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Abstract
The relationship between mesoscale convective organization, quantified by the
spatial arrangement of convection, and oceanic precipitation in the tropical belt
is examined using the output of a global storm-resolving simulation. The anal-
ysis uses a 2D watershed segmentation algorithm based on local precipitation
maxima to isolate individual precipitation cells and derive their properties. 10◦

by 10◦ scenes are analyzed using a phase-space representation made of the num-
ber of cells per scene and the mean area of the cells per scene to understand the
controls on the spatial arrangement of convection and its precipitation. The pres-
ence of few and large cells in a scene indicates the presence of a more clustered
distribution of cells, whereas many small cells in a scene tend to be randomly
distributed. In general, the degree of clustering of a scene (Iorg) is positively cor-
related to the mean area of the cells and negatively correlated to the number
of cells. Strikingly, the degree of clustering, whether the cells are randomly dis-
tributed or closely spaced, to a first order does not matter for the precipitation
amounts produced. Scenes of similar precipitation amounts appear as hyperbo-
lae in our phase-space representation, hyperbolae that follow the contours of the
precipitating area fraction. Finally, including the scene-averaged water vapour
path (WVP) in our phase-space analysis reveals that scenes with larger WVP
contain more cells than drier scenes, whereas the mean area of the cells only
weakly varies with WVP. Dry scenes can contain both small and large cells, but
they can contain only few cells of each category.
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1 INTRODUCTION

One of the striking features of deep moist convection is
its ability to organize on a wide range of scales. Individual
convective cells aggregate into Mesoscale Convective
Systems (MCSs) which are broadly defined as cumulonim-
bus cloud systems with a contiguous precipitation area
of at least 100 km in one direction (Houze, 2004). MCSs
are building blocks for even larger-scale organizational
features (Houze, 2004; Mapes et al., 2006) such as hurri-
canes, the Madden–Julian Oscillation or the Intertropical
Convergence Zone (ITCZ). Given the coarse resolution
of (100 km) of state-of-the-art General Circulation Mod-
els (GCMs), MCSs and any form of mesocale convective
organization cannot explicitly be represented by GCMs,
and convective parametrizations struggle to incorporate
such effects (Moncrieff et al., 2012). Despite this lack
of mesoscale organization, GCMs are able to reproduce
the large-scale organization of convection, for instance
in an ITCZ, albeit not perfectly (Stanfield et al., 2016;
Hohenegger et al., 2020). This raises the question as to
the importance of convective organization, in particular
mesoscale convective organization, for climate (Bony et al.,
2015). Answering this question remains challenging as it
requires data with high spatial and temporal resolution on
planetary-scale domains.

Answering this question first requires characterizing
the degree of organization. Two approaches have been
implicitly used in this respect. The first one is based on
a phenomenological classification. Convection is isolated
from its environment and classified into different cate-
gories generally based on the spatial extent of the convec-
tion. Typical classes are: isolated convective cells; MCSs,
which may be subdivided into subclasses such as squall
lines and Mesoscale Convective Complexes; and hurri-
canes. Isolated convective cells represent unorganized
convection, whereas all the other classes are interpreted
as forms of convective organization. In this view, organi-
zation is likely important for climate. The mere fact that
MCSs produce more than 60% of the precipitation over the
Tropics (Nesbitt et al., 2006; Liu et al., 2008), and even more
than 90% in particular seasons (Roca et al., 2014), under-
pins the importance of organized systems for the tropical
climate.

The second approach computes indices to character-
ize the degree of organization. Convection is segmented
into objects whose individual and collective properties are
summarized into an index. Several indices have been pro-
posed over the past years (Tobin et al., 2012; Tompkins and
Semie, 2017; Brune et al., 2018; Kadoya and Masunaga,
2018; White et al., 2018) as it remains difficult to objec-
tively quantify organization. These indices tend to be based
on objects' geometrical properties such as objects' area,

distances between objects, and/or number of objects. Dis-
tinct indices emphasize distinct aspects of organization
depending on their combination of the objects' geometrical
properties. These latter properties are derived with respect
to a predefined geographical area of a given size, which
we call a scene in the reminder of this text. In contrast
to the first approach, there is no connection to a partic-
ular named convective phenomenon, a scene has to be
defined, and the indices emphasize the spatial arrange-
ment of objects in a scene rather than their extent per se.
In this sense, a scene with isolated convective cells that are
placed closer to each other, as compared to a random dis-
tribution, will be viewed as a more organized scene, which
would not be the case under the first approach.

The derivation and use of organization indices have
recently received renewed attention motivated by the
results of radiative convective equilibrium (RCE) simu-
lations. In such simulations (Tompkins and Craig, 1998;
Bretherton et al., 2005; Muller and Held, 2012; Wing and
Emanuel, 2014), convection exhibits a clear phase tran-
sition from a random to an organized state, often made
up of one final convective cluster. Also in such simula-
tions, the organization of convection appears to be very
important for climate as it leads to a strong drying of the
non-convective region (Bretherton et al., 2005; Hoheneg-
ger and Stevens, 2016). Observational evidence has con-
firmed that, as in RCE studies, more organized scenes are
associated with a drier atmosphere, a decrease in anvil
cloudiness, an increase in low clouds and an enhancement
of low-level radiative cooling (Tobin et al., 2012; Lebsock
et al., 2017; Stein et al., 2017; Kadoya and Masunaga, 2018).
These observational relationships have been derived by
comparing scenes with distinct degrees of organization
under similar large-scale conditions, such as surface tem-
perature, vertical velocity and precipitation rate. This con-
ditioning prevents a masking of the climatic impacts of
organization by other confounding factors. Nevertheless,
it does not allow determination of the actual importance
of organization for climate, neither its impact on the
large-scale circulation of the atmosphere nor on important
climatic variables such as precipitation.

