
Detection Limits and Near‐Field Ground Motions of Fast
and Slow Earthquakes
Grzegorz Kwiatek1,2 and Yehuda Ben‐Zion3

1Section 4.2: Geomechanics and Scientific Drilling, Helmholtz Centre Potsdam, GFZ German Research Centre for
Geosciences, Potsdam, Germany, 2Department of Earth Sciences, Institute of Geological Sciences, Free University Berlin,
Berlin, Germany, 3Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA

Abstract We investigate theoretical limits to detection of fast and slow seismic events, and spatial
variations of ground motion expected fromM 6 earthquakes at short epicentral distances. The analyses are
based on synthetic velocity seismograms calculated with the discrete wavenumber method assuming seismic
velocities and attenuation properties of the crust in Southern California. The examined source properties
include different magnitudes (M −1.0 toM 6.0), static stress drops (0.1–10 MPa), and slow and fast ruptures
(0.1–0.9 of shear wave velocity). For theM 6 events we also consider variations in rise times producing
crack‐ and pulse‐type events and different rupture directivities. Slow events produce ground motion with
considerably lower amplitude than corresponding regular fast earthquakes with the same magnitude, and
hence are significantlymore difficult to detect. The static stress drop and slip rise time also affect themaximum
radiated seismic motion, and hence event detectability. Apart from geometrical factors, the saturation and
depletion of seismic groundmotion at short epicentral distances stem from radiation pattern, earthquake size
(magnitude, stress drop), and rupture directivity. The rupture velocity, rise time, and directivity affect
significantly the spatial pattern of the ground motions. The results can help optimizing detection of slow and
fast small earthquakes and understand the spatial distribution of ground motion generated by large events.

1. Introduction

In the last two decades, significant progress in acquisition of seismic and geodetic data, coupled with
improved analysis techniques and computing power, have led to detection of very small earthquakes, nonvol-
canic tremor, and slow slip events (e.g., Dragert et al., 2004; Obara, 2002; Ross et al., 2019; Shelly et al., 2007).
The use of machine learning techniques can improve further considerably the detection of minute fault
motion events (e.g., Bergen et al., 2019; Kong et al., 2018). The increasing focus on very small events requires
analysis of weak ground motion that is essentially at the noise level. However, weak ground motion with
properties similar to earthquakes and tremor is dominated locally by cars, trains, air traffic, wind‐shaking
obstacles above the ground, and other nontectonic sources (Inbal et al., 2018; Johnson et al., 2019; Meng &
Ben‐Zion, 2018a; Riahi &Gerstoft, 2015). Theoretical constraints on plausible properties ofmotion generated
by different types of slip events on faults at different source‐receiver configurations can help separating tec-
tonic from other sources of weak groundmotion. This can be especially useful for automated techniques that
process vast data sets and do not include validation of the nature of the detected sources.

Kwiatek and Ben‐Zion (2016) conducted a theoretical parameter‐space study on attenuation of amplitudes
and spectral characteristics of motion generated by earthquakes with different magnitudes, various fast (sub-
shear) rupture velocities and various stress drops. The wave propagation calculations used homogeneous
solids with different seismic velocities and attenuation coefficients. In the present paper we generalize that
study by considering also slow rupture velocities, variety of slip velocities, and more realistic crustal struc-
tures having depth‐varying seismic properties. In addition to detection, the attenuation of amplitudes with
distance from seismic sources is highly important for seismic hazard and engineering seismology. There is
considerable literature on empirical attenuation curves that summarize the reduction of observed seismic
motion with distance from faults (e.g., Abrahamson et al., 2014; Atkinson & Boore, 1995; Boore et al., 2013).
Computer simulations of ground motion augment the empirical attenuation curves with additional data
points associated with (rarely observed) moderate and large events and very short propagation distances
(Graves et al., 2011; Liu et al., 2006; e.g. Pitarka et al., 2000). A second key goal of this work is to clarify
aspects of fault motion responsible for the general structure of typical ground motion attenuation curves.
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In the following sections we investigate with calculations of seismic waveforms theoretical limits to detection
of earthquakes with magnitudes in the range −1.0 to 6.0 and provide a basic understanding of expected
groundmotions of earthquakes at short epicentral distances. The calculations are based on forwardmodeling
of seismic waveforms using the discrete wavenumber method (Bouchon, 1977, 1981, 2003) and seismic velo-
city and attenuation properties representative of the crust in Southern California (Fang et al., 2016; Hauksson
& Shearer, 2006). The examined source characteristics include varying magnitudes, different stress drops,
slow and fast rupture velocities, varying rise times, and different focal mechanisms. In section 2, we describe
the methods used to calculate synthetic waveforms to assess detectability of small earthquakes and analyze
near‐fault groundmotions of larger earthquakes. The results on these topics, presented in section 3, highlight
the importance of rupture speed and rise time (in addition to magnitude) on detectability and ground
motions of seismic events. The radiation pattern is shown to have a dominant effect on the shape of attenua-
tion curves at short distances. The results are summarized and discussed in the final section 4.

2. Methodology
2.1. Source Modeling

We extend the original modeling scheme of Kwiatek and Ben‐Zion (2016) to account for more realistic
source processes and wave propagation effects. The employed modeling scheme is presented in Figure 1.

