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Abstract The Gravity Recovery and Climate Experiment (GRACE) mission ended its operation in
October 2017, and the GRACE Follow‐On mission was launched only in May 2018, leading to
approximately 1 year of data gap. Given that GRACE‐type observations are exclusively providing direct
estimates of total water storage change (TWSC), it would be very important to bridge the gap between these
two missions. Furthermore, for many climate‐related applications, it is also desirable to reconstruct
TWSC prior to the GRACE period. In this study, we aim at comparing different data‐driven methods and
identifying the more robust alternatives for predicting GRACE‐like gridded TWSC during the gap and
reconstructing them to 1992 using climate inputs. To this end, we first develop a methodological framework
to compare different methods such as the multiple linear regression (MLR), artificial neural network
(ANN), and autoregressive exogenous (ARX) approaches. Second, metrics are developed to measure the
robustness of the predictions. Finally, gridded TWSC within 26 regions are predicted and reconstructed
using the identified methods. Test computations suggest that the correlation of predicted TWSC maps with
observed ones is more than 0.3 higher than TWSC simulated by hydrological models, at the grid scale of 1°
resolution. Furthermore, the reconstructed TWSC correctly reproduce the El Nino‐Southern Oscillation
(ENSO) signals. In general, while MLR does not perform best in the training process, it is more robust
and could thus be a viable approach both for filling the GRACE gap and for reconstructing long‐period
TWSC fields globally when combined with statistical decomposition techniques.

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) mission, launched by the National Aeronautical
and Spatial Administration (NASA) and the German Aerospace Centre (DLR) and flown from March 2002
to October 2017, was dedicated to observe temporal changes in the Earth's gravity field (Tapley et al., 2004).
Changes in gravity detected by GRACE can be used to derive estimates of total water storage change (TWSC)
(Landerer & Swenson, 2012; Syed et al., 2008), for hydrology studies (Chandan & Nagesh, 2018), drought or
flood detection (Yirdaw et al., 2008; Chen et al., 2009; Leblanc et al., 2009; Frappart et al., 2012; Long
et al., 2014; Thomas et al., 2014; Forootan et al., 2019), and for constraining water storage in hydrological
models (Eicker et al., 2014; Khaki et al., 2017; Reichle et al., 2008; Tangdamrongsub et al., 2015; Van
et al., 2014). Quantifying the total water budget, that is, the balance of precipitation (P), evapotranspiration
(E), runoff (Q), and the changes in total water storage at the Earth's surface, is key to understanding the global
water cycle among the Earth's land, ocean, and atmosphere (Sheffield et al., 2009). Several studies also apply
GRACE data to the measurement of ice mass loss (Khan et al., 2010; Mnhajeran et al., 2018; Ran et al., 2018;
Tapley et al., 2019; Velicogna, 2009; Velicogna et al., 2014) and to the ocean mass balance (Hsu &
Velicogna, 2017; Peralta & Woodgate, 2017; Chen et al., 2018; Jeon et al., 2019; Uebbing et al., 2019).

However, after more than 15 years in orbit, the GRACEmission ended its operation in October 2017, and its
successor—the GRACE Follow‐On (GRACE‐FO) mission—was only launched in May 2018, leading to
approximately 1 year of missing data. Although several alternative sensors and data processing techniques
have been proposed to derive surface mass change maps prior to the GRACE period and during the gap
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between the two generations of GRACE missions, for example, from satellite laser ranging (Nerem
et al., 2012; Talpe et al., 2017), global GNSS inversions (Wu, 2003; Rietbroek et al., 2014), or from the
Swarm satellite mission (Bezděk et al., 2016; Jäggi et al., 2016; Lück et al., 2018; Teixeira Encarnação
et al., 2019), none of these appear to be able to provide a spatial resolution or accuracy comparable to that
of GRACE.

Several studies have introduced approaches in reconstructing TWSC prior to the GRACE era (i.e., before
April 2002) by constructing empirical relationships between GRACE TWSC and related climatic and hydro-
logical variables (e.g., rainfall, temperature, sea surface temperature, and soil moisture). For example, a sim-
ple approach was to extend basin mean GRACE total water storage change time series beyond the GRACE
observation period based on an artificial neural network (ANN, Rao & Rao, 2000) model, in which the ANN
learns the relationship between GRACE TWSC and climatic or hydrological variables, and this was then
used to reconstruct basin‐averaged TWSC time series over the past decades (Long et al., 2014). Another
approach was introduced in Forootan et al. (2014) to reconstruct gridded TWSC over a specific region. In
their formulation, spatial patterns and temporal modes of the GRACE‐derived TWSC were firstly separated,
and then TWSC fields were reconstructed by deriving the relations between the GRACE temporal modes
and related predictors. The independent component analysis (ICA, Forootan & Kusche, 2012) method was
suggested to separate the GRACE signal, and the autoregressive exogenous (ARX, Ljung, 1987) method
was applied to derive the relations and produce the reconstructions. Another approach, proposed by
Humphrey et al. (2017), reconstructs total water storage changes at each grid point globally using the main
climate indicators that were selected to be precipitation and temperature fields. They firstly decomposed the
gridded GRACE TWSC time series, as well as precipitation and temperature, into a linear trend, an interann-
ual component, a seasonal component, and a high‐frequency residual component. They then reconstructed
the de‐seasoned (i.e., interannual and residual) component of TWSC at the global scale by deriving relations
between the de‐seasoned component of GRACE TWSC and precipitation and temperature (the linear trend
and seasonal components were not reconstructed). In their approach, they employed the seasonal‐trend
decomposition based on loess (STL, Cleveland et al., 1990) procedure to decompose the GRACE and climate
signals and use the multiple linear regression (MLR, Myers, 1986) approach to derive the relationships
between TWSC and its predictors. Recently, these authors have advanced their method to generate global
de‐seasoned total water storage changes at a spatial resolution of 0.5°, at both daily and monthly scales over
the period 1901 to present (Humphrey & Gudmundsson, 2019). Finally, a deep convolutional neural net-
work (CNN) was recently applied in Sun et al. (2019) to predict spatial and temporal modes of mismatch
between GRACE TWSC and water storage change as simulated by hydrological models and to continue
the correction of model‐simulated TWSC fields. In their approach, the spatial representation of mismatch
between GRACE TWSC and model‐simulated TWSC was firstly predicted using maps of model‐simulated
TWSC, temperature, and precipitation at each epoch based on the CNN, and then total water storage
changes were reconstructed by removing the predicted mismatch from model‐simulated TWSC map.

Though all the mentioned studies are categorized as data‐driven techniques and appear useful for recon-
structing GRACE‐like TWSC fields, to the best of our knowledge, no studies so far have compared their char-
acteristics in a unified framework—that is, for the same target region, with the same input climate data, the
same temporal extension period (e.g., focusing on long‐term trends or rather at seasonal scales), and spatial
data resolution. Existing studies also did not yet assess the skills of these methods under identical conditions
—for example, length of training and evaluation periods. However, with the GRACE data gap it is now of
great concern to identify a reliable and repeatable approach to reconstruct a long and uninterrupted time
series and possibly also to reconstruct the TWSC prior to the GRACE period. The primary objective of this
paper is therefore to provide a comparison of different methods for TWSC prediction or reconstruction. In
this study, we place different methods in a unified methodological framework (Figure 1) to assess their skills
based on identical climate input data and finally identify a robust combination of them for the GRACE gap
filling or for long‐term total water storage change reconstructions.

As a case study, we then assess the skills of combinations of data‐driven methods such as principal compo-
nent analysis (PCA, Wold, 1987), ICA, least squares (LS, Durbin & Watson, 1992), STL, ANN, ARX, and
MLR methods for extrapolating the GRACE gridded TWSC time series outside the GRACE period over 26
river basins using precipitation, land surface temperature, climate indices, and sea surface temperature
(SST) data as indicators. We identify the most robust combination of these methods for all study regions,
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and our tests indicate that the extrapolated (up to 6 years in our case) gridded total water storage change
maps, in all study regions, have much higher correlation with the observed GRACE data as compared to
simulated water storage changes from hydrological models.

Following this introduction, in section 2, the unified framework and the details of the applied data‐driven
methods are described. In section 3, we introduce the GRACE, Swarm, climate, and hydrological data,
and in section 4, experiment results and discussions are provided for 26 study regions. We provide conclu-
sions in section 5.

2. Methods
2.1. Unified Methodological Framework

For an unbiased comparison, we deem it necessary to place methods in a unified framework first, to assess
their prediction skills with identical input and validation data (see Figure 1), for the same region and using
the same metrics.

In general terms, all methods utilize decomposition methods (usually ICA or PCA, Forootan et al., 2014) to
partition the GRACE TWSC maps over a specific region and the suspected climate drivers (we employ pre-
cipitation, land surface temperature, climate indices, and SST) into spatial patterns and temporal modes.
Then, time series analysis methods such as the STL procedure (Cleveland et al., 1990) or a simple least
squares (LS) fitting method are used to further separate the individual modes of GRACE and climate data
into typically a linear trend, seasonal, interannual, and the residual part. Third, the seasonal and

Figure 1. Illustration of the data flow in our unified framework for comparing different data‐driven methods. TWSC means total water storage change; P for
precipitation; T for land surface temperature; and SST for sea surface temperature. ICA/PCA are independent and principal component analysis techniques;
LS/STL are least squares and seasonal‐trend decomposition based on loess procedure; and ANN/ARX/MLR are artificial neural network, autoregressive exogenous,
and multiple linear regression models.
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de‐seasoned (i.e., interannual and residual) components of the GRACE temporal modes are then recon-
structed or predicted from empirical relationships between the temporal modes of GRACE and climate data
as identified for a training period from either ANN, ARX, or MLR method. Eventually, the GRACE‐derived
linear trend is commonly added to the reconstructed seasonal and de‐seasoned components to extrapolate
the full GRACE temporal modes. Here we would like to mention that linear and other long‐term (e.g., accel-
erated) trends in GRACE data are often caused by ice and glacier melt, dammanagement, and human water
abstractions, and these factors could vary over time, so it may lead to misinterpretation when one simply
extrapolates GRACE trends. Furthermore, the long‐term trend (estimated over 10 years of GRACE data)
could be affected by interannual and decadal variability, which might also bias the trends estimation. A
focus on the reconstruction of total water storage trends would require a specific regional treatment of all
factors mentioned above, which is out of the scope of this study. Finally, GRACE‐like gridded TWSC maps
are reconstructed and predicted by combining the GRACE‐derived spatial patterns with the reconstructed
temporal modes. It is, however, unclear how the choice of the particular spatial and temporal decomposition
methods affects the skills of the forecasted maps. Moreover, no systematic study exists which compares the
sensitivity of the predictions or reconstructions to the type of empirical relationship which is trained from
GRACE and climate data residuals. Therefore, in what follows we derive different combinations of methods
and assess them within our unified framework. All possible method combinations are abbreviated as
PCA‐STL‐ANN, PCA‐STL‐ARX, PCA‐STL‐MLR, PCA‐LS‐ANN, PCA‐LS‐ARX, PCA‐LS‐MLR,
ICA‐STL‐ANN, ICA‐STL‐ARX, ICA‐STL‐MLR, ICA‐LS‐ANN, ICA‐LS‐ARX, and ICA‐LS‐MLR. The nomen-
clature of the abbreviations follows the three‐tier pattern XXX (spatial‐temporal decomposition method,
section 2.2.1)–YYY (time series decomposition method, section 2.2.2)–ZZZ (predictive method, section 2.3).