In a step toward addressing this latter issue, the overall
goal of this paper is to investigate the relationship between
mesoscale organization, precipitation and water vapour
path (WVP). We include the WVP in our analysis given its
strong relationship to precipitation (e.g., Bretherton et al.,
2004) and to organization (e.g., Bretherton et al., 2005). In
contrast to past studies which have used a phenomenolog-
ical classification to investigate the contribution of orga-
nized convective phenomena to precipitation (e.g., Nesbitt
et al., 2006; Liu et al., 2008), we will quantify this contri-
bution solely based on the spatial arrangement of convec-
tive cells in a scene using an object-based approach. One
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hypothesis motivating this work is that scenes with closely
spaced convective cells also precipitate more. An argument
for such a relationship is the idea that more closely spaced
convective cells are protected from their dry hostile envi-
ronment by the existence of their neighbours and thus see
a moister environment. This implies a smaller reduction of
updraught buoyancy through entrainment, allowing con-
vective cells to reach deeper into the atmosphere, to be
larger, to last longer and to precipitate more, as hypothe-
sized by Lopez (1978) and Houze and Betts (1981) based
on GATE (the Global Atmospheric Research Program's
Atlantic Tropical Experiment) observations. RCE simula-
tions have confirmed that strongly organized convection
is protected from its environment by a moist shell and is
associated with a smaller reduction of updraught buoy-
ancy with height, as compared to randomly distributed
convective cells (Becker et al., 2018). The observationally
based studies of Tobin et al. (2012) and Stein et al. (2017)
have also suggested the presence of higher precipitation
efficiency in more organized scenes, although the implica-
tions for precipitation amounts have not been quantified
in their studies given the compositing of scenes on similar
precipitation amounts. The higher precipitation efficiency
in more organized scenes directly follows from the fact that
more organized scenes are associated with lower values
of WVP.

One difficulty in investigating factors controlling pre-
cipitation amounts is that it is known from past studies
(e.g., Doneaud et al., 1984; Nuijens et al., 2009; Davies et al.,
2013) that precipitation scales well with the precipitating
area fraction, or equivalently with the mean area of objects
in a scene multiplied by their number. At the same time,
these latter two characteristics likely influence our percep-
tion of organization. Larger objects may appear as more
clustered than smaller objects from the mere geometri-
cal fact that the available free space in a scene is limited.
To better understand these various controls, we found it
useful to analyse the degree of spatial arrangement of con-
vection, precipitation and WVP, as well as their potential
relationships, in a phase-space representation made of the
mean area of objects in a scene and the number of objects.
The use of such a phase-space representation is also moti-
vated by recent developments in cumulus parametriza-
tions with schemes now trying to predict the cumulus area
fraction instead of the mass flux (e.g., Arakawa and Wu,
2013; Peters et al., 2017).

Section 2 describes in more detail the simulation
used for our analysis and our object-based classification
algorithm with the so derived objects' properties, fur-
ther justifying our analysis methodology. The relationship
between the spatial arrangement of convection and precip-
itation is investigated in Section 3 using our phase-space
representation. This phase-space representation is further

applied in Section 4 to WVP. Section 5 discusses the results
and conclusions are given in Section 6.

2 SIMULATION AND
OBJECT-BASED ANALYSIS

2.1 Global storm-resolving simulation

We use a global simulation conducted with the ICOsahe-
dral Nonhydrostatic model (ICON) at a grid spacing of
2.5 km for analysis. The advantage of such a simulation
is that it resolves both the mesoscale at fine enough res-
olution and the planetary scale. Given the employed grid
spacing, we note that the model does not use any con-
vective parametrization, neither for shallow nor for deep
convection. The simulation has been integrated following
the protocol of the intercomparison project DYAMOND
(DYnamics of the Atmospheric general circulation Mod-
eled On Non-hydrostatic Domains; Stevens et al., 2019).
The simulation starts on 1 August 2016 and is integrated
for 40 days using prescribed daily sea surface temperature
taken from the ECMWF operational analysis. A detailed
description of the underlying model and a validation of the
results can be found in Hohenegger et al. (2020). In terms
of precipitation distribution, the model was found to pro-
duce 8% more tropical mean precipitation than observed.
The location of the ITCZ over the eastern Pacific and over
the Atlantic is nevertheless well captured; the simulation
places the centre of its Atlantic and its eastern Pacific
ITCZs at 8.4◦N, 28◦W and 9.8◦N, 119.8◦W, respectively,
compared to 8.4◦N, 24.4◦W and 10.1◦N, 117.2◦W in obser-
vations (Hohenegger et al., 2020, and their figure 5). The
simulated ITCZs are wider than in observations, but the
biases are smaller than 1◦ and thus smaller than what
is obtained in low-resolution GCMs (e.g., Stanfield et al.,
2016). The model also captures the tropical short-wave and
long-wave radiation budget at the surface within 1 and
5.7 W⋅m−2, respectively, and within 9.9 amd 4 W⋅m−2 at
the top of the atmosphere. The biases are comparable to
the biases in the other storm-resolving models participat-
ing in the DYAMOND intercomparison project (table 6 in
Stevens et al., 2019 and table 2 in Hohenegger et al., 2020).