Figure 1. A schematic flow chart of modeling ruptures and calculating properties of ground motion.
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For events with −1.0 ≤ M ≤ 4.0 the seismic source is modeled assuming a rectangular fault with an area
A=WLwithW and L being the fault width and length, respectively. The rupture starts at the center of fault,
propagates radially with constant velocity VR, and stops at the fault edges. The rupture process is described
by three key parameters: average slip over the fault surface u, rupture velocity VR, and rise time τ. For con-
venience, the average slip and rise time are parameterized using seismic moment and static stress drop. The

average slip over the fault is calculated from the seismic moment using: u ¼ M0 GWLð Þ−1, where G ¼ ρV2
S is

the shear modulus with ρ and VS being mass density and shear waves velocity, respectively, and G = 34 GPa
for the assumed hypocentral depths (see next section). The seismic moment M0 = GP0, where P0 is the
potency, is linked with magnitude using the quadratic potency‐magnitude scaling relation of Ben‐Zion
and Zhu (2002): log10P0 = d+ cM+ γM2. The parameters d and c are as in Table 2 of Ben‐Zion and
Zhu (2002) and γ is adjusted within the data uncertainties to the value γ = 0.0712 to fit the moment of M
6 event based on the moment‐magnitude relation of Hanks and Kanamori (1979). The relation between seis-
mic moment M0 and fault area WL is established through static stress drop Δσ using circular crack‐like
source of Eshelby (1957): Δσ = (7/16)M0r

−3, which is typically used for small events. To convert circular
to rectangular fault area, we assume that L = W and use πr2 = LW. Finally, the rise time τ is fixed to be
the rupture duration T; that is, τ = T = L/VR = W/VR. The assumed rise time is not significantly different
from that calculated using various analytical and empirical models (e.g., Boatwright, 1980; Sato &
Hirasawa, 1973; Shaw, 2013). This parameterization is used to quantify the detection limits of small earth-
quakes and to assess features of ground motions at small epicentral distances.

To model events with M > 4.0, we use scaling relations developed for intraplate strike slip earthquakes
(Leonard, 2014, Table 4), which directly relate magnitude with average slip u, fault length L, and width W

as follows: u ¼ 10 M−6:85ð Þ=2, W = 10(M − 3.88)/2.5, and L = 10(M − 4.17)/1.677. However, the rise time τ has sig-
nificant impact on the amplitude of the radiated waves. For crack‐like ruptures, τ is the same as the rupture
duration T or somewhat larger (especially near the hypocenter) since the slip cessation is associated with
arrest waves that propagate back from the rupture boundaries (e.g., Ben‐Zion et al., 2012). For pulse‐like
rupture, the slip duration and τ at each point can be significantly shorter than the rupture duration (e.g.,
Haskell, 1964; Heaton, 1990) due to various dynamic and geometrical mechanisms that arrest the slip while
the rupture is propagating (e.g., Ben‐Zion, 2001; Zheng & Rice, 1998). To account for a reasonable range of
possibilities, the rise time in the simulations of M > 4.0 events is parameterized as

τ ¼ cT ¼ cL=VR; (1)

where c is a numerical factor varying from 0.1 to 1. The elementary slip rate function is a smooth ramp
with a spectral shape parameterized by the rise time τ as

_u ωð Þ ¼ −iπ
τ
2
z−1=zð Þ−1; (2)

with z = exp(ωπτ/4). Examples of the source time functions for fast‐propagating crack‐ and pulse‐ like M 6
earthquakes are presented in the supporting information, Figure S1.

The selected parameterization of source time function convolved with the rupture front propagation history
produce a variety of far‐field displacement spectra (Figure S2 in the supporting information). At sufficiently
large epicentral distances, the decay of the displacement spectra at high frequencies is dominated by a slope
following f−2. For shorter distances, an interplay between f−1 and f−2 spectral decay slopes is clearly visible in
agreement with theoretical expectations for Haskell‐type sources (Haskell, 1964). A higher decay slope of f−3

is also visible for the displacement spectra of crack‐type sources at high frequencies, as a consequence of the
smooth shape of the elementary source time function. These seismic source features are expected to influ-
ence the amplitudes and distribution of ground motions in the performed simulations.

The assumed source model for M > 4 events is used to study details of ground motion at short epicentral
distances from M 6.0 right‐lateral strike‐slip earthquake with hypocenter at a depth of 8.5 km. The selected
strike‐slip kinematics is representative for recent moderate events in Southern California. There are
eight events in the Southern California focal mechanism catalog with MW > 6.0 during 1987–2010
(Yang et al., 2012). Of these, seven have rake between −180° < rake < −159° or 159° < rake < 180°
(i.e., strike‐slip kinematics), and the dip angle of five events is ≥85°. Two rupture scenarios of moderate
events are considered in the simulations. In the first scenario, the earthquake nucleates at the center of a
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vertical rectangular fault (W = 7.0 km and L = 12.5 km, cf. Figure 1) and
propagates radially with constant rupture velocity until arrested at the
fault edges. After reaching the top and bottom of the fault, the initially
circular rupture front becomes a bilateral rupture. In the second scenario,
the nucleation point is located at the same depth but at one edge of the
fault (cf. Figure 1). In this case, a short initial circular propagation phase
is followed by unilateral rupture propagation along the longer fault
dimension L.

