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Abstract The Coulomb failure stress (CFS) criterion is the most commonly used method for predicting
spatial distributions of aftershocks following large earthquakes. However, large uncertainties are always
associated with the calculation of Coulomb stress change. The uncertainties mainly arise due to
nonunique slip inversions and unknown receiver faults; especially for the latter, results are highly
dependent on the choice of the assumed receiver mechanism. Based on binary tests (aftershocks yes/no),
recent studies suggest that alternative stress quantities, a distance-slip probabilistic model as well as deep
neural network (DNN) approaches, all are superior to CFS with predefined receiver mechanism. To
challenge this conclusion, which might have large implications, we use 289 slip inversions from SRCMOD
database to calculate more realistic CFS values for a layered half-space and variable receiver mechanisms.
We also analyze the effect of the magnitude cutoff, grid size variation, and aftershock duration to verify the
use of receiver operating characteristic (ROC) analysis for the ranking of stress metrics. The observations
suggest that introducing a layered half-space does not improve the stress maps and ROC curves. However,
results significantly improve for larger aftershocks and shorter time periods but without changing the
ranking. We also go beyond binary testing and apply alternative statistics to test the ability to estimate
aftershock numbers, which confirm that simple stress metrics perform better than the classic Coulomb
failure stress calculations and are also better than the distance-slip probabilistic model.

1. Introduction
Large earthquakes are almost always followed by a sequence of aftershocks in the first months to years,
which might themselves be destructive as, for example, in the case of the 2011 Mw 6.2 Christchurch event,
which was triggered by the Mw 7.1 Darfield mainshock (Stramondo et al., 2011). It is generally accepted that
aftershocks result from stress changes induced by the mainshock. In particular, the Coulomb Failure Stress
(CFS) is commonly used as scalar quantification of the stress state. It is defined as

CFS = 𝜏 − 𝜇(𝜎 − p) (1)

where 𝜏 is the shear stress in slip direction on the fault plane, 𝜎 is the normal stress (positive for compres-
sion),𝜇 is the coefficient of friction, and p is the pore fluid pressure. Positive CFS changes,ΔCFS> 0, indicate
areas of potential aftershock activity, while no aftershocks are expected in regions withΔCFS< 0. Many stud-
ies have demonstrated a clear correlation of the spatial aftershock pattern with static CFS changes calculated
based on slip models (Harris, 1998; King et al., 1994; Steacy, Gomberg, et al., 2005; Stein, 1999). However,
the applicability is still ambiguous, especially because of the lack of observational evidence for seismic qui-
escence in stress shadow areas associated to ΔCFS < 0 (Felzer & Brodsky, 2005; Harris & Simpson, 2002)
and the missing effect of dynamic stress triggering (Felzer & Brodsky, 2006).

In general, ΔCFS calculations rely on information that contains large uncertainties, such as nonunique
inversion of slip models (Hainzl et al., 2009), secondary stress triggering (Helmstetter et al., 2005), and
unknown receiver fault mechanisms. CFS calculations require a definition of the fault geometry and slip
direction to calculate the Coulomb stress. This is typically done by resolving stress (1) on faults with
known geometry or (2) on optimally oriented planes (OOP) having maximum total Coulomb stress. Both
approaches are limited either due to poorly constrained fault geometries, ignoring blind faults that could
pose significant threat, or to an unknown background stress field. To account for these problems, Steacy,
Nalbant, et al. (2005) suggested to fix the strike according to the regional fault trends and vary dip and rake
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to maximize the total stress tensor, while Hainzl et al. (2010) proposed to use a distribution of receiver fault
orientation to estimate the ΔCFS net effect. As a result, stress shadows are less pervasive in agreement with
observations. Statistical space-time seismicity models have also been developed based on ΔCFS calculations
(so-called hybrid models), for example, Bach and Hainzl (2012) implementedΔCFS maps as spatial kernel in
the epidemic-type aftershock sequence (ETAS) model, Steacy et al. (2013) combined the spatial constraints
from Coulomb stress with the short-term earthquake probability (STEP) model (Gerstenberger et al., 2005),
and Cattania et al. (2014, 2015) implemented ΔCFS in the rate-state model of Dieterich (1994) accounting
for uncertainties. Those models are shown to be successful in explaining the observed trends in seismicity
(Cattania et al., 2018).