For our analysis, we concentrate on the oceanic trop-
ical precipitation belt, which is defined by 5◦N±20◦ and
ocean only. The latitude of 5◦N corresponds to the max-
imum of the zonal mean precipitation averaged over the
40-day simulation period. It is thus viewed as the centre
of the ITCZ. The analysis is performed on 15-min accu-
mulated precipitation output, disregarding the first simu-
lation day as spin-up. As ICON uses a triangular grid, the
output has been regridded on a regular latitude–longitude
grid of 0.05◦ by 0.05◦. Even though the simulation extends
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only for 40 days, its high spatial resolution and output fre-
quency provides us with a sample large enough to derive
meaningful statistics. The derived statistics are based on
1.37072 × 105 scenes, each scene containing 4.0 × 104 grid
points (see the next subsection for the definition of a
scene).

2.2 Definition of cells and derivation of
their attributes

Following Tobin et al. (2012), and given our interest
in quantifying the mesoscale arrangement of convection
using an object-based approach, we first define a scene
as a 10◦ by 10◦ subdomain. The scenes are spatially not
overlapping. The spatial arrangement of convection is then
characterized for each of these scenes by segmenting the
convective objects that populate each scene. Our segmen-
tation procedure follows Senf et al. (2018), but is applied to
precipitation and not to brightness temperature. The seg-
mentation procedure is summarized below and illustrated
for four distinct convective situations in Figure 1.

The precipitation field is used to define precipitation
cells based on two precipitation thresholds. We use a lower
precipitation threshold of 0.1 mm⋅hr−1 to segment precip-
itating objects from their non-precipitating environment.
We then use an upper threshold of 10 mm⋅hr−1 to find
precipitation cores inside those objects. Due to possible
regridding artifacts, only precipitation cores that are larger
than three pixels are considered. Also, precipitation objects
without precipitation cores are disregarded. The precipita-
tion cores are used to subdivide the precipitation objects
into what we call cells in the reminder of the text. The
local maxima inside the precipitation cores serve as start-
ing markers for the watershed segmentation procedure.
The watershed procedure essentially fills the precipitating
neighbourhood surrounding a local maximum until it gets
into contact with another neighbourhood. Each so identi-
fied convective cell gets an identifier. Local maxima cannot
be located directly next to each other. Also, in order to find
the seed points for the watershed segmentation, the precip-
itation field is filtered with a multidimensional Gaussian
filter with a standard deviation for the Gaussian kernel of
0.05. This value is very low and merely serves to compen-
sate regridding artifacts which increases the robustness of
the seed points. The domain average precipitation rate and
the total precipitating area are not affected by this filtering.

Having segmented the precipitation field into its indi-
vidual cells, the total area fraction fA of the cells in a scene,
the number N of cells in a scene, the mean area A of the
cells in a scene and the spatial arrangement of the cells
in a scene can be computed. These are the cells' attributes
that will be used for our analysis. To quantify the spatial

arrangement of the cells in a scene, we measure the devi-
ation of the spatial distribution of the cells from the dis-
tribution resulting from randomly distributing these same
cells, following Weger et al. (1992). This approach was used
by Tompkins and Semie (2017) to build an index called Iorg
that we apply in our study as well. Formally, Iorg is defined
as the integral below the curve of the nearest-neighbour
cumulative density function (NNCDF) of the cells plotted
as a function of the NNCDF for a random distribution of
these cells. A value of 0.5 corresponds to a random distri-
bution, values larger than 0.5 indicate clustering, whereas
values smaller than 0.5 indicate regularly distributed cells.
To derive the NNCDFs, we follow Pscheidt et al. (2019). To
compute the nearest-neighbour distance between the cells,
the cells are approximated as disks and the edge-to-edge
distance de between two cells i and j is computed as: de =
d − ri − rj with d the distance between the two cells' cen-
tres and ri the equivalent radius of a cell i (ri =

√
Ai∕𝜋).

The theoretical random distribution of the cells is obtained
by randomly distributing disks with the same areas and
same number as the cells present in a scene. If the disks
overlap, their position is shifted so that they become adja-
cent as overlapping cells are not possible in our simulation.
The procedure is repeated one hundred times and the the-
oretical random distribution results by taking the mean
over these hundred realizations. If few cells are present in
a scene, it is difficult to distinguish random from clustered
or regular states. For our analysis, we thus only consider
scenes with at least three cells. Note also that using an
object-based approach requires defining a scene and that
the finite size of a scene imposes some geometrical con-
straints on the possible arrangement of cells. As such, our
results are only valid for the chosen scene's size and do not
generalize.