All modeled earthquakes are assumed to be pure double couples. Small
non‐double‐couple components have been observed in Southern
California and elsewhere (e.g., Ross et al., 2015; Stierle et al., 2014).
However, the observed range of non‐double‐couple components does
not have a significant effect on the resulting ground motions and signal‐
to‐noise ratio (SNR) of P and S waves (Kwiatek & Ben‐Zion, 2016).

2.2. Synthetic Seismograms

The synthetic seismograms are calculated using the discrete wavenumber
technique (Bouchon, 1977, 1981, 2003) and the account for the free sur-
face effect. The assumed crustal structure incorporates 1‐D azimuthally
averaged P and S wave velocities based on the 3‐D tomography results
of Fang et al. (2016), and the 1‐D attenuation models of Hauksson and
Shearer (2006) for southern California (Figure 2). The velocities change
smoothly in the depth interval 0–20 km from 5.5 to 6.9 km/s for P waves
and 3.1 to 4.0 km/s for S waves. For the sake of simplicity and generality,
the assumed velocity model does not include near‐surface velocity gradi-

ents related to sediments. Also, we do not consider sharp velocity discontinuity at shallow midcrustal depth
(e.g., Dreger & Helmberger, 1991) that can influence ground motions characteristics. Existence of such layer
complicates the wavefield, leading to multiple S reflections in the material above, modifies surface wave
amplitudes, and changes the transmissivity of seismic energy from events located below the layer (Dreger
& Helmberger, 1991; Catchings & Kohler, 1996). The quality factors of P and S waves (third model for QP

and second model for QS from Hauksson and Shearer, 2006) increase rapidly in the first 4 km from about
100 to 400–500, and then continue to increase slowly reaching QP = 575 and QS = 660 at a depth of 20 km.

During the modeling of synthetic seismograms, the sampling rate is dynamically adjusted to obtain correct
reproduction of waveform shapes and preserve the high‐frequency content. This is especially important for
the smallest events with high assumed rupture velocity and stress drop, where the expected frequency con-
tent is the highest, (cf. Kwiatek & Ben‐Zion, 2016).

2.3. Signal‐to‐Noise Ratios

To calculate signal‐to‐noise ratio (SNR), we first create a time series generated from power spectral density of
the average noise model designed in Kwiatek and Ben‐Zion (2016). That model was developed using the
average of low and high noise models of Peterson (1993) at low frequencies, extended to high frequencies
using empirical data from natural and induced earthquakes.

Before calculating SNR, the synthetic noise trace and synthetic seismograms are filtered using a
second‐order 0.01 Hz high‐pass Butterworth filter. This removes very low frequency oscillations of synthetic
noise traces, but does not influence theM < 4 signals considered in this study. The standard deviation of the
noise level is calculated from the filtered noise trace using

σnoise ¼ std
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x tð ÞþN2
y tð ÞþN2

z tð Þ
qn o

t∈Tnoise
; (3)

where Nx(t), Ny(t), and Nz(t) are the three components of the ground velocity noise trace.

The signal level is measured separately for the P and S waves. A 1‐D ray tracing is used to calculate the
expected arrival times of the body waves in the synthetic seismograms. For P waves, a time window is

Figure 2. The 1‐D structural model used in calculations of synthetic
seismograms based on the P and S wave velocity results of Fang
et al. (2016) and quality factors models of Hauksson and Shearer (2006).
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selected around the first P arrival tP using, TP = [tP − 0.03s, tP+0.5(tS − tP)]. The maximum amplitude of P
wave is searched in the window TP using all three components of the synthetic seismograms Vx,Vy, and Vz:

VP
max ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x tð Þþv2y tð Þþv2z tð Þ

qn o
t∈TP

(4)

The corresponding SNR ratio is then calculated as

SNRP ¼ VP
max=σ

noise (5)

A similar procedure is used to calculate the SNR for the S wave using a generalized time window
TS = [tS − 0.03s, tS+ 3(tS − tP)], adjusted to the expected S wave arrival and duration of the rupture pro-
cess. As in Kwiatek and Ben‐Zion (2016), an SNR of 20 dB means that the maximum velocity amplitude of
P or S wave arrival is 10 times larger than the noise level. The detection limit of a single station is assumed
to be 0 dB and may be decreased to −12 dB using an array of sensors (Inbal et al., 2015; Meng & Ben‐
Zion, 2018b).

2.4. Detection Limits

To analyze detection limits of small earthquakes, synthetic seismograms of events with magnitudes M
between −1.0 and 4.0 are calculated for stations at epicentral distances ranging from 0.1 to 50 km assuming
different source characteristics. To investigate the influence of source properties on the SNR, we consider a
range of rupture velocities from 0.1 VS to 0.9 VS and three static stress drops equal to 0.1, 1.0, and 10MPa. We
assume constant hypocenter depth of 8.5 km, which corresponds to the peak in the hypocentral depth dis-
tribution of Southern California earthquakes (Figure 3).