Here, we will focus on isolating the sensitivity of the prediction with respect to one group of techniques while
keeping the other two groups consistent, that is, we will firstly employ the method combinations
PCA‐LS‐ANN, PCA‐LS‐ARX, and PCA‐LS‐MLR to compare the performances of three predictive models
(i.e., ANN, ARX, and MLR) and identify the most robust method for the TWSC prediction, and then this
strategy will be applied to compare the (a) two spatiotemporal decomposition techniques ICA and PCA or
(b) two time series decomposition techniques LS and STL. Figure 1 visualizes the flow of computation via
these various combinations; here we will select several (e.g., m) climate predictors for each decomposed
component (i.e., seasonal, interannual, or residual) of detrended GRACE total water storage change tem-
poral modes. For instance, if we identify six dominant (as to reconstruct a given percentage of the signal
energy, e.g., 95%) GRACE temporal modes for a specific region, then wewill reconstruct 18 (six modes multi-
plied by three components) GRACE components using m × 18 relevant predictors.

2.2. Signal Separation Methods
2.2.1. Spatiotemporal Decomposition
The GRACE maps have a resolution of approximately 300 km, but it would be computationally expensive
and not justifiable to try to predict or reconstruct unobserved TWSC at each (e.g., 100 km) grid point globally.
Thus, for dimensionality reduction, we assume that one will use a statistical decomposition method to iden-
tify the main patterns and modes of GRACE‐observed TWSC and continue with predicting only their tem-
poral evolution. In the end, gridded GRACE signals will be reconstructed assuming that the dominant
spatial patterns do not change over time. This is a caveat of all methods; however it is a common assumption
in the reconstruction of unobserved climate data which, for example, has been used for GRACE in Becker
et al. (2011) and Forootan et al. (2014) or for sea level reconstruction from tide gauges in Church et al. (2004).

The PCA method seeks to separate the original data (i.e., GRACE and climate signals) into orthogonal spa-
tial patterns (EOFs) and their associated temporal modes (EOF modes) as follows (Wold, 1987):

Xn × t ¼ En × nTn × t (1)

The data matrix Xn × t, with n rows for each spatial grid cell and t columns for each epoch, represents the
mean‐centered original data. Columns of En × n contain the separated spatial patterns and rows of Tn × t

the related temporal evolution. The first r dominant modes will contribute to the majority of the original sig-
nal (Wold, 1987). In this case, we choose r as to retain 95% of the total signal variance. The original matrix
can be approximately restored by
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X̂n × t ¼ Ên × rT̂r × t (2)

where bXn × t represents the restored signal, columns of bEn × r are the r dominant EOFs, and rows of bTr × t are
the associated EOF modes.

Forootan and Kusche (2012) suggested that to replace the PCA method by independent component analysis
(ICA) in GRACE signal decomposition, motivated by the assumption that physically independent real‐word
processes will more likely exhibit statistical independence than orthogonality (Forootan et al., 2014). In the
ICAmethod one additionally rotates the dominant EOFs and the temporal modes with a rotationmatrix R to
maximize their statistical independence:

X̂n × t ¼ Ên × rR̂r × r R̂
T
r × r T̂r × t (3)

where the rotatedbEn × rbRr × r are then denoted as independent components (ICs) in the context and thebRT
r × rbTr × t represent the temporal modes (IC modes) identified by the ICA method. Several methods have been

proposed to determine the rotation matrix R, based on different procedures to define statistical indepen-
dences (e.g., minimizing third‐order or fourth‐order statistical cumulants). Here we employ the method
introduced by Cardoso (1999) and implemented in Forootan and Kusche (2012).
2.2.2. Time Series Decomposition
In order to retain and extrapolate the observed trends, and to apply statistical prediction techniques on the
anomalous signals only, one commonly partitions the temporal evolution of observed EOF/IC modes into
(a) a linear trend, (b) interannual, (c) seasonal, and (d) residual signals. These components are then consid-
ered individually. When decomposing time series into seasonal, interannual, and so forth components,
observation errors are typically not taken into account, and they are not considered in this study as well.
Drawing on Figure 1, we consider the least squares (LS) and seasonal‐trend decomposition based on loess
(STL) methods to estimate these deterministic signals in the observed modes. In the LSmethod, linear trend,
interannual, and seasonal components are estimated, for example, by linear regression, segmented cubic
polynomial function, and annual sine‐waves, and the residual or anomalous signal is obtained by removing
these. In the segmented cubic polynomial, the first step is to partition the total time series into several shorter
time series (or subseries), and then the second step is to fit each subseries using a cubic polynomial function:

y tð Þ ¼ aþ bt þ ct2 þ dt3; t ¼ 1; 2; 3;…;n (4)

where y(t), t= 1, 2, 3,… , n represent the segmented subseries, t is the time, and n represents the length of the
subseries. In this case, we set n= 19 months corresponding to the smoothing parameter that was used in the
STL procedure for decomposing the interannual component as described in Cleveland et al. (1990).

STL is a filtering procedure, which was introduced by Cleveland et al. (1990) and applied by, for example,
Baur (2012), Frappart et al. (2013), Hassan and Jin (2014), and Humphrey et al. (2016) to GRACE data; it
allows decomposing a time series into three components trend (i.e., linear trend and interannual in this
study), seasonal, and residual:

Y ¼ Tc þ Sc þ Rc; (5)

where Y is the original time series; Tc, Sc, and Rc represent the trend, seasonal, and residual components
separated from the original time series, respectively; and c is the cycle‐index in the inner loop of the STL pro-
cedure (Cleveland et al., 1990). The trend decomposed by STL comprised of linear trend and interannual
components, so we then separate the linear trend using linear regression, and the interannual is obtained
by removing the linear trend from the STL‐derived trend. Thus, equation 5 can be expressed as

Y ¼ Lc þ Ic þ Sc þ Rc; (6)

where Lc and Ic are the linear trend and interannual components of the original time series. In this study, we
implemented STL as in Cleveland et al. (1990).

STL, which consists of applying a sequence of smoothing operations, is computationally more intensive and
generally retains more detailed features of the acquired time series when fitting seasonal components as
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compared to the LS method. Such difference between STL and LS may also lead to different prediction
results when applying them in the prediction or reconstruction of GRACE total water storage changes as
described in section 2.1. In this study, we employ and compare both LS and STL methods and assess their
performances for the TWSC predictions.

2.3. Three Predictive Models

Predictive models seek to learn a relationship between a group of predictors (here, precipitation, tempera-
ture, sea surface temperature fields, and climate indices) and the target variable (gridded GRACE TWSC)
(Bishop, 2006). Previous studies have successfully employed artificial neural network (ANN), autoregressive
exogenous (ARX), and multiple linear regression (MLR) models to predict and reconstruct GRACE TWSC
time series. In this study, we place these three models in a unified framework and compare them with the
focus on prediction of GRACE total water storage changes.
2.3.1. Artificial Neural Network (ANN) Model
The multi‐layer perceptron (MLP) ANN model has been proposed in the past for predicting GRACE time
series (Sun & Alexander, 2013). We implement this ANN model therefore for learning relations between
decomposed components (i.e., seasonal, interannual, and residual) of detrended temporal modes in
GRACE data and the supposed climate predictors. In the most simple MLPmodel there are three layers, that
is, the input, hidden, and output layers (Bishop, 2006; Long et al., 2014). In this study, the output layer of the
ANN model is separately chosen to represent each decomposed component of detrended GRACE temporal
modes, and the inputs (predictors) comprise selected m sensitive components of climate temporal modes.
The selected climate components (predictors) are determined based on their correlations as related to each
target GRACE component—that is, we select the predictors by retaining the most correlated climate compo-
nents. The number of input “channels” is set tom = 3 because we find no obvious improvement when using
a larger number of predictors. The hidden layer consists of u artificial neurons, and each neuron represents a
sum of weighted predictors. We set the number of artificial neuron to u = 7 in the hidden layer based on the
criterion as described in Forman et al. (2014). It is difficult to reasonably initialize the weights of the artificial
neurons in the ANN training process, such that we randomly choose start weights hundreds of times and
repeat the training process, in order to finally generate the final prediction as amean over several ANNs with
different start weights. In this case, we write the ANN codes based on the Matlab_R2014b neural network
function to develop all MLP networks for this study.
2.3.2. Autoregressive Exogenous (ARX) Model
The ARXmodel, which formulates another type of relationships between a group of inputs and the output, is
governed by a system of linear equations (Ljung, 1987):

y tð Þ þ ∑
na

i¼1
aiy t− ið Þ ¼ ∑

m

q¼1
∑
nb

l¼1
bq;lxq t− l− 1ð Þð Þ þ ε tð Þ; (7)

where y(t), t = 1, 2, … , n represent the target variables, t is the time epoch, and n is the length of the time
series; xq(t), q = 1, 2, … , m represent m channels of inputs (m = 3 in this case); na and nb are the orders
of the autoregressive exogenous model with respect to the output and input, respectively. ε(t) allows for a
random Gaussian‐noise input. Here, ai and bq,l are the coefficients that need to be estimated in the training
step using both inputs and output data; thus they play a role similar to the weights as in the artificial neural
network approach. In this case, we set both na and nb to 3 as discussed in Forootan et al. (2014). After obtain-

ingbai,bbq;l,bna, andbnb one can predict the target variable beyond the training period based on these coefficients
and parameters:

by tnð Þ ¼ − ∑
bna
i¼1

baiby tn− ið Þ þ ∑
m

q¼1
∑
bnb
l¼1

bbq;lxq tn− l− 1ð Þ (8)

whereby tnð Þ represents the predictand of the ARXmodel at the epoch tn. More details about the application of
the ARX model to predict GRACE temporal modes can be found in Forootan et al. (2014). In this case, we
write the ARX codes by referring to the equations as described in Forootan et al. (2014), and we use identical
inputs and output data as employed in the ANN process (see section 2.3.1) to train the ARX model and to
extrapolate the GRACE TWSC time series—that is, we choose three sensitive components of climate
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temporal modes to predict and reconstruct each decomposed component of detrended temporal modes of
GRACE TWSC using the autoregressive exogenous model (equation 7 for training and equation 8 for
testing/predicting).
2.3.3. Multiple Linear Regression (MLR) Model
The MLR model prescribes linear relationships between multiple input and one output variables (Sousa
et al., 2007). In this case, we use themultiple linear regression function fromMatlab_R2014b. The inputs will
be three selected components of climate temporal modes while the output will be the decomposed compo-
nent of detrended GRACE temporal modes. Again, for a fair comparison, we will employ identical input
and output data as used in the ANN and ARX models to train the MLR representation. Here, we choose
the least squares method for the estimation of the MLR coefficients, and then we predict the target variables
based on the estimated coefficients.
2.3.4. Comparison
The artificial neural network model can fully derive nonlinear relationship between the input and output
data, but it is difficult to optimally determine the number of artificial neurons, and it may lead to overfitting
the problem. Furthermore, it is computationally intensive to repeat the ANN training process for improving
the predictand. The ARX and MLR models both employ linear relations, so they cannot be expected to pre-
dict nonlinear relationships too well. Within the ARX model, each predicted value depends on the nearest
former predictand—that is,by tnð Þ in equation 8 is predicted by usingby tn− ið Þ, i= 1, 2,… , na—so the predicting
error of the autoregressive exogenous model is easily accumulated over time. Therefore, the multiple linear
regression method will be likely a better choice on the condition that there are no nonlinear relationships
between the input and output data.
2.3.5. Error Perturbations
In order to study the error propagation characteristics in the three predictive models, we generate a series of
Gaussian‐like uncertainties to perturb each target variable (i.e., GRACE seasonal, interannual, or residual
component) based on the Monte Carlo approach (Challa & Hetherington, 1988). The perturbed target vari-
ables could be expressed by the equation as follows:

Pi tð Þ ¼ G tð Þ þ ξ i tð Þ; t ¼ 1; 2; 3;…;n (9)

where Pi(t) (t = 1, 2, 3, … , n) is the ith perturbed GRACE TWSC; i is the count of iteration times (or random
sample number); t is the time epoch and n is the length of the GRACE time series; G(t) represents unper-
turbed GRACE TWSC; and ξi(t) is the Gaussian‐like uncertainties generated by the Monte Carlo approach.
Here, we first predict the GRACE‐like gridded total water storage changes using the unperturbed GRACE
TWSC as target variable, and then we predict another group of GRACE‐like gridded TWSC using the per-
turbed GRACE TWSC as target variables, and the error propagation bars are estimated by the mismatch
between the unperturbed and perturbed GRACE‐like gridded TWSC:

B tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
PTi tð Þ−UT tð Þð Þ2

s
; t ¼ 1; 2; 3;…; n (10)

where B(t) is the error propagations in the predictive model, t is the time epoch, PTi(t) is the GRACE‐like
gridded TWSC predicted using the ith perturbed GRACE TWSC as target variable, and UT(t) is the
GRACE‐like gridded TWSC predicted by the unperturbed GRACE TWSC;m represents the sum of iteration
times of error perturbations.

3. Data and Processing
3.1. Total Water Storage Change Data

Weuse the RL06GRACEmonthlymascons, developedwith a 1° resolution using Tikhonov regularization in
a geodesic grid domain (Save, 2019; Save et al., 2016) by the Center for Space Research (CSR), between April
2002 and June 2017 as the target variables. The storage anomalies, which capture all the signals observed by
GRACEwithin themeasurement noise level, are given in equivalent water thickness units (cm), and the cor-
related error has been intrinsically removed; thus, these products do not need to be additionally destriped or
smoothed. In this study, we unify the spatial resolution of all input data to 1° × 1° (corresponding to the CSR
mascons) to eliminate inconsistent resolutions between the input and output data.
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The GRACE Follow‐On (GRACE‐FO) mission has been operated since May 2018, and we use the
GRACE‐FO TWSC as a criterion to evaluate the accuracy of the predicted TWSC. The GRACE‐FO temporal
gravity field models, from June 2018 to December 2018, derived by the CSR are employed to estimate the
GRACE‐FO TWSC over all study regions based on the methods and strategies as described in Li et al. (2018).

During the gap of the two GRACE missions, the Swarm satellites may serve as an alternative to derive
Earth's gravity field models albeit at much lower resolution. As a verification to our predicted TWSC, the
RL06 Swarm time variable gravity field models from December 2013 to December 2018 calculated by
Lück et al. (2018), with a max degree of 40, are also employed to estimate the Swarm total water storage
changes. Here, we only use the Swarm gravity field models complete to degree and order ten, to suppress
excessive noise at higher orders.

3.2. Climate Data
3.2.1. Global Precipitation
The Climate Prediction Center (CPC) global daily unified gauge‐based analysis of precipitation (Chen
et al., 2008), with a spatial resolution of 0.5°, is employed in this study. The monthly precipitation is obtained
by averaging the CPC global daily precipitation corresponding to the GRACE time interval, and both daily
and monthly precipitation from October 1991 to March 2019 are used to reconstruct and predict the
GRACE‐like TWSC out of the GRACE period. For improving the correlation between precipitation and
GRACE temporal mode de‐seasoned terms (i.e., interannual and residual), we reconstruct the
de‐seasoned components of monthly precipitation temporal mode using the daily precipitation temporal
mode based on a time delay parameter as introduced by Humphrey et al. (2016). The spatial resolutions of
both daily and monthly precipitation are made consistent to 1°.
3.2.2. Global Land Surface Temperature
Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System (GHCN
CAMS), developed at CPC, National Centers for Environmental Prediction (NCEP), is a monthly global land
surface temperature data set (0.5° × 0.5°) from 1948 to near present (Fan & Dool, 2004). We use this data set
between October 1991 and March 2019 as one of the input climate data to reconstruct and predict
GRACE‐like TWSC time series. As discussed before, the spatial resolution of this data set is sampled onto
1° cells.
3.2.3. Sea Surface Temperature (SST)
Sea surface temperature drives ocean evaporation, which in turn affects atmospheric moisture transport
and, eventually, rainfall over land areas and water storage. For example, the temporal evolution of
GRACE TWSC in west Africa is highly correlated with the SST anomalies in the Pacific, Atlantic, and
Indian oceans (Forootan et al., 2014). To take advantage of this kind of climate data, we use the SST in sev-
eral oceans and seas that are located near the study regions (Figure 2) as one kind of input data. In our case,
the monthly Optimum Interpolation (OI) sea surface temperature, with a resolution of 1°, provided by
National Oceanic and Atmospheric Administration (NOAA) is employed (Reynolds et al., 2002).
3.2.4. Climate Indices
Climate indices are by definition constructed to capture large‐scale variability in fields such as SST or surface
pressure, which are related to land precipitation and temperature through atmospheric teleconnections.
Therefore, several publications (e.g., Anyah et al., 2018) have shown that they play a key role in representing
interannual GRACE water storage variations. In this study, 17 climate indices—that is, Multivariate ENSO
Index (MEI), North Atlantic Oscillation (NAO), Extreme Eastern Tropical Pacific SST (Niño 1+2), Eastern
Tropical Pacific SST (Niño 3), Central Tropical Pacific SST (Niño 4), East Central Tropical Pacific SST
(Niño 3.4), North Tropical Atlantic SST Index (NTA), Oceanic Niño Index (ONI), Pacific Decadal
Oscillation (PDO), Pacific North American Index (PNA), Quasi‐Biennial Oscillation (QBO), Southern
Oscillation Index (SOI), Tropical Northern Atlantic Index (TNA), Trans‐Niño Index (TNI), Tropical
Southern Atlantic Index (TSA), Western Hemisphere Warm Pool (WHWP), and Western Pacific Index
(WP)—are involved as another kind of input data.

3.3. Hydrological Models

Hydrological models simulate soil moisture, near‐surface air temperature, accumulated snow, water/energy
flux, and other hydrological components on land. Several studies have shown that model outputs relate well
with GRACE TWSC although model schemes do not include, for example, all water reservoirs, because the
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temporal evolution of the different water reservoirs is often highly connected (Humphrey et al., 2017). We
use model outputs, including the NASA Global Land Data Assimilation System (GLDAS) NOAH 10M
series model (Rodell et al., 2004) and CPC soil moisture (Fan & Dool, 2004) from January 1992 to
December 2018, to evaluate the reliability of the reconstructed and predicted total water storage change.
Moreover, we also employ the newest WaterGAP Global Hydrology Model (WGHM) version 2.2d results,
over January 1992 to December 2016, in this study. Compared to the 2.2a version (Döll et al., 2014) the
water balance is closed, the calibration routine is changed, and the human water use values and the
groundwater recharge algorithm are improved.

4. Results

We choose 26 major river basins of the world, as delineated online (https://www.grida.no/resources/5782),
as the study regions (Figure 2). For representing the amplitude of GRACE TWSC, we calculate the
root‐mean‐square (RMS) of each gridded CSR mascon over the study regions (Figure A1). To make full
use of the SST data in the TWSC reconstruction and prediction, we divide the global sea surface temperature
data into 14 patches as shown in Figure 2 and use each of them as one of input data.

4.1. Signals Separated from the GRACE Data
4.1.1. Dominant Temporal Modes of GRACE Total Water Storage Change
As discussed in section 2.2.1, the dominant modes identified by the PCA or ICA methods contribute to the
majority of the GRACE signal. We predict each selected GRACE EOF/IC temporal mode individually based
on the methods as described in section 2 and find that forecasting modes with less energy (i.e., less variance
explained of the GRACE signal) tend to have higher standard errors as estimated by the CSR mascons; thus,
while choosing more dominant EOF/IC modes in the TWSC prediction will reduce the signal leakage (i.e.,
signals from discarded modes), this will also increase the prediction uncertainties. Consequently, it is diffi-
cult to choose the optimal number of modes to be selected. An optional approach could be that one first pre-
dicts the TWSC based on a different number (e.g., from 3 to 10) of retained modes and then uses a GRACE
solution to test the uncertainties of TWSC predicted by these different numbers of modes to identify the best
number for each study region. It is important to highlight that although the GRACE solution cannot be
viewed as an unambiguous reference, it could be used to estimate the accuracy of the prediction because
the reference (i.e., GRACE solution in this study) should be accompanied by a “conservative error estimate.”
It is clear that further tuning the methods would improve the reconstruction/prediction skills for a specific
basin. But for applying our approach globally, that is, to a large number of basins, tuning for each basin

Figure 2. The study regions (i.e., 26 river basins) and divided oceans and seas. The river basins are numbered from 1 to 26, and the divided oceans or seas are num-
bered from S1 to S14 as shown in this figure.
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would not be in the interest of repeatability, and it is not clear how robust such over‐tuned approaches would
be. Thus, in what follows we rather define unified criteria for all study regions based on extensive testing on
only a few representative basins. Here, we set a unified criterion—that is, the number of modes that jointly
explain at least 95% of the total variance—to identify the number of dominant modes automatically by the
algorithm. We note that we set the number of selected climate modes equal to the number of selected
GRACE modes just to minimize the inconsistency between the input and output data, but this is not strictly
required for the algorithm.
4.1.2. Linear Trend, Seasonal, Interannual, and Residual Components of the Dominant GRACE
Temporal Modes
After identifying the dominant EOF/IC modes, we decompose each temporal mode of both GRACE
EOFs and ICs using the LS or STL method as described in section 2.2.2. The decomposed components-
for a case region (i.e., the Amazon basin) are shown in Figure A3. These results indicate that there is
no large difference between the LS and STL methods for decomposing the linear trend and
interannual components, and the two methods perform almost the same in separating the seasonal
component from the temporal mode which has a strong periodicity (e.g., temporal modes of GRACE
EOF1 and EOF2 in Figure A3). When decomposing a high‐frequency time series, the LS and STL
methods exhibit some differences in separating seasonal signals—that is, seasonal signals separated by
STL method show more detailed features and larger oscillations (e.g., the temporal mode of GRACE
EOF6 in Figure A3).