Quantifying the impact of convective clustering on pre-
cipitation is not trivial. To better illustrate our analysis
strategy and our end choice of the explanatory variables,
Figure 1 shows the precipitation field for four scenes
(Figure 1a–d) as well as the resulting identified cells with
typical scene's properties (Figure 1e–h). Subjectively look-
ing at the four scenes, Figure 1a seems to be associated
with random or maybe regularly distributed isolated cells.
The three remaining scenes appear clustered in the form
of a MCS (Figure 1b), confined isolated cells (Figure 1c)
and a hurricane (Figure 1d). These differences are directly
captured by Iorg, with values close to 0.5 in the first scene
(Figure 1e) and values larger than 0.5 in the remaining
three scenes (Figure 1f–h). But a closer look at Figure 1
also reveals some surprises and explains why only consid-
ering Iorg may make the results difficult to interpret. Iorg
classifies the MCS scene (Figure 1f) as less clustered than
the scene with confined isolated cells (Figure 1g). The dif-
ficulty arises from the fact that we subjectively associate
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clustering with scenes with large convective area fraction
(fA), closely spaced cells (Iorg) and few objects (N). How
these attributes contribute to our perception of cluster-
ing is likely subjective. Attempting to summarize these
attributes in one index has proven difficult as the weight
of each attribute toward organization is unknown. Distinct
indices emphasize distinct aspects of clustering and can
lead to different ordering. The Convective Organization
Potential (COP) index (White et al., 2018), which includes
both area, distance and number of objects, for instance
does classify the MCS scene (Figure 1f) as more clustered
than the scene with confined isolated cells (Figure 1g). But
we also know that precipitation itself correlates well with
the precipitating area fraction fA (e.g., Doneaud et al., 1984;
Davies et al., 2013) or equivalently with A multiplied by
N. From these considerations it seems judicious to use an
index to quantify the degree of convective clustering that
does not mix different cells' attributes and use area and
number of cells as supplementary explanatory variables
given their link to precipitation and organization.

Our analysis methodology, even though being able to
segment a precipitation field into its individual cells, is not
able to track individual cells. Tracking individual cells is
not straightforward as subjective and non-trivial decisions
have to be made on merging and splitting events (Fiolleau
and Rocca, 2013; Moseley et al., 2019). Moreover, the use

of fixed scenes makes the tracking even less straightfor-
ward as a scene might contain a mix of cells in different
stages of their life cycle, and with the possibility for cells
to move from one scene to another one. Given these dif-
ficulties, our analysis methodology takes a pure snapshot
view on precipitation. It does not provide any informa-
tion on the life cyle of the segmented convective cells. As
a consequence, scenes with convective cells in their grow-
ing phase are mixed with scenes with convective cells in
their mature or decaying phase, even though the under-
lying physics may be quite different. This could blur out
existing relationships between precipitation, area, number
and arrangement of cells.

3 THE PHASE SPACE
OF ORGANIZATION
AND PRECIPITATION

We start our analysis by examining the variations of Iorg
as a function of A and N, before moving to precipitation
amounts and finally linking the two analyses. Computing
Iorg for all 1.37072 × 105 scenes and displaying it as a func-
tion of A and N gives Figure 2. Looking at the colour bar, it
is evident that convection is almost always clustered over
the tropical oceans. The values range between 0.56 and

y

Precipitaion Rate mmhr–110 20 30 40 50 Random Color ID

(a) (b)

(c) (d)

(e) (f)

(g) (h)

A    = 18
N    = 94
Iorg     = 0.42
P     = 0.41
WVP= 53.0

A     = 22
N     = 15
Iorg      = 0.82
P      = 0.07
WVP= 41.1

A    = 129
N    = 27
Iorg     = 0.95
P     = 0.49
WVP= 44.5

A     = 85
N     = 101
Iorg       = 0.71
P      = 1.73
WVP= 64.2

F I G U R E 1 Precipitation cell watershed segmentation examples for four prototype synoptic cases. The (a)–(d) 2× 2 scenes show the
precipitation rate and the (e)–(h) 2× 2 scenes the resulting cells (the ID of each cell is randomly coloured), together with the scene's
properties A (pixel), N, Iorg, precipitation (P, mm⋅hr−1) and water vapour path (WVP, mm). The black dot in each labelled cell indicates the
local maximum precipitation rate. One pixel corresponds to the grid box size of our regular latitude–longitude grid (0.05◦ by 0.05◦)
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0.9. The largest values of Iorg are found for scenes with
large A and small N, whereas small values of Iorg are found
in the opposite corner, for scenes with small A and large
N. Few large cells in a scene (e.g., Figure 1h) tend to be
more closely spaced than many small cells in a scene (e.g.,
Figure 1e).

Figure 2 further reveals that for a given N, Iorg increases
with increasing A. In other words, larger cells in a scene
appear as more clustered than smaller cells. This indicates
that larger cells tend to not exist in isolation but as part of
a larger convective object; compare Figure 1e to Figure 1f
or Figure 1g to Figure 1h, where each of these figure pairs
have a similar N. The positive relationship between Iorg
and A is especially pronounced for A values smaller than
50 pixels, whereas it flattens for larger values. The sharp
increase in Iorg with A by A values smaller than 50 pix-
els might express the transition from scenes with isolated
cells to scenes being predominantly populated by precip-
itating objects made up of several cells whose sizes then
just keep on expanding. The finite size of our scenes may
be another explanation for the flattening of the Iorg curve.
When A is large, there is less free area and hence less
possible arrangements of cells.