To estimate detection limits for a particular combination of source characteristics, we average information
from many synthetic seismograms and corresponding SNRs as follows. For selected combination of source
parameters (magnitude, stress drop, rupture velocity), synthetic seismograms of event at a depth of 8.5 km
are calculated 200 times for a considered range of epicentral distances. Each calculation uses a different focal
mechanism and a random azimuth between the earthquake epicenter and seismic station. The focal
mechanism for each synthetic seismogram realization is sampled using one of the following two strategies:

Strategy A: Focal mechanism parameters are randomly drawn from a subset of Southern California (SC) cat-
alog of 14,830 fault plane solutions for years 1981–2014 with highest “class‐A” quality (Yang et al., 2012). The
observed SC catalog of fault plane solutions for these years is dominated by strike‐slip mechanisms
(Figure 3b).

Figure 3. (a) Epicentral distribution of earthquakes (black and gray dots) in the Southern California catalog of Hauksson
and Shearer (2006). The used 14,830 earthquakes with class‐A quality focal mechanisms in the catalog of Yang
et al. (2012) are shown with black dots. (b) Histogram of class‐A quality events as a function of hypocentral depth with
colors denoting focal mechanism type. The inset displays faulting type statistics of the used catalog.
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Strategy B: Focal mechanism parameters are selected randomly following the procedure described in
Boore (1986). This is equivalent to our earlier study (Kwiatek & Ben‐Zion, 2016), which provided a generic
assessment of ground motions and SNRs independent of source kinematics.

Having a set of 200 synthetic seismograms sampled with either strategy, the corresponding SNRs calculated
using Equation 4 are averaged. This means that the calculated ground motions are independent of station
azimuth and specific to the selected source characteristics and strategy of focal mechanism sampling.

2.5. Near‐Fault Ground Motions

The results on this topic include simulations and analysis of near‐fault ground motions of small and moder-
ate events fromM−1 toM 4, and a number of simulations forM 6 earthquakes associated with different rup-
ture processes.

For events withM ranging from−1 to 4, the maximum recorded ground motions Vmax is calculated from the
synthetic seismograms and investigated as a function of epicentral distance, Vmax(R). The examined source
parameters influencing Vmax(R) include earthquakemagnitude, static stress drop, rupture velocity, and focal
mechanism sampling strategy.

For theM 6 events, we examine features of ground motion distribution at the surface as a function of epicen-
tral distance and azimuth from the direction of rupture propagation, Vmax(R,Φ). We simulate different rup-
ture scenarios by modifying the rupture velocity VR (0.1–0.9VS) and rise time τ (0.1–1.0 L/VR). For a range of
rupture velocities and rise times, we test two end‐member cases associated with bilateral and unidirectional
ruptures (cf. Figure 1).

Figure 4. Maximum SNR of P and S waves (dashed and solid lines, respectively) as a function of magnitude for
epicentral distances of 1 km (a, c) and 10 km (b, d). The curves are parameterized for stress drops of 0.1, 1.0, and
10 MPa (color scale). Figures 4a, 4c and 4b, 4d show SNRs averaged from focal mechanisms sampled using strategies A
and B, respectively (see text for details).
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3. Results
3.1. Detection Limits of Regular Earthquakes

Figures 4a and 4b presents SNRs of P and Swaves for events with standard
rupture velocity (VR = 0.9VS), associated with different magnitudes and
focal mechanisms drawn from the Southern California earthquake cata-
log (strategy A). Corresponding generic cases using random focal mechan-
isms (strategy B) are shown in Figures 4c and 4d. All curves are calculated
for stations located at 1 and 10 km epicentral distance from the sources at
a depth of 8.5 km (8.6 and 13.1 km hypocentral distance, respectively),
which is dominant depth of events in the SC earthquake catalog
(Figure 3b). The calculated curves are parameterized by static stress drop
values of 0.1, 1.0, and 10 MPa.

The observed SNRs decrease, as expected, with decreasing magnitude and
static stress drop. Earthquakes withM = −1.0 are still detectable at 1 km
epicentral distance using Swaves, regardless of the static stress drop; how-
ever, the corresponding P wave amplitudes are already at the detection
limits (Figures 4a and 4c). At 10 km epicentral distance, the conventional
detection limit is M = −0.7 when S phase is considered (Figures 4b and
4d), although events withM = −0.7 and lower magnitudes may be detect-
able with array processing. The ratio between maximum velocity ampli-

tudes of P and S waves VS
max and VP

max is approximately constant (=0.1,
=20 dB) for the same magnitude and stress drop. As discussed in
Kwiatek and Ben‐Zion (2016), this corresponds to differences in P and S
waves radiation related to the assumed shear source.

With increasing M, the variations of maximum velocity amplitudes (and
therefore SNR) increase for events characterized by different static stress
drops. ForM 4.0, the difference in SNR may reach ~25 dB for events char-
acterized by 0.1 and 10 MPa static stress drop at 10 km epicentral distance
(e.g., Figure 4b). For the same epicentral distance andM − 0.5, the SNR is
essentially the same regardless of the stress drop. The results presented in
Figure 4 are comparable to those obtained using homogeneous velocity
and attenuation structures (Kwiatek & Ben‐Zion, 2016).