Recently, the use of CFS has been questioned in general by the studies of Meade et al. (2017) and DeVries
et al. (2018) showing that CFS is clearly outperformed by alternative stress metrics and deep neural net-
work (DNN) techniques. They used receiver operating characteristic (ROC) analysis to assess the ability to
forecast aftershock areas. The results suggest that alternative stress metrics such as maximum shear and
von-Mises stress are more accurate and reliable than CFS. Mignan and Broccardo (2019) recently ques-
tioned the results of the DNN approach and stress metrics, proposing a distance-based approach, which is
simpler and superior. In this study, we challenge the previous results by repeating the analysis with more
appropriate stress calculations as well as alternative tests. In particular, we use all available slip inversions
from SRCMOD database to calculate more realistic CFS values assuming layered-half spaces and variable
receiver mechanisms. Furthermore, we explore the previously ignored effect of different magnitude cutoffs,
grid size variations, and aftershock durations to verify the use of ROC analysis for ranking the stress metrics.
We also perform a sensitivity test for aftershock locations using Monte Carlo simulations of catalogs with
spatial uncertainties drawn form a Gaussian distribution around the real hypocenter. Because of limitations
of the binary forecasts and the ROC analysis, we finally perform additional tests of forecasts of aftershock
numbers based on the different stress metrics.

2. Data
We use finite-fault rupture models from the SRCMOD (https://equake&hyphen;rc.info/SRCMOD/)
database by Mai and Thingbaijam (2014). As of 27 November 2019, the database consist of 406 models from
188 earthquakes. However, in this study, we use only a subset of 289 models related to 130 distinct earth-
quakes for which reviewed aftershock data were available. The slip models are based on single or joint
inversion of seismic, geodetic, and other available data.

We use the International Seismological Center (ISC) catalog and select all events occurred within 1 year and
within 100 km horizontal distance to the mainshock fault, with a depth range from 0 to 50 km. The catalog
is obtained in the form of a pickle file (binary format) taken from the released data of DeVries et al. (2018).
These events are called aftershocks, despite the fact that some of them were probably not be related to the
mainshock. The catalog covers the period between 1 January 1964 and 30 November 2012. Out of 1,689,845
total events in the reviewed catalog, selection yields 410,064 aftershocks for the analysis.

3. Stress Metrics and Distance Model
The finite-fault rupture models are used to calculate stress changes in a region up to 100 km away from the
rupture plane and from 0 to 50 km depth. We use the PSGRN + PSCMP tool by Wang et al. (2006) to calculate
the stress tensor in a 5 × 5 × 5 km gridded volume. Given the stress tensor, we calculate five different scalar
quantifications. Additionally, we also use the distance-slip probabilistic model suggested by Mignan and
Broccardo (2019) comparing the performance of stress based metrics:

1. ΔCFS on master fault orientation (MAS), where ΔCFS is calculated for a receiver mechanism identical
to mainshock mechanism.

2. ΔCFS on optimally oriented planes (OOP), assuming a background stress field with principal stress com-
ponents 𝜎1 = 1, 𝜎2 = 0, and 𝜎3 = −2 MPa, that is, a differential stress of 3 MPa, which is in agreement
to the average stress drop of interplate earthquakes (Allmann & Shearer, 2009). The orientation of the
principle components is in a way that the stress field is optimally oriented for the mainshock rupture.
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3. ΔCFS assuming fault variability (VM): Here the average ΔCFS value is calculated for receiver faults with
positive stress changes (no aftershocks are expected on other faults) according to

ΔCFS = 1
Np

Np∑
i=1

ΔCFSi · H(ΔCFSi) (2)

where H is a Heaviside function and Np = 1,500 is the number of random planes which are selected from a
Gaussian distribution centered around the mainshock mechanism, with an assumed standard deviation
of 30◦ for strike, dip, and rake.

4. Maximum Shear (MS)

Δ𝜏max(𝜒) = |𝜒1 − 𝜒3|∕2 (3)

where 𝜒 is the stress tensor and 𝜒1 and 𝜒3 are corresponding eigenvalues of the deviatoric stress tensor.
5. von-Mises stress (VMS)

√
3J2 =

√
I2

1 (𝜎) − 3I2(𝜎) (4)

where I1 and I2 are first and second invariant of deviatoric stress tensor. VMS is a scaled version of second
invariant of the deviatoric stress change tensor (DeVries et al., 2018). If VMS of a material under a load
is equal or greater to the yield limit, then the material will yield.