4.2. Prediction and Reconstruction of Total Water Storage Change for 26 Study Regions
4.2.1. Selection of Climate Inputs for the Total Water Storage Change Prediction
In this study, we predict and reconstruct the interannual, seasonal, and residual components of significant
GRACE TWSC temporal modes for each study region based on the predictive models that was introduced in
section 2.3. These predictive models seek to derive the relationship between the input and output data.
Typically, there are a few months of lag time between the climate variations and GRACE TWSC; thus,
our algorithm is designed to automatically move each climate driver (i.e., the interannual, seasonal, or resi-
dual of climate temporal modes) time series for a few months (i.e., 0 to 3 months) to search for the strongest
correlation, and for this we also interpolate the GRACE TWSC time series to fill the missing data. In addi-
tion, we reconstruct the de‐seasoned components of precipitation temporal modes based on a time decay
parameter that was developed by Humphrey et al. (2016) to further improve the correlation between the pre-
cipitation and GRACE components.

For selecting the “best” input data, the correlation coefficients between each target variable (i.e., the inter-
annual, seasonal, or residual of GRACE EOF and IC temporal modes) and related climate drivers are auto-
matically computed and sorted by our algorithm, for example, for a specific basin we calculate the
correlation coefficients between the interannual component of GRACE EOF1 mode and interannuals from
precipitation, land temperature, SST (in 14 different oceans and seas) EOF modes, and 17 climate indices
and sort them by size, and then this process is successively applied to GRACE EOF1 mode seasonal,
GRACE EOF1 mode residual, GRACE EOF2 mode interannual, and so on. Here, the sensitive input data
are sorted only by correlation coefficients, and for the selection this method may reject a predictor that is
not very highly correlated but brings new information compared to other highly correlated predictors. So,
before the selection of inputs, we use the stepwise regression method (Summers, 1985) to remove the highly
correlated predictors which do not bring sufficient new information. In addition, we would like to make a
cautionary note that correlation between climate input and the GRACE data does not necessarily represent
causation, and in this case our (like any other similar) techniques may derive a “right answer due to the
wrong reasons” but of course may fail in extrapolating well.

As discussed in section 2.3, we choose three sensitive climate drivers as predictors to extrapolate each target
variable. Furthermore, we identify one most sensitive climate driver for each target variable as listed in
Table 1. We find that the temporal evolution of GRACE total water storage change seasonal component is
highly related to the seasonal component of SST (see the third column in Table 1), and the time series of
GRACE TWSC interannual and residual components are strongly correlated with the interannual and
residual of both sea surface temperature and precipitation variations (see the fourth and fifth columns
in Table 1).
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4.2.2. Metrics for Methods Comparison and Estimation of
Prediction Uncertainties
4.2.2.1. Criteria for Identifying the Most Robust Method
There are more than 15 years of GRACE data altogether (April 2002 to
June 2017). In the data processing, we set the training section to April
2002 to June 2011 and set the testing period to July 2011 to June 2017, that
is, we use the GRACE data from April 2002 to June 2011 to train the pre-
dictive models and to test the uncertainty of the next six years (i.e., July
2011 to June 2017) of prediction. Then, we use the CSR mascons to calcu-
late the standard error of both training and testing TWSC. We note that
one can determine “absolute” errors, including the systematic and ran-
dom errors, only in the training phase. In the computations, we set the
testing section within the GRACE period just for assessing the uncertainty
of predicted TWSC. As discussed in section 3.1, the CSR mascon contains
the GRACE measurement noises. Several studies (e.g., Landerer &
Swenson, 2012) have assessed the measurement errors that are contained
in the GRACE‐derived total water storage changes. These measurement
errors may falsify the validation between the predicted/reconstructed
TWSC and the CSR mascons, but it is difficult to exactly determine the
exact influences of GRACE measurement errors on the TWSC prediction.
Through we do not assess this influence, one can estimate to what extent
the GRACE measurement error may affect the predicted TWSC by com-
puting the root‐sum‐square of the GRACE measurement errors and the
prediction errors.

As discussed in section 3, three groups of data‐driven techniques—that
is, (a) spatiotemporal decomposition techniques ICA and PCA; (b)
time series decomposition techniques LS and STL; and (c) machine
learning methods ANN, ARX, and MLR—are employed in this
study, Here, we firstly fix the spatiotemporal decomposition and time ser-
ies decomposition techniques to PCA and LS and compare the robustness
of three machine learning techniques ARX, ANN, and MLR in 26
river basins.

In this case, we used three criteria—that is, (a) standard error of TWSC,
(b) correlation coefficients of TWSC, and (c) correlation coefficients of

de‐seasoned TWSC as used in Reichle et al. (2004)—to identify the most (or more) robust method. Table 2
lists the standard errors of training and testing TWSC by using the three machine learning methods as eval-
uated by the CSR mascons at both grid and basin scales. The correlation coefficients of training/testing
TWSC and TWSC anomaly (i.e., de‐seasoned TWSC) as compared to the CSR mascons are listed in
Tables 3 and 4, respectively.

We here summarize the optimal methods—that is, methods with minimal standard error or maximal
correlation coefficients at the grid scale—for each river basin (see Tables 2–4). Within the training
section, the ANN model simulates the TWSC best in 18 river basins as estimated by the criterion
of standard error (see fourth column in Table 2) and simulates the TWSC best in 19 regions and 20
regions assessed by the other two criteria as shown in Tables 3 and 4. ARX performs best in 12 basins,
16 basins, and 10 basins within the training phase as assessed by the criteria standard error of TWSC,
correlation coefficients of TWSC, and correlation coefficients of de‐seasoned TWSC, respectively, and
MLR simulates the TWSC worse in all river basins than ARX or ANN (see column 2 to column 7
in Tables 2–4). These results indicate that MLR performs worst and ANN performs best within the
training period.

The MLRmethod, in the testing period, shows the best skill in 19 regions, 18 regions, and 19 regions as eval-
uated based on the three criteria, respectively. Obviously, the ANN and ARX models perform worse than
MLR in the testing period as listed through column 8 to column 13 in Tables 2–4. Here, we also calculate

Table 1
Classification of the Most Sensitive Climate Drivers for GRACE Seasonal,
Inter‐annual, and Residual Components in 26 River Basins

Basin
ID Name

Most
sensitive
climate
drivers for
GRACE
seasonal
component

Most
sensitive
climate
drivers for
GRACE
inter‐annual
component

Most
sensitive
climate
drivers for
GRACE
residual
component

1 Yukon SST SST SST
2 Mackenzie SST SST SST
3 Nelson SST P SST
4 Mississippi SST P P
5 St Lawrence SST SST P
6 Amazon SST SST P
7 Parana SST P P
8 Niger SST SST SST
9 Lake Chad SST SST SST
10 Nile SST SST SST
11 Congo SST SST SST
12 Zambezi SST SST P
13 Orange SST SST SST
14 Danube SST P P
15 Euphrates SST P P
16 Volga SST SST P
17 Ob SST P P
18 Yenisey SST SST SST
19 Lena SST SST SST
20 Kolyma SST SST SST
21 Amur SST P P
22 Huang He SST SST P
23 Yangtze SST P P
24 Ganges SST T P
25 Indus SST SST P
26 Murray

Darling
SST P P

Note. P, precipitation; T, land surface temperature; SST, sea
surface temperature.
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the average standard error or correlation coefficient over 26 river basins for each predictive method and in
both training and testing period as listed in the last rows of Tables 2–4. All these results indicate that
though MLR performs worst within the training phase, it is the most robust method for the prediction.

For ANN and ARX, we use a group of unified empirical parameters for predicting the TWSC grids. With
these empirical parameters (e.g., number of input predictors), ANN and ARX perform better than MLR in
some regions while they performworse in the other regions, indicating that these parameters are not optimal
in all study regions and might lead to some overfitting problems. One alternative is to try all different com-
binations of these parameters for ANN and ARX and find the best combination for each study region; this
may suppress the overfitting problem but will also dramatically expand the testing works, and it is compu-
tationally expensive to apply them to all river basins globally. Therefore, we suggest one to try ANN and ARX
if he or she aims at predicting only a few basins, and the MLR method is a more robust alternative if one
wants to predict the TWSC over a large number of river basins. After our tests with three predictive methods,
we then choose the spatiotemporal decomposition and machine learning techniques to PCA and MLR to
compare the performances of STL and LS in all study regions. We use the CSRmascons and the three criteria
to evaluate the precision of testing/training TWSC from STL and LS methods (see Tables , , B1–B3), and we
find that the LSmethod performs better in most of the cases compared to STL in those study regions. Finally,
we use the same metric to compare the PCA and ICA methods. As listed in Tables , , B4–B6, the standard
errors of testing TWSC from PCA are smaller than those from ICA, and the correlation coefficients of both
TWSC and de‐seasoned TWSC from PCA are higher in most river basins, indicating that PCA is more
robust than ICA for such application.

Table 2
Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using Three Predictive Models in 26 River
Basins as Compared to CSR Mascons

Basin Name

Training Testing

MLR (cm) ANN (cm) ARX (cm) MLR (cm) ANN (cm) ARX (cm)

Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 2.0 1.2 1.7 1.0 1.8 1.0 2.2 1.3 2.3 1.4 2.8 1.6
Mackenzie 1.5 0.7 1.2 0.5 1.3 0.7 1.9 1.0 2.1 1.0 2.2 1.2
Nelson 2.4 1.8 1.7 1.0 1.4 0.7 2.5 1.7 3.0 2.3 2.9 2.2
Mississippi 2.5 1.1 2.4 0.7 2.3 1.3 2.8 1.7 3.2 1.6 3.0 1.9
St Lawrence 2.4 2.0 1.8 0.9 2.1 1.5 3.7 3.0 4.1 3.4 4.8 5.2
Amazon 5.4 2.0 4.8 1.5 5.4 2.9 7.1 3.9 7.8 4.2 7.8 4.6
Parana 3.7 1.5 3.1 1.2 3.1 1.5 4.9 2.0 5.4 2.1 4.0 1.9
Niger 1.4 0.9 1.2 0.7 1.5 1.0 1.8 1.0 1.7 1.0 2.1 1.3
Lake Chad 1.1 0.7 0.9 0.5 1.0 0.5 1.5 1.0 1.4 0.9 2.0 1.6
Nile 1.9 0.9 1.4 0.6 1.7 0.6 2.2 1.2 2.7 1.6 3.1 2.3
Congo 3.1 1.5 2.5 1.0 3.0 1.2 3.4 1.7 3.6 1.7 5.0 3.6
Zambezi 4.8 3.2 3.3 1.2 3.3 1.8 5.2 3.4 6.3 4.2 5.9 4.0
Orange 1.4 1.1 1.1 0.8 0.9 0.6 1.5 1.1 1.5 1.1 1.4 1.0
Danube 2.4 1.6 2.0 1.3 1.8 0.9 2.8 2.0 3.8 2.7 3.0 1.9
Euphrates 2.1 1.7 1.7 1.3 1.3 1.0 3.3 2.7 3.0 2.3 3.2 2.5
Volga 2.2 1.4 1.7 0.9 2.0 1.4 3.8 3.2 3.9 3.0 4.5 2.9
Ob 2.0 1.0 1.8 1.0 2.3 1.8 3.1 2.4 3.5 2.7 3.6 2.8
Yenisey 2.5 1.6 2.0 1.2 2.2 1.5 2.9 1.9 3.2 2.0 2.9 1.6
Lena 1.6 1.0 1.1 0.5 1.3 0.8 2.5 2.1 2.5 1.9 2.2 1.6
Kolyma 2.0 1.6 1.1 0.7 2.0 1.8 2.1 1.6 2.7 2.3 3.3 3.1
Amur 1.6 0.8 1.4 0.7 1.3 0.6 2.0 1.3 2.2 1.3 2.7 1.4
Huang He 1.3 0.8 1.1 0.5 1.0 0.4 1.8 1.1 2.1 1.4 1.7 1.0
Yangtze 2.2 0.9 1.9 0.8 1.9 0.7 2.6 1.3 2.9 1.4 3.1 1.6
Ganges 3.5 1.6 3.0 1.1 3.2 1.5 4.2 2.0 4.7 2.4 5.1 2.6
Indus 2.2 1.4 1.8 1.0 1.6 0.9 2.3 1.4 2.8 1.7 2.6 1.7
Murray Darling 2.1 1.8 1.2 0.8 1.2 0.8 2.7 2.4 3.3 3.1 3.2 2.7
Average 2.3 1.3 1.8 0.9 1.9 1.1 3.0 1.9 3.3 2.1 3.4 2.3