3.2. Detection Limits of Slow Earthquakes

Figure 5 summarizes the influence of rupture velocity of events with dif-
ferent magnitudes on the maximum amplitude of ground velocity of P
and S waves at epicentral distances of 1 and 10 km. The events are
assumed to have hypocenter depth of 8.5 km deep and static stress drop

of 1 MPa, and the results are averaged over focal mechanisms sampled from the SC catalog (strategy A).
The results show that lowering the rupture velocity leads to a rapid decrease in the observed groundmotions
of P and Swaves, and thus the corresponding SNR. At 1 km epicentral distance and VR = 0.5VS, the detection
limits using S and P waves are M −1.0 and 0.5, respectively. For a slow rupture velocity of VR = 0.1VS, the
corresponding detection thresholds for S and P waves are M 0.5 and M 2.2, respectively.

3.3. Ground Motions of Regular Earthquakes at Short Distances

Figure 6 presents the dependence between maximum ground velocity amplitude of SwaveVS
max and epicen-

tral distance ranging 0.1 to 5 km for earthquakes with static stress drops of 0.1, 1.0, and 10 MPa assuming
standard rupture velocity of 0.9 VS and constant hypocenter depth of 8.5 km. The curves are parameterized
bymagnitude and focalmechanism sampling strategy. Themodeling results are comparedwith average peak
ground velocities observed in different magnitude ranges for earthquakes recorded in the San Jacinto Fault
Zone in California (cf. Figure 17 in Kurzon et al., 2014). The modeled results exhibit larger values ofV s

max for
earthquakes having larger magnitudes and static stress drops. At distances exceeding 5 km, a progressive

Figure 5. Maximum SNR of ground velocity amplitude as a function of
magnitude for epicentral distances of 1 km (a) and 10 km (b) averaged
over focal mechanisms drawn from SC catalog (strategy A). Yellow, red,
and violet curves are parameterized by rupture velocities of 0.9VS, 0.5VS,
and 0.1VS, respectively. The assumed static stress drop is 1 MPa.
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drop‐off in V s
max is observed, with a slope of the drop‐off in V s

max at larger
distances that is generally consistent with the observations of Kurzon
et al. (2014). We also note that for the modeled small earthquakes with
high stress drops, the values ofV s

max decrease more rapidly with increasing
epicentral distance. This can be related to attenuation, which reduces the
high‐frequency content of the modeled waveforms, and is visible most
clearly for events with high dominant frequencies, that is, those with small
magnitudes and high stress drops. A more extended presentation of this
issues is given by Kwiatek and Ben‐Zion (2016).

At short epicentral distances, the simulated ground motions present an
interesting nontrivial behavior. For small events with approximately
M < 2.0, the modeled curves show generally a flattening at distances
below 5 km. However, for larger events V s

max seems to decrease at short
epicentral distances without the plateau that characterizes small events.
This effect becomes more prominent with lower stress drops and larger
magnitudes. The different sampling strategies of focal mechanisms have
persistent effect on the modeled ground motions, regardless of the
assumed magnitude and static stress drop of the source (cf. solid and
dashed lines in Figure 6). The observed average V s

max values are lower at
short epicentral distances (<8 km) when focal mechanisms are drawn
from the SC catalog. However, for larger epicentral distances, the modeled
V s

max are similar regardless of the strategy of focal mechanism sampling.
We return to these features in the discussion section.

3.4. Ground Motions of Moderate Slow and Fast Earthquakes

Figure 7 presents the expected surface distribution of maximum ground
velocity amplitude, Vmax(Δ,Φ), as a function of epicentral distance Δ from
the hypocenter and azimuth Φ from the rupture propagation direction
(which is always to the north). The subplots show modeling outcomes of
Vmax(Δ,Φ) for bilateral and unilateral rupture propagation and two
extreme rupture velocities: VR = 0.9VS and VR = 0.1VS. In all cases pre-
sented in Figure 7 we assumed crack‐type ruptures (c = 1.0 in
Equation 1), that is, the rise time is equal to the duration of the rupture
process.

Regardless of the rupture propagation type and velocity, the observed
Vmax(Δ,Φ) values are very low and do not exceed 1 cm/s in the areas of
largest ground motions. The low ground motions are related to the
assumed crack‐type source time function with long gradual rise times of
slip. The Vmax(Δ,Φ) decreases considerably with reduced rupture velocity,
which further elongates the total duration of the source time function.
The ground motions for slow rupture propagation of 0.1VS are nearly 10
times lower than that for the fast rupture propagation. Finally, in these
results, the spatial distribution of ground motions seems to be dominated
by radiation pattern from the strike‐slip event with relatively minor effects
from the rupture directivity.

Figure 8 shows corresponding results of surface distribution of ground
motions for pulse‐like ruptures, where the rise time is equal only to 10%
of the rupture duration (c = 0.1, cf. Equation 1). In this set of modeling
results, the directivity effects dominate the ground motion distribution
for fast rupture propagation (Figures 8a and 8b), leading to strong PGV
values along the direction(s) of rupture propagation. The ground motions
reach over 25 cm/s for a fast bilateral rupture propagation, whereas the

Figure 6. Dependence of maximum amplitude of S waves, VS
max on

epicentral distance for earthquakes with stress drops of to 0.1, 1.0, and
10 MPa (subfigures a–c). Each curve is parameterized by earthquake
magnitude and sampling strategy of focal mechanisms. Solid and dashed
curves represent VS

max calculated from synthetic seismograms with focal
mechanisms drawn randomly (strategy B) or sampled from the SC focal
mechanism catalog (strategy A), respectively. Gray dotted lines represent
VS

max averaged in different magnitude ranges from earthquake data
recorded in the San Jacinto Fault zone (cf. Figure 17, Kurzon et al., 2014).
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corresponding unilateral propagation produces the largest simulated PGV of ~37 cm/s. For slow ruptures
propagation of 0.1VS, the surface distributions of ground motions generated by crack‐type (Figures 7c and
7d) and pulse‐type (Figures 8c and 8d) ruptures are comparable. However, the maximum amplitude of
ground motions for pulse‐type rupture is 3–4 times higher than that of crack‐type events.

