blue water

resources (irrigation) and must compete with other water-users in

South Australia such as agriculture and industries. This suggests that

maintaining the greenness of the entire Parklands year-round is prob-

ably not feasible. The city council has allowed for the drying out of a

significant part of grassland areas during the summer period in the

Parklands to balance and maintain enough green vegetation to main-

tain a certain level of service in the Parklands. Drying out grasses of

the Parklands during summertime due to water shortage in Adelaide

confounded the composite signal from the imagery and contributed

to the observed lower Vis, considering the open-canopy nature of the

park. The availability of precipitation in the wintertime while the irri-

gation is stopped for the entire Parklands contributed to the higher

VIs observed. This may have contributed to the reshaping of the land

surface phenology dynamics of the Parklands, depicting early senes-

cence or browning (less green) in the summers and greening in the

autumn–winter.

Figure 10 presents the variation of NDVIs in different years com-

pared to the year 2011. This figure confirms that a “greening plan of

Adelaide” is marginally progressing; however, values of VIs from all

three satellites confirmed a gap in optimum greenness. Mean-NDVI in

MODIS and Landsat were 0.49 and 0.55, respectively.

F IGURE 7 Comparison of monthly RS-ET against ground data of SWB (December 2011–November 2012)

TABLE 2 The goodness of fit indices
for the optimum networks

Calibration Validation

Scenario Input Output Architecture MSE R2 MSE R2

1 SWB ET-Landsat (EVI) 1–9-1 1.1e−4 0.99 0.05 0.97

2 SWB ET-Landsat (EVI2) 1–7-1 0.01 0.97 0.03 0.86

3 SWB ET-Landsat (NDVI) 1–5-1 0.02 0.97 0.02 0.98

4 SWB ET-MODIS (EVI) 1–5-1 0.05 0.89 0.07 0.92

5 SWB ET-MODIS (EVI2) 1–9-1 1.4e−4 0.99 0.01 0.95

NOURI ET AL. 3193



F IGURE 8 The performance of the
optimum networks; the correlation between
actual (x-axis) and predicted (y-axis) values in
training (left) and validation (right) steps for
the selected scenarios (1–5)
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The main role of UGS is to offer a cooler and shadier retreat

space, so maintaining green vegetation in parks provides a healthy

habitat that is essential for both humans and animals. For instance,

the cooling effect of UGS, that is both healthy and large in size, can

reach up to 4�C (Aram, Higueras García, Solgi, & Mansournia, 2019).

In the Parklands, the maximum urban heat island (UHI) reduction in

temperature was recorded at 1.5�C in the daytime and 0.5�C in the

nighttime (Guan et al., 2013; Guan et al., 2016), which is a much

lower reduction in temperature than would be provided by optimum

greenness of the Parklands which would benefit Adelaide. A possible

solution is to have green plant cover that is comprised of drought-

tolerant native species which would have lower water demand, in

addition to applying the principles of water sensitive urban design

(WSUD) (Chavoshi, Pezzaniti, Myers, & Sharma, 2017; Sharma

et al., 2013) to free up more blue water from the limited available

amount required to maintain (and possibly expand) the green cover

of the Parklands.

6 | CONCLUSION

Accurate estimation of ET and water demand/water consumption for

large UGS that are too large for ET monitoring from the ground

(as well as areas that are inaccessible and not cost-effective) remains

critical, especially in arid and semi-arid urban environments. Measur-

ing ET remotely will help decision-makers and water managers formu-

late strategies and plans for sustainable green cities across the globe.

In this study, three satellites, WV2, Landsat, and MODIS were used to

assess the greenness and ET of a large park, the Adelaide Parklands, a

780-ha public green space within a dry state, South Australia. Differ-

ent satellite-based VIs were analysed, including those from

WV2-NDVI, Landsat-NDVI, Landsat-EVI, Landsat-EVI2, MODIS-

NDVI, MODIS-EVI, and MODIS-EVI2. We then compared these RS-

ET with the in situ method of SWB using ANN machine learning tech-

niques which offered a better understanding of the interactions across

the parameters that define ET than regular regression analysis. Our

findings point to a series of key conclusions and suggestions:

• Public and free-access satellite images can cost-effectively assist in

characterizing the greenness and ET of large UGS.

• EVI2, a 2-band alternative to EVI, performed well across the three

sensors, indicating its robustness and demonstrating across sensors

EVI continuity

• RS-based ET performed very well and proved to be an accurate

long-term monitoring tool for greenness and ET trends over

large UGS. Remotely sensed estimates of ET are timely, cost-

F IGURE 9 NDVI changes for two consecutive years from 2011 to 2018. The first 5 years use Landsat 7 ETM+ data and the remaining
2 years use Landsat 8 OLI
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effective, and minimize reliance on ground-based methods. Our

use of the black box models helped tease out ground-truth

validation.

• While 30 m is still coarse for an urban setting, Landsat out-

performed MODIS (250 m) by capturing the finer-scale and sea-

sonal variation of VIs across the complex Parklands. The 250 m

MODIS footprint was too coarse to deal with adjacency of a mixed

landscape.

• The composite and divergent phenology signals resulting from

trees and grasses confounded the seasonal variation in the VI pro-

files, implying that scale and resolution are critical in these hetero-

geneous urban landscapes.

• Our ET derived data captured the differences in dry, hot summers

and mild, wet winters in Adelaide. This finding was captured by all

of the RS-ET methods as well as the ground data estimation

techniques.

Our work, based on multi-sensor remote sensing data fusion and

analytical methods in an urban landscape demonstrated that these

techniques are transferrable to other water-limited cities, particularly

urban areas in arid and semi-arid climates, such as those in North

Africa, Southern Europe, the Middle East, Southwest USA, Northern

China, and Southern India. Managing water use with these novel

techniques can help identify responses to the sustainable city green

space management.
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