6. Distance-slip probabilistic model (R), which was introduced by Mignan and Broccardo (2019) by a logistic
regression based on average slip, d, and the minimum distance, r, between the fault and grid node. The
probability Pr(r, d) of earthquake occurrence in each grid is given by

Pr(r, d) = 1
1 + e−(𝛽0 +𝛽1 log r+𝛽2 log d)

(5)

with parameters 𝛽0 = 10.18 ± 0.07, 𝛽1 = −2.32 ± 0.02, and 𝛽2 = 1.16 ± 0.01, which were obtained by a fit
to 75% of the data set.

In general, the stress metrics are calculated for a layered half-space, where the layering is based on the
CRUST 2.0 (Bassin, 2000) velocity model. However, as a reference model, we use theΔCFS values calculated
for a homogeneous half-space (MAS0) with assumed Lamé's parameter 𝜆 = 𝜇 = 30 Gpa. For the Coulomb
stress calculations, we use the constant apparent friction model (Cocco & Rice, 2002), according to which
the Coulomb-stress changes can be written as ΔCFS = Δ𝜏 − �̃�Δ𝜎 with the effective friction coefficient
�̃� = (1−B)𝜇, where B is the Skempton's coefficient. In our study, we use a value of �̃� = 0.4 (King et al., 1994).

4. Methods
To evaluate the forecasting capability, we use the same binary classification method, that is, receiver oper-
ating characteristic (ROC) analysis, which has been introduced in previous studies to rank the performance
of metrics (DeVries et al., 2018; Meade et al., 2017). In ROC analysis, a two-by-two table (Figure 1) is defined
to compare results of model outcomes with observed aftershocks. For different thresholds, the number of
true positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases are counted, and the
true positive rate (TPR) and false positive rate (FPR) are calculated as

TPR = TP
TP + FN

(6)

FPR = FP
TN + FP

. (7)

The cutoff thresholds are defined by stress change values, where stress values are first arranged in ascending
order before each stress value is used as a cutoff to calculate TPR and FPR. A test with random classification
of binary data has equal rates of true-positive and false-positive classification. For such a case, the area under
the curve (AUC) value of a ROC curve is equal to 0.5. A model that has AUC > 0.5 is better than a random
classifier. A model performing no better than a random classifier (AUC < 0.5) can be rejected. Therefore, we
use the ROC analysis to quantify the accuracy of our metrics for classifying areas with or without aftershocks.
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Figure 1. Table defining the true positive, true negative, false positive, and false negative classes.

The ROC results can be biased by the inhomogeneity of the earthquake catalog due to varying completeness
over time and space, associated location uncertainties, and the occurrence of background activity, which is
not related to the mainshock. To test the potential effect of these issues, we also calculated AUC for differ-
ent aftershock durations (aftershocks up to 1 year excluding first 24 hours, aftershocks in the first 3, 9, and
12 months after the main shock). Furthermore, we explore the potential dependence of the results on the
grid size (2.5, 5, and 10 km). We also perform a sensitivity test concerning the effect of location uncertainties
by repeating the analysis for 25 randomized catalogs, where the original earthquake location is perturbed
in each direction by a Gaussian distribution with standard deviation of 3 km.

Parsons (2020) recently discussed the fact that the imbalance of typical aftershock distributions with most
areas lacking events inhibits resolving power of the ROC analysis. The binary ROC test generally suffers
from the fact that the test is dependent on the magnitude cutoff. This can be easily seen by considering
the end-member case of an earthquake catalog, which is complete to very low magnitudes. In this case,
earthquakes would likely be recorded in all subvolumes due to ongoing background activity which make
the ROC results insensitive to the tested metric. The same holds for the opposite case that the threshold
is too high and no aftershock is found. For intermediate cases, the test has some statistical power which
depends on the cutoff value. For illustration of the dependence, we present in section 5 the ROC results for
different magnitude cutoffs in the case of the 1999 Chi-Chi sequence. Later on we also present the results of
a systematic test of the dependence of the AUC values on aftershock duration and magnitude cutoff for all
slip models to find the best possible combination of both choices for forecasting aftershocks. The four chosen
combinations are (1) aftershocks within the first year and a cutoff magnitude Mm − 3 with Mm being the
mainshock magnitude, (2) aftershocks within the first 3 months without cutoff magnitude, (3) aftershocks
within the first 3 months and cutoff magnitude Mm − 3, and (4) all aftershocks within 1 year without any
cutoff magnitude.