4. Discussion

Understanding the factors influencing seismic groundmotion is important for earthquake physics, detection
of regular and slow events, as well as seismic hazard assessments especially at short epicentral distances
where the available data are scarce. To provide information for these topics, we simulate ground motions
from finite‐size earthquakes with magnitudes ranging from M −1.0 to 6.0, different stress drops, directivity
effects, rupture velocities, and rise times. The modeling is done assuming crustal structure and earthquake
properties observed in Southern California, but various features are general and apply (perhaps with mod-
ified amplitudes) to other regions.

Constraining focal mechanisms to a particular subset has a clear effect on groundmotions at short epicentral
distance (Figure 6). We observe that strike‐slip dominated mechanisms reduce the ground motions close
to faults in comparison to a generic case of randomly selected mechanisms. To clarify this further, we
follow the procedure of Boore and Boatwright (1984) to estimate average radiation pattern correction

Figure 7. Distribution of maximum ground velocity amplitude at the surface expected from a strike‐slip slip crack‐type
(c = 1.0)M 6.0 earthquake (strike/dip/rake = 0°/90°/0°, nucleation point depth = 8.5 km L = 12.5 km W = 7.0 km) as a
function of epicentral distance from the nucleation point and azimuth from the rupture propagation direction. The surface
fault trace is shown with green color, and the rupture propagation direction is marked with arrow(s). Subfigures show
groundmotions for (a, c) bilateral and (b, d) unilateral rupture propagation and (a, b) fast and (c, d) slow rupture velocities.
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coefficients. We first model takeoff angles at epicentral distances ranging from 0.1 to 100 km from an event
located at 8.5 km depth. Then, we calculate the expected radiation of P and S waves using double‐couple
radiation pattern (Aki & Richards, 2009; Boore & Boatwright, 1984; Kwiatek & Ben‐Zion, 2016; Ou, 2008)
and random station azimuth. The strike, dip, and rake are either chosen randomly or randomly from the
SC focal mechanism catalog. The procedure is repeated 60,000 times and the resulting ensembles of P and
S wave radiation coefficients sampled with strategies A and B are averaged (Boore & Boatwright, 1984) for
each epicentral distance.

Figure 9a presents changes in the average P and S wave radiation coefficients expected from random and
SC‐based focal mechanisms as a function of epicentral distance. Random sampling of focal mechanisms pro-
duces average P and S wave radiation coefficients close to 0.52 and 0.63, respectively (Boore &
Boatwright, 1984). However, selection of focal mechanisms based the SC catalog leads to radiation coeffi-
cients that change with epicentral distances (black lines in Figure 9a). At shorter distances, the expected
radiation of P and S wave is 1.2–1.4 times lower than the expectations using random focal mechanisms
(Figure 9b). Close to 10 km epicentral distance, the radiation of P and S waves become comparable regard-

less of strategy of focal mechanisms sampling. This explains the persistent discrepancy of the simulatedVS
max

in Figure 6 with the different strategies of focal mechanism sampling.

The saturation of ground motions at close epicentral distances (cf. Figure 6) is an important feature that is
represented in Ground Motion Prediction Equations (GMPE) developed for different regions (see Atkinson
et al., 2016, and references therein). Yenier and Atkinson (2015) used an equivalent point source model to

Figure 8. Distribution of maximum ground velocity amplitude at the surface expected from a strike‐slip slip pulse‐type
(c = 0.1)M 6.0 earthquake. Subfigures shows ground motions for (a, c) bilateral and (b, d) unilateral rupture propagation
and (a, b) fast and (c, d) slow rupture velocities.
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develop generic GMPE, where the observed near‐distance saturation in
ground motions is modeled assuming a site‐dependent effective distance

parameter, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ h2

p
, where D is hypocentral distance and the addi-

tional term h called the effective or pseudo depth. This site‐dependent
parameter scales predominantly with earthquake magnitude. Increasing
magnitude enhances the effective depth parameter, and therefore enlarges
the saturation of the constant ground motions at short epicentral dis-
tances. However, as pointed out by Yenier and Atkinson (2015), this
parameter likely aggregates influence from other source‐related factors
influencing the event size, such as static stress drop.

The larger the event dimension is (larger magnitude or lower stress drop),
the more prominent is the depletion in ground motions in Figure 6 at
short epicentral distances, even for the buried ruptures considered in
our simulations with 8.5 km hypocenter depth. The depletion is clearly
visible for events with magnitudes as low as M = 3.0 and is produced pri-
marily by geometrical factors associated with the radiation pattern (cf.
Figure 9) and rupture dimensions. Reduced stress drops lead to enhanced
depletion of the ground velocity amplitude at short epicentral distances
due to the relatively larger fault size for the same magnitude range (cf.
Figures 6a and 6c). Lowering the static stress drop for a given magnitude
corresponds to an increase of the effective depth parameter of Yenier and
Atkinson (2015).