If A is instead held fixed, Figure 2 reveals that Iorg
increases with decreasing N. Few cells in a scene are
unlikely to be randomly distributed. Thermodynamical
considerations can help explain this behaviour. In a homo-
geneous scene, if there is one cell, there will be many
other randomly distributed cells as well, as seen when
conducting idealized simulations starting from homoge-
neous thermodynamical conditions. The only way to limit
the number of cells in a scene is through the presence of
inhomogeneities. Those inhomogeneities have to be large,

Iorg

F I G U R E 2 Iorg index plotted in the phase space of mean cell
area A (x-axis) and number of cells N (y-axis). Units for A are pixels

at least compared to any convective threshold, and will
prevent the development of convection in some area of a
scene. The scene will thus be associated with larger Iorg.
This is clearly visible by comparing Figure 1e to Figure 1g.
Putting together the variations of Iorg with A and N, we
conclude that the degree of clustering mostly increases
with decreasing number of cells for scenes containing cells
larger than 50 pixels, whereas it depends both on the num-
ber of cells and on the mean area of cells for the remaining
scenes. In this latter case, scenes with fewer cells or larger
cells will appear as more clustered.

We now repeat a similar analysis, but considering the
variations of precipitation P as a function of A and N
(Figure 3). The precipitation is averaged over each scene.
Note that this means that weak isolated precipitation
objects, which are disregarded by the watershed segmen-
tation procedure when deriving A and N, are included
when computing P. The contribution of these objects to
the overall precipitation is nevertheless small, amounting
to 12%. Neglecting these objects in the computation of P
yields a similar phase-space representation as displayed in
Figure 3. If anything, the contours of precipitation even
become more parallel to the contours of fA.

Figure 3 indicates that largest P values are found for
largest A and largest N. In general, contours of precipi-
tation are hyperbolae that roughly follow contours of fA.
This is consistent with past studies (e.g., Doneaud et al.,
1984; Nuijens et al., 2009; Davies et al., 2013) which have
shown that precipitation amounts correlate very well with
the precipitating area and gives us confidence in our seg-
mentation and analysis technique. As fA = N ⋅ A∕Ascene,
with Ascene the area of a scene, it follows that, for a given N,

fA=0.04 fA=0.12
P

F I G U R E 3 Scene-averaged precipitation P (mm⋅hr−1)
plotted in the A–N phase space. The two black lines show contours
of the total precipitating area fraction fA in a scene
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P should increase with A, as indeed displayed by Figure 3.
Likewise and as confirmed by Figure 3, for a given A, P
increases with N. The variations of P as a function of A and
N as displayed by Figure 3 look also very similar to the pre-
cipitation variations obtained by Louf et al. (2019) based
on 13-year of radar observations over Darwin.

More interesting is the comparison of Figures 2 and 3.
Visual inspection and our previous discussion of Figures 2
and 3 already indicate that Iorg and precipitation are not
well correlated. The largest P amounts are found in the
upper right corner of the A–N phase space, by large A
and large N, whereas the largest Iorg values are found in
the bottom right corner of the A–N phase space, by large
A but small N. The largest scene-averaged precipitation
amounts do not occur in scenes with the most closely
spaced cells, but actually occur in scenes with a weak
degree of clustering of around 0.65.

To ease the comparison between P and Iorg, we overlay
the two fields in Figure 4. Figure 4 indicates that contours
of P and contours of Iorg cross each other. Scenes with
vastly differing values of Iorg can thus be associated with
same P. Starting from the upper left corner of Figure 4 as
an example and moving along a precipitation contour indi-
cates that, keeping P constant in a scene, N decreases and A
increases, so as to keep fA constant. Given the phase space
of Iorg and its dependencies on N and A, these changes in N
and A induce corresponding changes in Iorg. In that case,
Iorg increases. Tobin et al. (2012), who composited their
observational scenes on similar precipitation amounts,
could also observe a wide range of organizational states
(quantified by SCAI) for a given precipitation amount. The
fact that scenes with vastly differing spatial arrangements
of their cells are associated with similar scene-averaged
precipitation amounts is confirmed by the visual examples
of Figure 1. Both the scene with randomly distributed iso-
lated cells in Figure 1e and the one with closely packed
cells in a hurricane (Figure 1h) display similar P.