Because of the general flaws of the ROC analysis, we additionally perform tests of the number forecasts as
used in CSEP tests for seismicity models (Jordan, 2006). In this way, we test both the ability to forecast the
activated area and the strength of the activation, which is important for real hazard assessment. For this, we
transform the spatial stress values into a spatial probability map of aftershock occurrences, which is based
on the assumption of a linear dependence of the triggering potential on the stress change (if positive). In
particular, the number of events in each grid cell (𝜆n) is assumed to be proportional to the positive stress
metric change (Sn > 0)

𝜆n = c · Sn · H(Sn) (8)
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Figure 2. Stress maps calculated for 1999 Chi-Chi earthquake at the hypocentral depth of 7.5 km and passed to Sigmoid filter. (a) shows the reference model for
comparison; (b)–(f) are stress metrics MAS, OOP, VM, MS, and VMS, respectively. Black squares indicate areas, where one or more aftershocks occurred in the
±2.5 km depth interval. The yellow star refers to the mainshock epicenter.

where H is the Heaviside function. The normalization factor c is determined by the condition that summing
over the whole region results in the total number of observed aftershocks

Ng∑
n=1

𝜆n = c ·
Ng∑

n=1
Sn · H(Sn) = Nobs (9)

where Nobs is the total number of observed aftershocks within 1 year after the mainshock and Ng is the
number of grids cells in the region. Equations (8) and (9) can be used to determine the number of events in
each grid cell. The likelihood of the observation in each cell is calculated by assuming a Poissonian process
with an average rate 𝜆n. However, this approach would lead to an immediate falsification of a model, if the
model predicts 0 activity in a grid cell, where one or more events occurred. While this is theoretically correct,
real aftershock catalogs are potentially contaminated by background activity and incorrect locations. To
minimize this problem, we distribute a fraction f of aftershocks homogeneously in space, that is,

𝜆n =
Nobs∑

Sn · H(Sn)
· Sn · H(Sn)(1 − 𝑓 ) +

Nobs

Ngrid
𝑓. (10)

Here we choose a fraction (f = 0.01) which is uniformly distributed. The probability that Nn events will occur
in a given time period and in the nth grid with predicted rate 𝜆n is described by to the Poisson model with

Pn(Nn|𝜆n) = exp(−𝜆n)
𝜆

Nn
n

Nn!
(11)

and the joint log-likelihood for all grid cells becomes

LL =
Ng∑

n=1
log(Pn(Nn|𝜆n)). (12)

The joint log-likelihood has a negative value, and the values closer to zero indicate that forecasts are close
to the observations.
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Figure 3. ROC analysis of 1999 Chi-Chi sequence: (a) shows the aftershocks within the first year after the mainshock;
(b) cumulative and noncumulative frequency-magnitude distribution, where the estimated completeness magnitude
Mc is marked at 2.2; (c) shows the ROC curves for the different stress metrics, and (d)–(f) are the ROC curves for the
VM stress metric with different Mcut , aftershock duration, and grid size, respectively.

5. Results
The stress tensors generated from the PSGRN + PSCMP (Wang et al., 2006) program are used to calculate
the stress metrics described in section 3. While our quantitative analysis is always done for the calculated
stress in the whole gridded volume extending ±100 km horizontally and from 0 to 50 km in depth, we first
illustrate the calculations by selecting a specific depth level for one specific case, namely, the slip distribution
of 1999 Chi-Chi earthquake derived by Ma et al. (2001). In Figure 2, we compare the stress maps generated
by the different scalar stress calculations. Classical Coulomb stress calculations have positive and negative
values which mark the regions with and without possible aftershocks, respectively. Correspondingly, the
values of MAS0, MAS, and OOP are negative and positive. In contrast, VM, MS, and VMS are only positive.
In order to compare the results on a same scale we use a Sigmoid filter sig(10Sn − 1) (where sig(x) = 1