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and time series decompo-
sition techniques to PCA and LS.
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4.2.2.2. Error Propagation in Three Predictive Models
In this case, for studying the error propagation characteristics in three predictive models, we first repeat the
error perturbations and TWSC prediction and calculate the error bars for the testing TWSC at grid cell scale
as described in section 2.3.5. Then we divide the study period into different sections, that is, training period,
the first year past the training period, the second year past the training period, and so on. Figure A4 shows
the propagated errors in each divided time section for the three predictive models at the grid scale. As
expected, we find that the error bars, from both ANN and ARX methods, in the testing sections (first year
to sixth year) are larger than those in the training section (the second and third columns in Figure A4),
and the error bars from the MLR method are almost constant in both training and testing sections (the first
column in Figure A4), indicating that the multiple linear regression method is more stable than the ANN
and ARX methods in coping with random input uncertainties. This enhances our confidence to choose
the MLR method for the prediction and reconstruction. In addition, the results also show that the distribu-
tion of propagated uncertainties in predictive methods depend on the amplitude of gridded GRACE TWSC,
such as the GRACE total water storage changes with larger amplitudes (e.g., TWSC in the middle of the
Amazon basin) that also show larger uncertainties (Figure A4).
4.2.2.3. Prediction Uncertainties of the Identified Methods
Based on the testing results in Tables 2–4, Tables , , , , , B1–B6, and Figure A4, the combination of PCA, LS,
andMLRmethods is identified to be the most robust combination for extrapolating the GRACE TWSCmap.
Figure 3 shows the standard errors of both training and testing GRACE‐like gridded total water storage
changes as evaluated by CSR mascons at the grid scale, and we find that the regions with larger amplitude
of TWSC also show larger standard errors. Figure 4 shows the correlation coefficients of training TWSC,

Table 3
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by Using Three Predictive Models in 26
River Basins as Compared to CSR Mascons

Basin Name

Training Testing

MLR ANN ARX MLR ANN ARX

Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.92 0.97 0.93 0.98 0.93 0.98 0.91 0.96 0.90 0.96 0.87 0.94
Mackenzie 0.93 0.98 0.96 0.99 0.95 0.98 0.90 0.96 0.87 0.96 0.86 0.95
Nelson 0.84 0.88 0.93 0.96 0.95 0.98 0.81 0.85 0.69 0.73 0.67 0.76
Mississippi 0.90 0.97 0.94 0.99 0.93 0.96 0.86 0.93 0.81 0.94 0.84 0.92
St Lawrence 0.85 0.89 0.94 0.97 0.92 0.93 0.76 0.87 0.77 0.87 0.68 0.53
Amazon 0.94 0.99 0.95 0.99 0.94 0.98 0.93 0.97 0.91 0.96 0.91 0.95
Parana 0.88 0.96 0.91 0.98 0.91 0.96 0.77 0.93 0.71 0.94 0.78 0.94
Niger 0.88 0.99 0.89 0.99 0.89 0.99 0.82 0.99 0.83 0.99 0.83 0.98
Lake Chad 0.75 0.98 0.80 0.99 0.79 0.98 0.68 0.96 0.69 0.97 0.62 0.89
Nile 0.87 0.97 0.91 0.99 0.89 0.98 0.86 0.95 0.83 0.91 0.82 0.84
Congo 0.95 0.93 0.96 0.97 0.96 0.96 0.93 0.92 0.93 0.91 0.86 0.73
Zambezi 0.90 0.96 0.95 0.99 0.96 0.99 0.92 0.96 0.90 0.96 0.88 0.94
Orange 0.83 0.85 0.89 0.92 0.94 0.96 0.80 0.88 0.77 0.84 0.79 0.87
Danube 0.94 0.96 0.96 0.97 0.96 0.99 0.91 0.95 0.83 0.91 0.88 0.95
Euphrates 0.92 0.96 0.95 0.98 0.97 0.99 0.77 0.89 0.80 0.89 0.84 0.89
Volga 0.95 0.98 0.97 0.99 0.96 0.98 0.87 0.90 0.88 0.93 0.83 0.91
Ob 0.93 0.98 0.94 0.98 0.91 0.93 0.86 0.93 0.85 0.91 0.82 0.90
Yenisey 0.87 0.94 0.91 0.96 0.91 0.94 0.85 0.93 0.82 0.92 0.82 0.94
Lena 0.92 0.96 0.96 0.99 0.95 0.97 0.85 0.83 0.83 0.91 0.82 0.89
Kolyma 0.88 0.92 0.96 0.98 0.88 0.89 0.90 0.95 0.83 0.88 0.80 0.80
Amur 0.86 0.93 0.90 0.95 0.90 0.96 0.85 0.90 0.81 0.88 0.67 0.88
Huang He 0.82 0.93 0.87 0.96 0.88 0.96 0.62 0.79 0.51 0.69 0.66 0.81
Yangtze 0.88 0.96 0.91 0.96 0.91 0.97 0.81 0.90 0.78 0.86 0.75 0.87
Ganges 0.94 0.99 0.95 0.99 0.95 0.99 0.92 0.98 0.90 0.97 0.89 0.97
Indus 0.87 0.93 0.91 0.96 0.93 0.97 0.87 0.91 0.83 0.91 0.82 0.85
Murray Darling 0.86 0.88 0.95 0.98 0.96 0.97 0.66 0.81 0.53 0.62 0.72 0.83
Average 0.89 0.95 0.93 0.98 0.92 0.97 0.84 0.92 0.80 0.89 0.80 0.87

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and time series decompo-
sition techniques to PCA and LS.
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testing TWSC, and TWSC simulated by the hydrological models as related to the GRACE mascons over 26
river basins. The averaged correlation coefficients (i.e., averaging the correlation coefficients of all grids in
26 river basins) of training TWSC, testing TWSC, GLDAS TWSC, CPC TWSC at the grid scale are 0.91,
0.86, 0.51, and 0.45 as compared to the CSR mascons. We also remove the seasonal cycles of the related
TWSC at the grid scale as described in Reichle et al. (2004) and obtain the correlation coefficients of
de‐seasoned/anomaly TWSC signals (see Figures 4e–4h); the correlation coefficients of anomaly signals
are 0.77, 0.68, 0.44, and 0.46, respectively. Results indicate that both training and testing GRACE‐like
gridded total water storage changes have much stronger correlations with the GRACE mascons than the
model‐simulated TWSC. Furthermore, both training and testing TWSC time series at the basin scale fit
the CSR mascons well in almost all study regions as shown in Figure 5.

Table 4
Correlation Coefficients of Training and Testing TWSC After Removing the Seasonal Cycle at Both Grid and Basin Scales by
Using Three Predictive Models in 26 River Basins as Compared to CSR Mascons

Basin Name

Training Testing

MLR ANN ARX MLR ANN ARX

Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.65 0.85 0.75 0.89 0.74 0.86 0.60 0.65 0.57 0.59 0.49 0.52
Mackenzie 0.74 0.84 0.85 0.94 0.81 0.86 0.60 0.64 0.47 0.62 0.48 0.48
Nelson 0.78 0.81 0.91 0.94 0.93 0.97 0.65 0.67 0.39 0.27 0.42 0.49
Mississippi 0.80 0.90 0.89 0.96 0.85 0.88 0.75 0.82 0.66 0.86 0.71 0.77
St Lawrence 0.71 0.78 0.88 0.95 0.83 0.88 0.43 0.79 0.47 0.80 0.41 0.19
Amazon 0.71 0.84 0.74 0.91 0.70 0.75 0.66 0.72 0.60 0.73 0.57 0.63
Parana 0.75 0.89 0.84 0.94 0.83 0.90 0.65 0.90 0.54 0.92 0.64 0.91
Niger 0.75 0.90 0.79 0.93 0.76 0.87 0.64 0.87 0.65 0.87 0.61 0.79
Lake Chad 0.68 0.89 0.75 0.94 0.72 0.93 0.56 0.80 0.69 0.97 0.62 0.89
Nile 0.70 0.87 0.80 0.94 0.75 0.95 0.66 0.76 0.62 0.66 0.52 0.40
Congo 0.75 0.86 0.84 0.95 0.79 0.92 0.70 0.80 0.70 0.80 0.53 0.54
Zambezi 0.71 0.86 0.86 0.98 0.86 0.96 0.68 0.88 0.58 0.85 0.59 0.82
Orange 0.78 0.84 0.86 0.91 0.92 0.96 0.66 0.88 0.65 0.83 0.68 0.87
Danube 0.84 0.90 0.90 0.94 0.90 0.96 0.75 0.85 0.55 0.73 0.67 0.83
Euphrates 0.84 0.89 0.89 0.92 0.93 0.98 0.49 0.54 0.45 0.35 0.49 0.38
Volga 0.84 0.90 0.91 0.95 0.86 0.91 0.63 0.61 0.67 0.70 0.46 0.60
Ob 0.76 0.91 0.81 0.92 0.71 0.72 0.60 0.83 0.51 0.80 0.50 0.76
Yenisey 0.72 0.67 0.81 0.82 0.79 0.73 0.73 0.74 0.66 0.67 0.69 0.75
Lena 0.83 0.90 0.92 0.97 0.90 0.94 0.59 0.39 0.56 0.63 0.53 0.51
Kolyma 0.69 0.75 0.91 0.95 0.71 0.69 0.76 0.87 0.58 0.64 0.47 0.33
Amur 0.82 0.92 0.87 0.94 0.87 0.95 0.82 0.89 0.77 0.87 0.63 0.86
Huang He 0.77 0.91 0.83 0.95 0.85 0.95 0.47 0.70 0.37 0.60 0.48 0.71
Yangtze 0.71 0.87 0.79 0.89 0.80 0.89 0.51 0.77 0.45 0.68 0.45 0.74
Ganges 0.79 0.91 0.84 0.95 0.83 0.93 0.68 0.88 0.65 0.85 0.62 0.83
Indus 0.79 0.87 0.86 0.94 0.88 0.94 0.72 0.78 0.64 0.77 0.62 0.67
Murray Darling 0.84 0.87 0.95 0.97 0.95 0.97 0.49 0.74 0.35 0.51 0.56 0.81
Average 0.76 0.86 0.85 0.93 0.83 0.89 0.63 0.76 0.57 0.71 0.56 0.66

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and time series decompo-
sition techniques to PCA and LS.