To further quantify the dependency between P and
Iorg, Figure 4 also displays the deciles of the two distribu-
tions. To compute the precipitation decile, as an example,
we rank the precipitation distribution and determine its
deciles. As several scenes can have the same precipitation
amounts, we then take the values of A and N averaged over
those scenes as x and y coordinate to plot the deciles in
Figure 4. The deciles in precipitation and Iorg are perpen-
dicular to each other (Figure 4). Following the decile line
of precipitation in Figure 4 indicates that an increase in
precipitation, from one decile to the next one, if anything
is associated with a small decrease in Iorg. An increase
in the amount of precipitation in a scene namely comes
with an increase in fA. This implies an increase in the
number of cells, which will tend to reduce Iorg, and an
increase in the mean area of the cells, which will tend to

P deciles
Iorg deciles

P isoline Iorg

F I G U R E 4 Combination of Figure 2 (shading) and Figure 3
(contours) with additional lines (dashed) indicating the deciles of
the precipitation and of the Iorg distribution (see text for more detail)

increase Iorg. The two effects tend thus to compensate and
leave Iorg mostly unaffected. Likewise, following the decile
line of Iorg reveals first a slight increase of precipitation
from the first to the second decile, then constant precip-
itation up to the fourth decile, and finally a decrease in
precipitation. Hence, Figure 4 generally does not support
our initial hypothesis that more closely spaced convective
cells in a scene are associated with more precipitation. The
dependency of scene-averaged precipitation on the spatial
arrangement of its cells is weak. If anything, scenes with
more closely spaced cells tend to rain less as they tend to
be associated with a lower precipitating area fraction.

Even though precipitation and the spatial arrangement
of its cells are not well correlated, the latter could still be
important for the tropical climate if the scenes with the
most highly packed cells (bottom right corner of Figure 4)
would end up contributing the most to total precipita-
tion. To investigate this, Figure 5 displays the frequency of
occurrence of the scenes and their contribution to the pre-
cipitation averaged over all scenes. The frequency of occur-
rence rapidly decreases with increasing A and increasing
N. The most frequent scenes have yet to be found in
another corner of the A–N phase space, namely in the bot-
tom left corner by small N and small A. Those scenes are
characterized by weak clustering, with Iorg values between
0.6 and 0.7, and very weak scene-averaged precipitation,
around 0.15 mm⋅hr−1. Given these very weak precipitation
amounts, the scenes contributing the most to the total pre-
cipitation are vertically displaced in the A–N phase space.
Scenes with a moderate number of cells, between 40 and
60, and a small mean area, between 20 and 30 pixels, end
up dominating the precipitation distribution. These scenes
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FoO isoline Pcontr

F I G U R E 5 A–N phase space showing the contribution of a
particular A–N pair to the precipitation averaged over all
1.37072 × 105 scenes (colour shading). Black contours indicate the
frequency of occurrence (FoO) of a particular A–N pair

precipitate between 0.2 and 0.3 mm⋅hr−1 and are weakly
clustered with Iorg being around 0.65. As can also be seen
by comparing Figures 4 and 5, the contribution to the total
precipitation increases in a direction roughly parallel to
the curve of the precipitation deciles and perpendicular to
the one of Iorg. This means that an increase in the con-
tribution to the total precipitation requires inclusion of
scenes that precipitate more and not of scenes with more
closely spaced cells. Lastly, Figure 5 indicates that both the
scenes with extreme precipitation or with a high degree of
clustering rarely occur. The contribution of the highly clus-
tered scenes to the total precipitation is negligible given
their rarity and their weak scene-averaged precipitation.
In contrast, the scenes with extreme precipitation benefit
from their high scene-averaged precipitation amount and
contribute only slightly to the total precipitation.

4 THE PHASE SPACE OF WATER
VAPOUR PATH

Past studies (Bretherton et al., 2004; Holloway and Neelin,
2009) have revealed a high degree of correlation between
WVP (or column relative humidity) and precipitation,
with precipitation picking up once the WVP reaches a
given threshold. Also, the self-aggregation of convection
has been shown to yield a moistening of the convective
region and a drying of the surrounding environment in
idealized studies of radiative convective equilibrium (e.g.,
Bretherton et al., 2005; Muller and Held, 2012), a sig-
nature that has been confirmed in observations (Tobin

WVP deciles
WVP contour

F I G U R E 6 A–N phase space showing the scene-averaged
water vapour path (WVP, solid contours, mm) and the deviation of
the cell-averaged WVP from its scene mean value (colour shading,
mm). Only scenes with precipitating cells are considered. The decile
line of the scene-averaged water vapour path (dashed) is also
included

et al., 2012). We investigate these relationships using our
simulation output and our A–N phase-space representa-
tion (Figure 6). In particular, we investigate variations of
the WVP averaged over a scene, which may be seen as more
closely linked to the pick-up of precipitation, and varia-
tions of the deviation of the WVP between cells and scene,
which may be more sensitive to clustering effects.

The most striking feature of Figure 6 is the fact that
the number of cells, in contrast to the mean area of the
cells, is strongly correlated to the WVP or, vice versa, that
the WVP especially varies with the number of cells. This
can be recognized from the small dependency of the WVP
deciles upon A and from the flatness of the WVP contours
in Figure 6, in particular for N values smaller than 50. Dry
scenes can contain both small and large cells, but they can
only contain few cells of each category. Larger cells likely
benefit here from their higher degree of clustering (e.g.,
Figure 2), which will protect them from their hostile dry
environment (e.g., Becker et al., 2018). The moister a scene,
the more cells it contains.

Given the small precipitating area fraction fA, in par-
ticular in the bottom part of our phase space, contours
of WVP firstly captures the behaviour of the WVP of the
non-precipitating region. The WVP of the precipitating
region can be implicitly deduced from the sum between
the colour shading and the contour lines of Figure 6. This
WVP increases both with N for a given A and with A for a
given N. Its variation of about 7 mm across the A–N phase
space is smaller than the variation in environmental WVP
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(about 12 mm). In fact, contours of the WVP averaged
over the precipitating area follow contours of fA (not
shown).