1+ e−x ).
The stress maps are computed at the depth of the mainshock hypocenter (7.5 km), where the epicenter of
the mainshock is marked by the yellow star. The stress maps are compared to areas (black squares) where
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aftershocks occurred within 1 year after the mainshock in the depth interval of 7 ± 2.5 km. ΔCFS for MAS0
and MAS (Figures 2a and 2b, respectively) show very little to no difference in their maps. However, the
OOP-type Coulomb stress map (Figure 2c) is significantly different from the former as verified in previous
studies. There are few regions with high sigmoid values and no aftershocks and few aftershocks occurring
in the stress shadows. Figure 2c, related to ΔCFS calculated on distributed planes, shows maximum sigmoid
values in the near-fault region with decreasing values in the far field. Figures 2e and 2f, which are related
to maximum stress and von-Mises stress, indicate increased stress values in the near as well as the far field.

For the same example, we also performed a detailed analysis of the ROC test. The availability of a large num-
ber of aftershocks in the catalog of the Chi-Chi event makes it a suitable case for testing. The catalog is down-
loaded from ISC and contains 41,351 events. Unlike the catalog mentioned in section 3 this is an updated
catalog with significantly lower magnitude cutoff. Figure 3a shows the aftershocks in a volume of 100 ×
100 × 50 km plotted as magnitude versus time. We use the frequency magnitude distribution (Figure 3b)
to estimate the magnitude of completeness (Mc ≈ 2.2). The ROC curves using all aftershocks and stress met-
rics in the gridded 100 × 100 × 50 km region are plotted in Figure 3c. The analysis reveals that the best
performing metrics are maximum shear (AUC = 0.744) and von-Mises stress (AUC = 0.749). The AUC
value for the VM model with ΔCFS calculated on distributed planes is lower but also performs well (AUC
= 0.721). For the specific case of the VM model, we additionally check the dependence of ROC curves on
the magnitude cutoff (Mcut), aftershock duration, and grid size. The magnitude cutoff test (Figure 3d) was
performed for cutoff magnitudes of −1 (complete catalog), 2, 2.2 (Mc), 3, 4, and 5. A clear dependence of
AUC on cutoff magnitude is observed, where AUC increases with increasing Mcut. This result indicates that
larger aftershocks are in better agreement with the calculated stress maps.

The ROC analysis might be significantly biased by background activity, which may begin to dominate with
increasing time, as well as catalog incompleteness directly after the mainshock. To explore the potential
effects, we also analyzed the ROC curves for different aftershock durations. We find that ignoring the first
day, where the catalog is likely incomplete, does not have a significant effect (AUC of 0.696 instead of 0.698).
However, ignoring later events does have a clear impact. The results for the first 3, 6, 9, and 12 months after
the mainshock show that the AUC value systematically decreases (Figure 3e) with increasing aftershock
duration. The maximum AUC is observed for the aftershocks occurring within the 3 months of the main-
shock. This indicates that the occurrence of background events in the later phases can significantly blur the
test results. The dependence of AUC on grid size is tested by calculating the stress tensors at the centroid of
cubes with edge length of 2.5, 5, and 10 km cells. Figure 3f shows the resulting ROC curves for the VM stress
metric calculated on different grid sizes. A systematic dependence of AUC on grid size is observed where
smaller grid sizes increase the performance of the metric, indicating that the details in the stress maps are
useful for aftershock forecasting.

To analyze whether the results for the Chi-Chi event can be generalized, we generated ROC curves for all
289 slip distributions and corresponding aftershock distributions. All resulting ROC curves are plotted in
Figure 4 (thin gray lines) for all stress metrics introduced in section 3, where the thick blue line refers to the
average curve for each stress metric. The average is calculated by averaging true positive rates in false positive
rate bins. We then determined the corresponding AUC for the average curve. We observe no clear difference
between the reference metric MAS0 and MAS calculated for regional layered crust models (Figures 3a and
3b). As expected, ΔCFS resolved on OOP results in a higher AUC (0.659) than MAS0 and MAS (0.491 and
0.490, respectively). Furthermore, the AUC value (0.718) for ΔCFS calculated for variable mechanism (VM)
is significantly higher as compared to the other CFS metrics but lower than the stress scalars MS and VMS
(0.743 and 0.746, respectively). However, the maximum AUC value of 0.758 is obtained for the distance-slip
probabilistic model (R) for which the figure is included in the supplementary information as Figure S4. Note
that the R-model was optimized on a large fraction of the data, while the stress metrics are not optimized.
Thus, this comparison might be biased, but the comparison of Mignan and Broccardo (2019) which was
performed only on a subset of the test data showed the same tendency.