The simulations of ground motions of small events with M ≤ 4 are done
using the standard assumption that small events follow statistically a
crack type behavior (e.g., Eshelby, 1957; Sato & Hirasawa, 1973). The geo-
metrical and dynamic mechanisms leading to pulse‐type events are stron-
ger for larger events (e.g., Ben‐Zion, 2001; Day, 1982; Lyakhovsky
et al., 2016). However, there is evidence that small earthquake may also
behave in pulse‐like manner (e.g., Dreger et al., 2007; Mori &
Hartzell, 1990; Uchide & Ide, 2010). The assumption of pulse‐type beha-
vior also for small event would lead generally to increased amplitudes of
ground motions, similar to the results obtained from modeling
pulse‐type M 6.0 earthquakes.

Figure 10 presents the maximum simulated ground velocities averaged
over different ranges of azimuths as a function of epicentral distance for
events with different rupture velocities, rise times, and rupture directiv-
ities. The rupture velocity and rise time (crack‐ vs. pulse‐type rupture)
affect considerably the amplitude of the ground motion, but they do not
influence the shape of the relative depletion of groundmotion at short epi-
central distances. However, the depletion of ground motion at very short

distances is less pronounced for unilateral ruptures, which focus more energy near the fault, but for a given
rupture directivity all curves diminish at the same rate with epicentral distance. We conclude that the shape
of depletion of groundmotions with distance and azimuth is governed by the earthquake size, focal mechan-
ism, and source directivity. On the other hand, the amplitude of generated ground motion is governed, in
addition to earthquake magnitude and stress drop, by rupture propagation velocity and the slip rise time

or crack versus pulse rupture type. Interestingly, the modeled depletion inVS
max is seemingly not reproduced

for the largest earthquakes in Figure 17 of Kurzon et al. (2014), where the observed PGV values tend to flat-
ten at short epicentral distances. This may be produced by the heterogeneous mixture of focal mechanisms
in that study area along the San Jacinto fault zone (e.g., Bailey et al., 2010) and perhaps also dominant uni-
lateral ruptures.

For the modeled M 6 event, the effects of source kinematics of the right‐lateral strike‐slip rupture are visi-
ble for slow propagation cases (VR = 0.1VS) (cf. Figures 7c and 7d and Figures 8c and 8d). The assumed

Figure 9. (a) Changes in average radiation pattern coefficients of P (dashed
black line) and S waves (solid black line) with epicentral distance for focal
mechanisms randomly drawn from the SC catalog. Gray lines show
corresponding generic average radiation pattern coefficients for
randomly sampled focal mechanisms (0.52 and 0.63 for P, and S waves,
respectively; cf. Boore & Boatwright, 1984 for details). (b) The quotients
between average radiation pattern coefficient calculated using mechanisms
drawn randomly and sampled from SC focal mechanism catalog for P
(dashed line) and S waves (solid line) (cf. Figure 6).
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pure strike‐slip focal mechanism produces little radiation of P and S
waves close to the epicentral area, and most of seismic energy is
radiated laterally and expresses on the surface at larger distances (typi-
cally >10 km). For the case of crack‐type slow rupture (Figures 7c and
7d), the surface distribution of ground motions is dominated by the
radiation pattern and directivity effects are not visible. Consequently,
the resulting ground motions are very low (cf. Figure 10). However, fast
crack‐type earthquakes (c = 1.0, VR = 0.9VS, Figures 7a and 7b) produce
signatures of rupture directivity. This is evidenced as an additional zone
(unilateral) or zones (bilateral) with larger ground motions, located
along the direction of rupture propagation. Also, the overall level of
ground motions is ~10 times larger than that produced by slow
crack‐type ruptures (Figure 10). Fast pulse‐like earthquakes with clear
signatures of directivity produce extreme ground motions (Figures 8a
and 8b) along the rupture propagation direction. The maximum ground
motion is over 35 cm/s for the modeled fast pulse‐like unilateral rup-
ture, and over 25 cm/s for the bilateral fast pulse‐like rupture. These
values are 100–300 time higher than that modeled for the slow
pulse‐like earthquake (cf. Figure 10).

The results have implications for the design of seismic monitoring net-
works aiming to optimize the detection of slow earthquakes. It is intui-
tively expected that the strongest ground motions for fast‐propagating
strike‐slip (especially pulse‐like) earthquakes align along the rupture
direction (=fault trace) (cf. Figures 8a and 8b). However, for
slow‐propagating (especially crack‐like) ruptures, the maximum ground
motions are located ±45° and away from the fault trace (e.g., Figures 7c
and 7d), reflecting the dominance of earthquake kinematics and not the
directivity effects.