Figure 3. The standard errors of (a) training TWSC (i.e., April 2002 to June 2011) and (b) testing TWSC (over July 2011 to June 2017) based on the PCA, LS, and
MLR methods at each grid as evaluated by the CSR mascons.
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4.2.2.4. Identification of the Optimal Region Size
In this study, we apply our methods to all river basins respectively. For understanding at which basin size the
predicting methods work best, we firstly divide the Europe‐Asia continent into different sizes of subconti-
nent (see Figure 6), and then the identified methods combination is applied for the TWSC prediction in each
subcontinent. Again, standard errors are derived by comparing to the CSR mascon solution as shown in
Figure 6. The averaged standard errors in Figures 6a–6d are 2.86, 2.88, 2.74, and 2.84 cm respectively, indi-
cating that dividing the Europe‐Asia continent into four parts (~10–15 million km2 per subcontinent) will be
an optimal option for the prediction of TWSC based on our identified methods. Thus, we suggest an optimal
region size 10–15 million km2 for readers who want to predict the TWSC using our method.
4.2.3. Extrapolating the GRACE Total Water Storage Change Outside the GRACE Period
As discussed in section 4.2.2, the PCA, LS, and MLR methods are identified to predict and reconstruct the
GRACE‐like gridded total water storage change over 26 river basins, that is, in each river basin (a) we use
the PCA method to identify significant modes of the GRACE and climate signal; (b) we use the LS method
to separate interannual, seasonal, and residual components of GRACE and climate temporal modes; and (c)
we use the separated components from GRACE and climate data between April 2002 and June 2017 to train
the multiple linear regression model and then predict the GRACE‐like gridded TWSC over July 2017 to
December 2018 and reconstruct TWSC from January 1992 to March 2002. El Nino‐Southern Oscillation
(ENSO) represents natural variability in the climate system, which may cause some climate extremes espe-
cially in the tropical regions (Juan et al., 2016). Isolating the de‐seasoned signal in total water storage change
enables one to detect climate extreme events such as hydrological drought (Thomas et al., 2014). In an

Figure 4. Correlations between the CSRmascons and (a) training TWSC, (b) testing TWSC, (c) GLDAS TWSC, and (d) CPC TWSC over 26 river basins. (e) to (h) are
the correlations computed by the related de‐seasoned signals.
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attempt to investigate the response of water storage to ENSO, we show the predicted, training, and
reconstructed TWSC time series of four tropical river basins—that is, Amazon, Parana, Congo, and
Zambezi basins—at the basin scale (see Figure 7). For a comparison, we also plot the GRACE TWSC
(April 2002 to June 2017), Swarm TWSC (December 2013 to December 2018), GRACE‐FO TWSC (June
2018 to December 2018), and the TWSC (January 1992 to December 2018) simulated by hydrological models

Figure 5. The training TWSC (blue line) and testing TWSC (green line) relative to the CSR mascons (red line) at the basin scale for 26 river basins.

Figure 6. Standard errors of the testing TWSC (over July 2011 to June 2017) by dividing the Asia‐Europe continent into (a) one, (b) two, (c) four, and (d) eight
parts as evaluated by the CSRmascons. Here we first divide the continent into one, two, four, and eight parts, respectively, and then we apply the identifiedmethods
to each divided part and use the CSR mascons to estimate the prediction uncertainties as shown in this figure.
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Figure 7. The TWSC (up) and de‐seasoned TWSC (down) time series at the basin scale in the (a) Amazon, (b) Parana,
(c) Congo, and (d) Zambezi basins. Gray phases represent the strong El Niño years (i.e., 1997/1998 and 2015/2016). For a
fair comparison, the linear trend of each time series (except the GRACE‐FO) has been removed.
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in Figure 7. Within our analysis period, there were two significant El Niño events, that is, the years
1997/1998 and 2015/2016, which can be derived from ENSO indicators. We find that, after removing the sea-
sonal cycle, the reconstructed total water storage change shows strong abnormal signals in four tropical
regions during the first significant El Niño periods (i.e., 1997/1998), which is consistent with the
de‐seasoned GRACE TWSC during another significant El Niño period (i.e., 2015/2016) (see the dark area
of Figure 7). As shown in Figure 7, the GRACE‐FO TWSC fits well with the predicted TWSC in four tropical
river basins. The hydrological model does not explicitly simulate groundwater redistribution, and its skills in
representing anthropogenic water withdrawals are limited; this may explain most differences between
TWSC from the hydrological model and those from GRACE, GRACE‐FO, or Swarm mission seen in
Figure 7. The Swarm TWSC fits well with the GRACE total water storage change in the Amazon basin
but shows larger deviations and uncertainties in the other regions; this shows some potential of the
Swarmmission to detect large amplitude water storage changes. We also find that the Swarm TWSC has lar-
ger uncertainty in 2013 and 2014 than later; this is mainly caused by themore active ionosphere during these
2 years as discussed in Schreiter et al. (2019). In addition, the predicted and reconstructed TWSC in the other
river basins could be found in Figures A5 and A6. The results clearly suggest that the predicted TWSC over
June 2018 to December 2018 fits well with the GRACE‐FO TWSC in almost all study regions.
4.2.4. Comparison to Previous Studies
Except Humphrey and Gudmundsson (2019), we do not know other studies that aim at the reconstruction of
GRACE‐like gridded total water storage change for the global land surface. Thus, we restrict the comparison
of our method to the method as used in Humphrey and Gudmundsson (2019).

In their TWSC reconstruction, Humphrey and Gudmundsson (2019) focused on a grid cell representation
using precipitation and temperature as inputs. However, it appears difficult with their approach to make
use of additional input data sets originating from outside the study regions (e.g., the SST data or climate
indices), and they did not reconstruct the seasonal signal of the GRACE TWSC as described in Humphrey
and Gudmundsson (2019).

In this study, the decay filter, MLR, and STL techniques employed in Humphrey et al. (2017) are included in
our unified framework, but we had to combine these in a somewhat different way. Different from
Humphrey's original method, we focused our attention on the reconstruction of dominant GRACE modes,
and we feel that it is beneficial to involve additional data which have been shown before to be highly related
to the evolution of dominant GRACE temporal modes as inputs (e.g., the SST and climate indices).
Therefore, our implementation is able to assimilate more information to support the TWSC reconstruction.
Furthermore, besides aiming at the de‐seasoned anomalous TWSC signals, we also reconstruct the seasonal
signals based on their high correlations with the seasonal signals of SST (see Table 1). Thus, our implemen-
tation seems able to reconstruct a more complete picture of the GRACE TWSC record as compared to the
method originally developed by Humphrey and Gudmundsson (2019).

In addition, we would like to mention that it is the first time that three groups of data‐driven techniques—
that is, spatiotemporal decomposition, time series decomposition, and machine learning—are formulated in
a unified way for the reconstruction or prediction of leading modes identified in GRACE‐derived total water
storage grids.

5. Conclusions

In this study, a unifiedmethodology framework is developed to compare different data‐driven techniques for
predicting and reconstructing gridded GRACE‐like total water storage variations outside the GRACE period.
We find that both ARX and ANNmethods simulate the target variable better than theMLRmethod, but they
are not robust enough for the prediction on account of some overfitting problems. The PCA‐LS‐MLR meth-
ods combination is identified as the most robust alternative through our framework for predicting and
reconstructing the gridded TWSC over all river basins. One encouraging result is that our testing TWSC
(6 years lead time with regard to the GRACE period) from the identified methods show much stronger cor-
relation with the CSR mascons compared to the model‐simulated TWSC at almost each grid of the study
regions; thus, our results could be an alternative for the mass balance constraint for hydrological models
beyond the GRACE period (e.g., Eicker et al., 2014). We also find that the temporal evolution of the seasonal
component of the GRACE total water storage change in the study regions closely related to the seasonal
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variation of SST and the de‐seasoned (i.e., interannual and residual) components of GRACE TWSC has
strong correlation with the de‐seasoned changes of both sea surface temperature and precipitation. These
results may improve our understanding of rough relationships between the TWSC and the related
climate drivers.

We study the error propagation in the adopted predictive models, and the results indicate that the MLR
method is more stable and robust than the ANN and ARX methods in coping with error perturbations.
Finally, we predict 1.5 years (i.e., July 2017.7 to December 2018) of gridded TWSC past the GRACE period
and reconstruct more than 10 years (i.e., January 1992 to March 2002) of gridded TWSC. At the basin scale,
the de‐seasoned signal of reconstructed TWSC exhibits a strong abnormal signal in the tropical basin during
significant El Niño periods. The total water storage change derived from the GRACE Follow‐Onmission fits
well with the predicted TWSC in almost all study regions, and the Swarm TWSC shows potential to detect
extreme climate events, but it contains large uncertainties.

The approach identified from our framework presents a viable alternative for bridging the data gap of the
GRACE missions and can also be used for extrapolating the global GRACE gridded TWSC time series out-
side the GRACE period for a longer time.

Appendix: This section provides some figures which surpport the discussion of
this article

FigureA1. The RMS of mean‐centered CSRmascons (fromApril 2002 to June 2017) over 26 river basins. This section pro-
vides some figures which surpport the discussion of this article.

10.1029/2019WR026551Water Resources Research

LI ET AL. 19 of 36



Figure A2. Spatial patterns and temporal modes of identified GRACE TWSC EOFs and ICs in the Amazon basin. Results on the maps represent the spatial modes,
and the time series on the right side of each map represents the corresponding temporal mode.
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Figure A3. Decomposed components (i.e., linear, seasonal, interannual, and residual) of identified GRACE TWSC EOF and IC temporal modes in the Amazon
basin based on the LS and STL methods. The red and blue lines represent the components decomposed by LS and STL methods, respectively.
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Figure A4. Error propagation in the three predictive models assessed using Monte Carlo uncertainties in 26 river basins at the grid scale. We derive the uncertain-
ties from the simulating period to the sixth year past the training phase individually; for example, the gridded uncertainties of the third year are estimated by using
only the third year of preditand.
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Figure A5. Reconstructed, training, and predicted TWSC relative to the TWSC from GRACE, GRACE‐FO, Swarm, and hydrological data at the basin scale for 22
river basins.
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Figure A6. Same as Figure A5 about for the de‐seasoned signal.
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Table B1
Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using STL and LS Methods in 26 River
Basins as Compared to CSR Mascons. This section provides some tables which surpport the discussion of this article.