Concerning the deviation of the WVP of the cells from
the scene-averaged WVP, Figure 6 indicates that, to a first
approximation, the deviations are anticorrelated to the
moisture state of the atmosphere. The drier the scene,
the larger the deviation. This follows from the fact that a
cell has to be saturated to precipitate. Nevertheless closer
inspection of Figure 6 reveals discrepancies from this gen-
eral rule, discrepancies which might express the effects
of clustering on the WVP, as further examined below by
combining the results of Figures 4 and 6.

Combining the results of these two figures, a few more
insights can be gained on the dependencies between pre-
cipitation, clustering, WVP, area of cells and number of
cells. Not surprisingly given the results of studies on pre-
cipitation pick-up (e.g., Bretherton et al., 2004; Holloway
and Neelin, 2009), precipitation and WVP are correlated
and both maximize in the upper right corner of our phase
space. In contrast, both the degree of clustering and the
deviations in WVP maximize in the bottom right corner
of our phase space. This is consistent with the idea that a
clustering of convection leads to a moistening of the con-
vective region and to a drying of the non-convective region
(e.g., Bretherton et al., 2005; Tobin et al., 2012).

Taking two scenes with the same mean precipitation
amount but different WVP, the combination of Figures 4
and 6 also indicates that the drier scene has to contain
larger and hence more clustered cells. The increase in
A compensates for the smaller number of cells present
in drier scenes, so as to keep fA and P constant. In
contrast, the strong increase in scene-averaged precipi-
tation with WVP is primarily associated with a strong
increase in the number of cells per scene. An increase
in the number of cells in a scene, if anything, moves
the distribution of cells closer to a random distribution.
Finally, for two scenes with the same WVP, the larger
scene-averaged precipitation amount is to be found in the
scene with larger, more clustered cells, and potentially
fewer cells.

5 DISCUSSION

Our previous analysis concentrated on the tropical ocean.
To assess the generality of our findings, we repeat our
A–N phase-space analysis for the tropical land areas
(Figure 7), which confirms Figure 4 and the results pre-
viously obtained over the oceanic regions. Scenes with
strongest precipitation are located in the upper right cor-
ner of the A–N phase space, scenes with highest Iorg values

P deciles
Iorg deciles

P contour
fA=0.04 fA=0.12

Iorg

F I G U R E 7 As Figure 4, but for land scenes, also including
the two contours of fA = 0.04 and 0.12 (white dashed). The total
number of scenes is 4.9099 × 104. Note that the x-axis range is
double that used in Figure 4

are found in the bottom right corner, and precipitation is
poorly correlated to the degree of clustering. Pscheidt et al.
(2019) also suggested a potential poor correlation between
organization and precipitation by looking at simulations,
radar and satellite observations over Germany.

Comparing in more detail the phase spaces over land
and over ocean, a few interesting differences become
apparent. In agreement with the known more frequent
occurrence of MCSs over land than over ocean (e.g., Nes-
bitt et al., 2006), the convection appears much more clus-
tered over land (Figure 7) than over ocean (Figure 4) in our
analysis as well. The systems should be larger over land
than over ocean (Liu and Zipser, 2013), which remains
true in our analysis, even if we split precipitation objects
in their individual cells. This leads to a rather triangular
A–N phase space over land, in contrast to the squared pop-
ulation of the phase space over ocean. More importantly,
over land, precipitation is not only poorly correlated to Iorg,
but it is almost negatively correlated to it, as can be seen
by comparing the two decile lines in Figure 7. This results
from the fact that Iorg only very weakly depends upon A
and mainly increases with decreasing N over land. This
itself results from the generally higher values of Iorg and
of A over land as compared to ocean. Even over ocean, for
high values of Iorg and A, Iorg becomes independent of A
(Figure 4).

Our previous analysis also required a segmenta-
tion of the precipitation field into objects and their
individual cells, based on subjectively chosen precipi-
tation thresholds (Section 2.2). The chosen thresholds
were 0.1 mm⋅hr−1 to define the precipitation objects and
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10 mm⋅hr−1 to split objects into their individual cells. To
assess the robustness of our results, other thresholds of
0.01 and 1 mm⋅hr−1 for the lower precipitation threshold
(with an upper threshold of 10 mm⋅hr−1), as well as of
5 and 15 mm⋅hr−1 for the upper precipitation threshold
(with a lower threshold of 0.1 mm⋅hr−1) have been tested.
These changes affect the sampled number of cells and the
mean area of the cells in a scene, but do not affect the
main conclusions of the study. Maximum precipitation is
always to be found on the upper right corner of the A–N
phase space, maximum Iorg on the lower right corner, and
the decile lines of the two distributions tend to be per-
pendicular to each other. This robustness of the results
follows from the fact that the precipitation amounts will
follow to a first degree the precipitating area fraction, and
hence will always maximize in the upper right corner of
the A–N phase space, independently of the chosen pre-
cipitation thresholds. Likewise, and as shown in Section
3, Iorg maximizes for scenes with few and large cells,
which will also remain true independently of the chosen
thresholds.