As shown in Figure 10, changes of rupture velocity and rise time (crack vs.
pulse rupture type) produce substantial changes to the maximum peak
ground velocity and have significant consequences for near‐fault seismic
hazard and earthquake detectability. Moreover, the performance of the
recording sensors (e.g., transfer function) and properties of acquisition
systems (e.g., sampling rate) can further limit the detectability of earth-
quakes. To simulate approximately the transfer function effect of typical
broadband seismometer for the largest synthetic events considered in this
study, we filter the modeled waveforms of the M 6 event using a 0.01 Hz
high‐pass Butterworth filter. The consequence of this slight modification
was a further reduction of the modeled ground motions (see Figures S3
and S4 in the supporting information). Although the surface patterns of
ground motions of the slow, crack‐type bilateral and unilateral earth-
quake were preserved, the observed amplitudes were reduced by a factor
of 2 to a maximum value of 0.025 cm/s (Figure S3). These amplitudes of
ground motions are observed ~10 km away from earthquakes epicenter,
±45° from the fault trace (Figures S3c and S3d, cf. with generic unfiltered
case in Figures 7c and 7d). Such level of ground motions is still above the
noise level observed in the frequency band of the broadband sensor (cf.
Figure 8 in Kwiatek and Ben‐Zion, 2016), so such an event is detectable
by broadband instruments positioned at the right location. Nevertheless,
the resulting groundmotions are of intensity around I (~0.01 cm/s, follow-
ing the Mercalli Scale). The low amplitude and frequency content makes
such events generally not perceptible by humans (Du et al., 2017). This is

in striking contrast with fast, pulse‐like ruptures that produce V S
max over

Figure 10. Maximum amplitude of ground velocity motions VS
max versus

epicentral distance averaged over (a) all azimuths, (b) azimuths around
rupture propagation direction 315–45°, (c) azimuths perpendicular to
rupture propagation direction (45–135°). Results for unilateral and
bilateral ruptures are denoted by triangle and rhombus symbols,
respectively, and calculations for short and long rise times (pulse‐ and
crack‐type ruptures) are shown with solid and dashed lines, respectively.
Warmer colors reflect higher rupture velocities.
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30 cm/s along the fault direction at the same distances of 10 km, which leads to VII intensity scale earth-
quake associated with “severe shaking” characteristics.

The sampling rate of the acquisition system can have significant effects on earthquake detectability. In our
synthetic simulations this issue was suppressed using a sampling rate that is dynamically adjusted to pre-
serve the high‐frequency content of the waves. However, a reduction in the SNR is expected when the fre-
quency content of the waves does not match the recording frequency band, which depends on the
sampling rate at the upper limit of frequencies. To simulate this effect, we downsampled our original syn-
thetic waveform data of M ≤ 4 events to 200 and 100 Hz (the approximate lower‐frequency limit of modern
short‐period sensors targeting detection of small events) and recalculated SNRs. The reduction in sampling
rate was found to affect visibly, by up to 10 dB, only the SNR for the smallest modeled events (M ≤ 0, higher
stress drops 1–10 MPa) and at close distances (Figure S5). Low stress drop and large‐magnitude events at
short distances remained unaffected by the sampling rate decrease, and the potential effect of low sampling
rate on SNR decreases with increasing distance. We conclude that the upper‐frequency band of the acquisi-
tion system must be taken into account while optimizing the detection capabilities of small, high‐frequency
(high stress drop) events at short source‐receiver distances (see additional discussion on this in Kwiatek &
Ben‐Zion, 2016).

5. Summary and Conclusions

Using the discrete wavenumber method to simulate seismograms of earthquakes with magnitudes ranging
from −1.0 to 6.0, we investigate the influence of various seismic source characteristics on detection limits
and groundmotion distributions at short epicentral distances. For event detection, we examine the influence
of magnitude, stress drop, and rupture velocity on SNR of events at distances not exceeding 50 km. For
improved understanding of ground shaking at short epicentral distances, we examine in addition results
for a representativeM 6 strike‐slip earthquake parameterized by different rupture velocity (0.1–0.9VS), direc-
tivity effects (unilateral‐bilateral), and propagation type (crack‐type, pulse‐like).

In addition to earthquake magnitude and path effects, the simulations highlight the importance of static
stress drop and rupture velocity for detectability of small crack‐type earthquakes with rise time comparable
to rupture duration. Slow rupture propagation speed and lower stress drops reduce overall the seismic radia-
tion and increase the magnitude detection limits of events. The saturation or even depletion of seismic
ground motion at short epicentral distances can be understood primarily by geometrical properties asso-
ciated with the earthquake size (magnitude, stress drop), radiation pattern, and hypocenter depth.

For larger earthquakes, effects associated with rupture propagation become more important for ground
motions at short epicentral distances. Rupture directivity affects the shape of ground motion curves, while
rupture velocity and rise time (and thus rupture type) influence only the overall amplitudes of the generated
motions. The surface ground motion distribution of slowly propagating slip events is dominated by the focal
mechanism (radiation pattern) and involves generally relatively low level of motion. In contrast, the ground
motion distribution of fast earthquakes is affected significantly by rupture directivity and has large motions
in the direction(s) of rupture propagation. The rise time and, hence, rupture type (crack vs. pulse type) has a
profound effect on the level of ground motions. The clearly different amplitudes of ground motions gener-
ated by the considered events, and their spatial distributions, have important implications for near‐fault seis-
mic hazard and optimization of seismic network for detection of different types of events.

Data Availability Statement

The ground motion data simulated for various rupture scenarios presented in Figures 7 and 8 and S3 and S4
are available as data publication through GFZ data services website (Kwiatek & Ben‐Zion, 2020), see this
website (https://doi.org/10.5880/GFZ.4.2.2020.003).
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