Basin Name

Training Testing

STL (cm) LS (cm) STL (cm) LS (cm)

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 1.9 1.1 2.0 1.2 2.3 1.4 2.2 1.3
Mackenzie 1.8 0.9 1.5 0.7 1.8 1.0 1.9 1.0
Nelson 2.5 1.7 2.4 1.8 2.5 1.7 2.5 1.7
Mississippi 2.3 1.0 2.5 1.1 3.4 2.3 2.8 1.7
St Lawrence 2.9 1.8 2.4 2.0 3.9 3.1 3.7 3.0
Amazon 5.5 2.3 5.4 2.0 7.2 4.1 7.1 3.9
Parana 3.5 1.6 3.7 1.5 5.5 2.4 4.9 2.0
Niger 1.6 1.0 1.4 0.9 1.5 1.1 1.8 1.0
Lake Chad 1.2 0.8 1.1 0.7 1.6 1.0 1.5 1.0
Nile 2.0 1.0 1.9 0.9 2.3 1.2 2.2 1.2
Congo 3.2 1.6 3.1 1.5 3.6 1.9 3.4 1.7
Zambezi 4.9 3.4 4.8 3.2 5.7 3.6 5.2 3.4
Orange 1.4 1.0 1.4 1.1 1.3 1.0 1.5 1.1
Danube 2.5 1.6 2.4 1.6 3.0 2.1 2.8 2.0
Euphrates 2.7 2.0 2.1 1.7 3.1 2.6 3.3 2.7
Volga 2.2 1.4 2.2 1.4 3.6 3.1 3.8 3.2
Ob 2.2 1.0 2.0 1.0 3.1 2.4 3.1 2.4
Yenisey 2.3 1.5 2.5 1.6 3.0 1.9 2.9 1.9
Lena 1.7 1.1 1.6 1.0 2.4 2.1 2.5 2.1
Kolyma 2.0 1.6 2.0 1.6 2.2 1.7 2.1 1.6
Amur 2.0 1.0 1.6 0.8 2.2 1.4 2.0 1.3
Huang He 1.3 0.9 1.3 0.8 1.8 1.2 1.8 1.1
Yangtze 2.2 0.9 2.2 0.9 2.8 1.5 2.6 1.3
Ganges 3.6 1.7 3.5 1.6 4.6 2.2 4.2 2.0
Indus 2.3 1.6 2.2 1.4 2.5 1.6 2.3 1.4
Murray Darling 2.2 1.8 2.1 1.8 3.3 2.6 2.7 2.4
Average 2.5 1.4 2.4 1.4 3.0 2.0 2.9 1.9

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and predictive techniques
to PCA and MLR.
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Table B2
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by Using STL and LS Methods in 26
River Basins as Compared to CSR Mascons

Basin Name

Training Testing

STL LS STL LS

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.92 0.97 0.92 0.97 0.89 0.95 0.91 0.96
Mackenzie 0.91 0.97 0.93 0.98 0.90 0.96 0.90 0.96
Nelson 0.86 0.89 0.84 0.88 0.78 0.85 0.81 0.85
Mississippi 0.90 0.97 0.90 0.97 0.79 0.88 0.86 0.93
St Lawrence 0.82 0.86 0.85 0.89 0.74 0.85 0.76 0.87
Amazon 0.93 0.98 0.94 0.99 0.92 0.96 0.93 0.97
Parana 0.88 0.97 0.88 0.96 0.74 0.90 0.77 0.93
Niger 0.85 0.96 0.88 0.99 0.84 0.97 0.82 0.99
Lake Chad 0.74 0.97 0.75 0.98 0.70 0.94 0.68 0.96
Nile 0.86 0.96 0.87 0.97 0.86 0.94 0.86 0.95
Congo 0.94 0.93 0.95 0.93 0.92 0.90 0.93 0.92
Zambezi 0.90 0.96 0.90 0.96 0.90 0.94 0.92 0.96
Orange 0.83 0.85 0.83 0.85 0.83 0.89 0.80 0.88
Danube 0.93 0.96 0.94 0.96 0.91 0.94 0.91 0.95
Euphrates 0.87 0.91 0.92 0.96 0.81 0.90 0.77 0.89
Volga 0.95 0.97 0.95 0.98 0.88 0.90 0.87 0.90
Ob 0.92 0.97 0.93 0.98 0.86 0.93 0.86 0.93
Yenisey 0.88 0.95 0.87 0.94 0.83 0.92 0.85 0.93
Lena 0.91 0.95 0.92 0.96 0.83 0.85 0.85 0.83
Kolyma 0.87 0.91 0.88 0.92 0.88 0.93 0.90 0.95
Amur 0.83 0.86 0.86 0.93 0.82 0.81 0.85 0.90
Huang He 0.81 0.91 0.82 0.93 0.63 0.83 0.62 0.79
Yangtze 0.87 0.94 0.88 0.96 0.82 0.88 0.81 0.90
Ganges 0.93 0.98 0.94 0.99 0.90 0.97 0.92 0.98
Indus 0.85 0.92 0.87 0.93 0.84 0.87 0.87 0.91
Murray Darling 0.85 0.88 0.86 0.88 0.70 0.84 0.66 0.81
Average 0.88 0.94 0.89 0.95 0.83 0.90 0.84 0.92

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and predictive techniques
to PCA and MLR.
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Table B3
Correlation Coefficients of Training and Testing TWSC After Removing the Seasonal Cycle at Both Grid and Basin Scales by
Using STL and LS Methods in 26 River Basins as Compared to CSR Mascons

Basin Name

Training Testing

STL LS STL LS

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.68 0.85 0.65 0.85 0.53 0.56 0.60 0.65
Mackenzie 0.70 0.78 0.74 0.84 0.59 0.60 0.60 0.64
Nelson 0.78 0.83 0.78 0.81 0.61 0.68 0.65 0.67
Mississippi 0.80 0.91 0.80 0.90 0.64 0.65 0.75 0.82
St Lawrence 0.68 0.73 0.71 0.78 0.38 0.77 0.43 0.79
Amazon 0.68 0.84 0.71 0.84 0.65 0.76 0.66 0.72
Parana 0.76 0.92 0.75 0.89 0.61 0.86 0.65 0.90
Niger 0.73 0.86 0.75 0.90 0.69 0.85 0.64 0.87
Lake Chad 0.66 0.86 0.68 0.89 0.55 0.69 0.56 0.80
Nile 0.67 0.85 0.70 0.87 0.63 0.74 0.66 0.76
Congo 0.72 0.87 0.75 0.86 0.68 0.77 0.70 0.80
Zambezi 0.69 0.84 0.71 0.86 0.61 0.81 0.68 0.88
Orange 0.79 0.83 0.78 0.84 0.72 0.89 0.66 0.88
Danube 0.84 0.90 0.84 0.90 0.74 0.82 0.75 0.85
Euphrates 0.72 0.71 0.84 0.89 0.46 0.46 0.49 0.54
Volga 0.83 0.90 0.84 0.90 0.63 0.60 0.63 0.61
Ob 0.74 0.88 0.76 0.91 0.58 0.83 0.60 0.83
Yenisey 0.76 0.80 0.72 0.67 0.70 0.69 0.73 0.74
Lena 0.82 0.89 0.83 0.90 0.57 0.43 0.59 0.39
Kolyma 0.68 0.73 0.69 0.75 0.74 0.83 0.76 0.87
Amur 0.78 0.83 0.82 0.92 0.78 0.78 0.82 0.89
Huang He 0.74 0.88 0.77 0.91 0.50 0.74 0.47 0.70
Yangtze 0.70 0.81 0.71 0.87 0.55 0.72 0.51 0.77
Ganges 0.77 0.91 0.79 0.91 0.66 0.85 0.68 0.88
Indus 0.76 0.85 0.79 0.87 0.67 0.70 0.72 0.78
Murray Darling 0.84 0.86 0.84 0.87 0.55 0.80 0.49 0.74
Average 0.74 0.84 0.76 0.86 0.62 0.73 0.63 0.76

Note. All results listed in this table are calculated by fixing the spatiotemporal decomposition and predictive techniques
to PCA and MLR.
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Table B4
Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using PCA and ICA Methods in 26 River
Basins as Compared to CSR Mascons

Basin Name

Training Testing

ICA (cm) PCA (cm) ICA (cm) PCA (cm)

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 2.0 1.2 2.0 1.2 3.1 1.8 2.2 1.3
Mackenzie 1.6 0.8 1.5 0.7 2.1 1.3 1.9 1.0
Nelson 2.6 1.8 2.4 1.8 2.3 1.6 2.5 1.7
Mississippi 2.7 1.2 2.5 1.1 3.5 2.2 2.8 1.7
St Lawrence 2.8 2.2 2.4 2.0 4.0 3.2 3.7 3.0
Amazon 6.1 2.5 5.4 2.0 7.4 4.2 7.1 3.9
Parana 4.0 1.8 3.7 1.5 5.9 3.2 4.9 2.0
Niger 1.8 1.1 1.4 0.9 2.0 1.1 1.8 1.0
Lake Chad 1.2 0.7 1.1 0.7 1.5 1.0 1.5 1.0
Nile 2.2 1.1 1.9 0.9 2.3 1.2 2.2 1.2
Congo 3.0 1.4 3.1 1.5 3.5 1.8 3.4 1.7
Zambezi 5.1 3.5 4.8 3.2 6.6 4.0 5.2 3.4
Orange 1.5 1.1 1.4 1.1 1.5 1.0 1.5 1.1
Danube 2.5 1.8 2.4 1.6 2.5 1.8 2.8 2.0
Euphrates 3.0 2.1 2.1 1.7 4.0 3.4 3.3 2.7
Volga 2.7 1.9 2.2 1.4 3.4 2.5 3.8 3.2
Ob 2.9 1.7 2.0 1.0 3.2 2.5 3.1 2.4
Yenisey 2.4 1.5 2.5 1.6 3.1 2.1 2.9 1.9
Lena 2.3 1.5 1.6 1.0 2.1 1.9 2.5 2.1
Kolyma 1.9 1.5 2.0 1.6 2.7 2.0 2.1 1.6
Amur 1.7 1.0 1.6 0.8 2.2 1.4 2.0 1.3
Huang He 1.6 1.0 1.3 0.8 1.8 1.1 1.8 1.1
Yangtze 2.5 1.1 2.2 0.9 2.8 1.4 2.6 1.3
Ganges 3.5 1.6 3.5 1.6 4.6 2.5 4.2 2.0
Indus 2.3 1.5 2.2 1.4 2.7 1.6 2.3 1.4
Murray Darling 1.9 1.6 2.1 1.8 2.0 1.6 2.7 2.4
Average 2.6 1.5 2.4 1.4 3.2 2.1 2.9 1.9

Note. All results listed in this table are calculated by fixing the time series decomposition and predictive techniques to LS
and MLR.
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Table B5
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by Using PCA and ICAMethods in 26
River Basins as Compared to CSR Mascons