6 CONCLUSIONS

To help assess the importance of mesoscale organization
for climate, we investigated in this study the relation-
ship between mesoscale organization, precipitation and
WVP. Based on a 40-day global storm-resolving simula-
tion conducted with a grid spacing of 2.5 km, we quantified
potential relationships using an object-based approach
and analysed our results making use of a phase-space rep-
resentation. To that aim, we defined 10◦ by 10◦ scenes
and segmented each scene into its precipitation objects.
The precipitation objects were further split into their indi-
vidual cells using a watershed segmentation algorithm.
Cells' attributes in a scene, namely mean area A, num-
ber N, distances between cells, were recorded. The dis-
tances between cells were used to compute the clustering
index Iorg (Tompkins and Semie, 2017) which quantifies
the degree of spatial arrangement of cells in a scene by
measuring the deviation of their distribution from a ran-
dom distribution. The cells' attributes A and N were used
to display the results in an A–N phase space so as to
understand the variations of and relationships between
Iorg, precipitation and WVP.

Not surprisingly, the computed Iorg values revealed
that precipitation is almost always clustered over the
tropical oceans. Looking at individual scenes, many
small cells in a scene tend to be randomly distributed
whereas few large cells in a scene appear as more clus-
tered than expected from a random distribution. Also

in agreement with past studies which have shown that
precipitation amounts are mostly determined by the
precipitating area, scene-averaged precipitation appears as
hyperbolae of constant precipitating area fraction in our
A–N phase-space representation.

Our initial hypothesis was that more closely spaced
convective cells in a scene would be associated with a
larger scene-averaged precipitation amount. Our results
did not support that claim. First, the stronger precipita-
tion amounts are found in the upper-right corner of the
A–N phase space, by high A and high N, whereas the
scenes with more closely packed cells are found in the
bottom-right corner of the A–N phase space, by high A
and low N. Second, scenes with extreme precipitation are
characterized by a weak degree of clustering of around
0.65. Third, the scenes that contribute the most to the total
precipitation of the tropical belt are scenes characterized
by a similarly weak degree of clustering of 0.65. This last
result may be seen at odds with past studies which have
shown that mesoscale convective systems (MCSs), which
might be interpreted as a typical example of organized
convection, contribute predominantly to tropical precipi-
tation. Nevertheless it should be noted that, by using an
object-based rather than a phenomenological classifica-
tion as used in those past studies, the link to the underlying
convective phenomenon is lost. It is unclear where MCSs
predominantly lie in our A–N phase space. Moreover,
Iorg only measures organization based on the distances
between cells, whereas phenomenological classifications
emphasize the spatial extent of precipitation objects.

Determining the deciles of the Iorg and precipi-
tation distributions further confirmed the poor cor-
relation between the two distributions. An increase
in scene-averaged precipitation namely comes with an
increase in the precipitating area fraction and hence with
an increase in N and A. When A increases, the degree of
clustering increases, but when N increases, the degree of
clustering decreases. The two effects mostly compensate so
that moving along the curve of the precipitation deciles in
our A–N phase space does not result in significant changes
in the spatial arrangement of cells in the scenes. In other
words, scenes with randomly distributed cells or highly
packed cells can precipitate the same amount.

Past studies have shown that precipitation exponen-
tially increases with WVP. Our phase-space decomposition
revealed that this is primarily a result from an increase in
the number of cells in a scene and not from an increase
in the mean area of the cells. This increase in the number
of cells may be accompanied by a small decrease in the
degree of clustering, if anything. Reciprocally, the number
of cells is drastically reduced in dry scenes as compared
to moister ones, but the mean area of the cells can remain
unaffected. Dry scenes can contain both small and large
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cells, but only few cells of each category. Hence, keep-
ing precipitation constant while moving into drier scenes
in our phase-space representation is accompanied by an
increase in the mean area of the cells, which compensates
for the reduction in the number of cells in drier scenes.
An increase in the mean area of the cells also comes
with an increase in the degree of clustering. In this sense,
clustering may be seen as important to maintain precip-
itation amounts in drier atmospheres. Moreover, taking
two scenes with the same WVP, the scene with the largest
mean area of its cells, and hence the higher degree of clus-
tering, exhibits the largest scene-averaged precipitation.
This seems to be the only positive effects of clustering on
the precipitation amounts from the different investigated
aspects.

The above results were derived for the tropical belt
comprised between 5◦N±20◦ and for oceanic regions only.
Repeating the analysis for the land region confirmed the
poor correlation between the degree of clustering and
precipitation. In that case, Iorg and precipitation are even
anti-correlated, with an increase in precipitation accom-
panied by more randomly distributed cells in a scene.

Our analysis benefitted from the high spatial and tem-
poral resolution of the simulation, as compared to the
typical resolution of observational datasets. This allowed
us to build a robust dataset and to consider organization
even on very small scales. As a next step, it would be
interesting to repeat the analysis using observations. The
similarity of the simulated precipitation distribution in the
A–N phase space to a similar type of distribution derived
from radar observations taken over Darwin, as well as the
poor correlation found between organization and precipi-
tation using radar and satellite observations over Germany
in a previous study, give us confidence that similar rela-
tionships should also be evident in observations spanning
the full Tropics.
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