Basin Name

Training Testing

ICA PCA ICA PCA

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.89 0.94 0.92 0.97 0.82 0.87 0.91 0.96
Mackenzie 0.91 0.96 0.93 0.98 0.87 0.94 0.90 0.96
Nelson 0.83 0.85 0.84 0.88 0.81 0.90 0.81 0.85
Mississippi 0.88 0.94 0.90 0.97 0.82 0.87 0.86 0.93
St Lawrence 0.86 0.89 0.85 0.89 0.83 0.83 0.76 0.87
Amazon 0.92 0.97 0.94 0.99 0.91 0.98 0.93 0.97
Parana 0.84 0.92 0.88 0.96 0.73 0.90 0.77 0.93
Niger 0.86 0.97 0.88 0.99 0.84 0.97 0.82 0.99
Lake Chad 0.72 0.97 0.75 0.98 0.68 0.95 0.68 0.96
Nile 0.86 0.94 0.87 0.97 0.84 0.92 0.86 0.95
Congo 0.95 0.92 0.95 0.93 0.93 0.88 0.93 0.92
Zambezi 0.89 0.95 0.90 0.96 0.83 0.90 0.92 0.96
Orange 0.80 0.83 0.83 0.85 0.73 0.86 0.80 0.88
Danube 0.93 0.95 0.94 0.96 0.92 0.96 0.91 0.95
Euphrates 0.86 0.89 0.92 0.96 0.80 0.78 0.77 0.89
Volga 0.92 0.95 0.95 0.98 0.89 0.92 0.87 0.90
Ob 0.86 0.90 0.93 0.98 0.83 0.92 0.86 0.93
Yenisey 0.86 0.95 0.87 0.94 0.83 0.87 0.85 0.93
Lena 0.90 0.93 0.92 0.96 0.86 0.89 0.85 0.83
Kolyma 0.89 0.91 0.88 0.92 0.86 0.91 0.90 0.95
Amur 0.82 0.90 0.86 0.93 0.77 0.84 0.85 0.90
Huang He 0.70 0.83 0.82 0.93 0.60 0.77 0.62 0.79
Yangtze 0.87 0.92 0.88 0.96 0.80 0.85 0.81 0.90
Ganges 0.93 0.98 0.94 0.99 0.90 0.97 0.92 0.98
Indus 0.85 0.92 0.87 0.93 0.83 0.87 0.87 0.91
Murray Darling 0.89 0.92 0.86 0.88 0.82 0.90 0.66 0.81
Average 0.86 0.92 0.89 0.95 0.82 0.89 0.84 0.92

Note. All results listed in this table are calculated by fixing the time series decomposition and predictive techniques to LS
and MLR.
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Table B6
Correlation Coefficients of Training and Testing TWSC After Removing the Seasonal Cycle at Both Grid and Basin Scales by
Using PCA and ICA Methods in 26 River Basins as Compared to CSR Mascons

Basin Name

Training Testing

ICA PCA ICA PCA

Grid Basin Grid Basin Grid Basin Grid Basin

Yukon 0.57 0.63 0.65 0.85 0.36 0.26 0.60 0.65
Mackenzie 0.71 0.73 0.74 0.84 0.49 0.35 0.60 0.64
Nelson 0.77 0.75 0.78 0.81 0.69 0.78 0.65 0.67
Mississippi 0.75 0.79 0.80 0.90 0.67 0.60 0.75 0.82
St Lawrence 0.74 0.80 0.71 0.78 0.65 0.74 0.43 0.79
Amazon 0.63 0.66 0.71 0.84 0.68 0.86 0.66 0.72
Parana 0.73 0.81 0.75 0.89 0.63 0.85 0.65 0.90
Niger 0.68 0.77 0.75 0.90 0.63 0.73 0.64 0.87
Lake Chad 0.62 0.85 0.68 0.89 0.55 0.78 0.56 0.80
Nile 0.64 0.73 0.70 0.87 0.65 0.59 0.66 0.76
Congo 0.77 0.84 0.75 0.86 0.69 0.71 0.70 0.80
Zambezi 0.66 0.80 0.71 0.86 0.43 0.77 0.68 0.88
Orange 0.76 0.82 0.78 0.84 0.61 0.85 0.66 0.88
Danube 0.83 0.88 0.84 0.90 0.79 0.86 0.75 0.85
Euphrates 0.67 0.63 0.84 0.89 0.42 0.22 0.49 0.54
Volga 0.78 0.81 0.84 0.90 0.70 0.76 0.63 0.61
Ob 0.59 0.69 0.76 0.91 0.51 0.82 0.60 0.83
Yenisey 0.74 0.77 0.72 0.67 0.69 0.50 0.73 0.74
Lena 0.80 0.83 0.83 0.90 0.67 0.56 0.59 0.39
Kolyma 0.76 0.76 0.69 0.75 0.69 0.77 0.76 0.87
Amur 0.78 0.88 0.82 0.92 0.72 0.81 0.82 0.89
Huang He 0.61 0.78 0.77 0.91 0.46 0.65 0.47 0.70
Yangtze 0.68 0.75 0.71 0.87 0.52 0.59 0.51 0.77
Ganges 0.76 0.90 0.79 0.91 0.65 0.82 0.68 0.88
Indus 0.76 0.85 0.79 0.87 0.66 0.67 0.72 0.78
Murray Darling 0.88 0.91 0.84 0.87 0.72 0.88 0.49 0.74
Average 0.71 0.78 0.76 0.86 0.61 0.68 0.63 0.76

Note. All results listed in this table are calculated by fixing the time series decomposition and predictive techniques to LS
and MLR.
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Table B7
The Acronyms Involved in This Paper

GRACE Gravity Recovery and Climate Experiment
NASA National Aeronautical and Spatial Administration
DLR German Aerospace Centre
TWSC Total water storage change
ANN Artificial neural network
ICA Independent component analysis
ARX Autoregressive exogenous
STL Seasonal‐trend decomposition based on loess
MLR Multiple linear regression
CNN Convolutional neural network
PCA Principal component analysis
LS Least squares
SST Sea surface temperature
EOF Orthogonal spatial patterns
ICA Independent component analysis
MLP Multi‐layer perceptron
MCMC Markov chain Monte Carlo
CSR Center for Space Research
CPC Climate Prediction Center
GHCN CAMS Global Historical Climatology Network and the Climate Anomaly Monitoring System
NCEP National Centers for Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
MEI Multivariate ENSO Index
NAO North Atlantic Oscillation
Niño 1+2 Extreme Eastern Tropical Pacific SST
Niño 3 Eastern Tropical Pacific SST
Niño 4 Central Tropical Pacific SST
Niño 3.4 East Central Tropical Pacific SST
NTA North Tropical Atlantic SST Index
ONI Oceanic Niño Index
PDO Pacific Decadal Oscillation
PNA Pacific North American Index
QBO Quasi‐Biennial Oscillation
SOI Southern Oscillation Index
TNA Tropical Northern Atlantic Index
TNI Trans‐Niño Index
TSA Tropical Southern Atlantic Index
WHWP Western Hemisphere Warm Pool
WP Western Pacific Index
GLDAS Global Land Data Assimilation System
WGHM WaterGAP Global Hydrology Model
GAM Generalized Additive Model
ENSO El Nino‐Southern Oscillation

10.1029/2019WR026551Water Resources Research

LI ET AL. 31 of 36



Appendix: This section provides some tables which surpport the discussion of
this article

Appendix: Robustness Tests of the Identified Methods

In the test computations, we had to choose some options, such as setting the training section to April 2002 to
June 2011, setting the input number of climate drivers to three, and so on, and identified an optimal methods
combination, that is, PCA‐LS‐MLR. But the prediction skill may vary with different options. Therefore, in
this section we will tell how robust this optimal combination is with respect to different meta‐parameters,
predictors, and reference data periods. Since it is impossible to test all possible applications, we will consider
a few typical choices here and show for a few basins how robust our results are. We choose five river basins
located within different continents and climate zones—that is, the Amazon, Congo, Yangtze, Mississippi,
and Danube basins—for the robustness tests.

We chose three sensitive climate drivers as the input for the prediction previously. For understanding how
robust the number of selected sensitive climate drivers affects the prediction results, we now set this number
from 1 to 15 in the prediction and use the CSR mascons to assess the standard error of testing total water
storage change, respectively. The standard error based on different numbers of inputs are shown in
Figure C1. We find that the standard error of testing TWSC based on less than 8 (i.e., from 1 to 8) of inputs
do not show large differences, but the standard error could be increasing when we use a larger number of
inputs, for example, more than 12 inputs in Congo basin. Thus, we do not suggest the users to set the number
of inputs larger than eight for the prediction when using our method. In the previous experiments we had
chosen the number of selected modes by using a unified criterion, such as to retain 95% of the total energy;
in what follows we will vary the number of modes between 3 and 10 to find how robust this criterion is.
Figure C2 shows the standard errors of testing TWSC as compared to the CSR mascons, and the results indi-
cate that the uncertainty of predictions will be stable when choosingmore than fivemodes for the prediction.
As discussed in Humphrey et al. (2016), there is a fewmonths of time delay between the climate changes and
(affect) water storage changes. Our algorithm has been designed to maximize lag correlation within a win-
dow of 3 months (0… 3), in what follows we will extend this window successively to 6 months; for example, if
the window is set to 4 months, then we will move the climate driver from 0 to 4months to search for its high-
est correlation as related to the GRACE data. We predict the TWSC in five river basins based on different
values of window (i.e., from 0–0 to 0–6), and then we estimate the standard errors of prediction using the
CSRmascons as shown in Figure C3. The results indicate that the prediction uncertainties are reduced when
we turn the time window from 0 to 3, and there is no obvious improvement when the window is increased
from 3 to 6 months. For testing the robustness of the reference data period, we firstly fix the length of
training section to 8 years, and we fix the length of the testing section to 6 years; that is, we firstly use the
GRACE data from April 2002 to March 2010 (totaling 8 years) to train the predictive models and to predict
the next 6 years (i.e., April 2010 to March 2016) of TWSC. Then we move the training and testing sections
over time (e.g., move the training section from April 2002 to March 2010 to May 2002 to April 2010) and pre-
dict the TWSC using different periods of reference data, respectively. Finally, we use the CSR mascons to
evaluate the standard errors of the testing total water storage change in all moving time sections, and we

Figure C1. Standard errors of testing TWSC at the grid scale by turning the number of input climate drivers from 1 to 15 in
five river basins as evaluated from the CSR mascons.
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show them in Figure C4. The results indicate that the standard error of predictions from different time sec-
tions do not show large differences in five study regions, which demonstrate the robustness of our method
for this variation.

Figure C2. Standard errors of testing TWSC at the grid scales by turning the number of selected modes from 3 to 10 in five
river basins as evaluated from the CSR mascons.

Figure C3. Standard errors of testing TWSC at the grid scales by turning the time window from (0 … 0) to (0 … 6) in five
river basins as evaluated by the CSR mascons.

Figure C4. Standard errors of testing TWSC at the grid scales bymoving the training and testing periods from 1 to 15 times
in five river basins as evaluated by the CSR mascons.
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Codes and Output Data Set

The related codes and TWSC data set produced in this study are available online (https://github.com/straw-
pants/twsc_recon or https://zenodo.org/record/3690609#.XmmiHy2tZbU).
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