Figure 5a shows the effect of location uncertainties of 3 km on the AUC values. We find the standard devi-
ation of the resulting mean AUC values is small, and the ranking remains the same. Figure 5b shows a box
plot to indicate the distribution of mean, median, quartiles, and extremes of AUC values for all slip mod-
els and stress scalars. The metrics OOP, VM, MS, and VMS and distance-slip model (R) have their mean,
median, and first quartile all above the AUC threshold (0.5), while the mean and median for MAS0 and MAS
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Figure 4. ROC analysis (a–f) for all analyzed slip distributions and stress metrics (a) MAS0, (b) MAS, (c) OOP, (d) VM, (e) MS, and (f) VMS, where thin lines
are related to the result of individual slip distributions and the thick blue line is the binned average with corresponding AUC value mentioned in the legend. A
reference line is plotted as black dotted line, which refers to the result for random data.

do not even cross this threshold. R performs best in terms of mean, median, and quartile range, but the dis-
tribution strongly overlaps with those of VMS, MS, and VM as the next best performing metrics. To test the
robustness of the ranking, we repeated the calculation for different combinations of Mcut and the aftershock
period (see section 4). Figure 5c shows the results of the test, which confirms the robustness of the rank-
ing. However, the AUC scores systematically vary for all metrics and for the distance-slip model depending

Figure 5. AUC results as a function of the model type: (a) mean AUC values with its uncertainties (± on standard deviation) assuming a location error of 3 km
(see section 4); (b) AUC results for all slip distributions represented as box plots. The gray part of the box shows the interquartile region (IQR) with first and
third quartile as bounds. The solid and dotted horizontal lines inside the box refer to the median and mean values, and the extreme ends (whiskers) indicate the
minimum and maximum of all results. (c) shows the average AUC value for the different aftershock sets mentioned in section 4.
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Figure 6. Result of the number forecast test: box plots of the distribution of normalized LL values for all analyzed slip
models in dependence of the stress metric. The symbols are defined as in Figure 4a.

on the different settings. In particular, the best performing scenario (Figure 5c green dots) is obtained for
aftershocks within the first 3 months after the mainshock and Mcut = Mm − 3.

Now, we go beyond binary testing and use a statistical test to estimate the aftershock numbers because real
aftershock forecasts rely on the event density as discussed in section 4. The result of the log-likelihood (LL)
test is shown in Figure 6. For a better comparison of LL values for mainshock-aftershock sequences with
different number of aftershocks, the resulting LL value was divided by the number of aftershocks in each
case. The results are presented by box plots (whisker diagrams), which are used to study the distribution
of LL values. We observe a very similar trend as in the case of the ROC analysis. However, in this case,
the distance-slip probabilistic model (R) now ranks below the ΔCFS-based VM metric. Stress metrics VM
perform significantly better than the conventional Coulomb stress calculations, but MS and VMS are still
better. The best result in terms of number forecasts is obtained for VMS.

6. Discussion
Coulomb failure stress has been largely used to explain earthquake triggering and particularly to describe
the locations of aftershocks by separating the region into positive and negative stress change areas. Theo-
retically, aftershocks are only expected in regions with increased CFS value. However, it has been already
recognized that aftershocks frequently occur in regions with calculated, negative stress changes, so-called
stress shadows (Felzer & Brodsky, 2005; Harris & Simpson, 2002). It has been suggested that this is related
to uncertainties in the slip models (Hainzl et al., 2009; Helmstetter & Shaw, 2006; Marsan, 2006) as well as
the variability of the receiver mechanisms (e.g., Hainzl et al., 2010). Taking these uncertainties into account
has been previously shown to improve the forecasts significantly (Cattania et al., 2014). A study conducted
by Steacy, Nalbant, et al. (2005) suggests in a poorly defined regional stress area, or in a structurally complex
area, the strike of the receiver planes should be fixed to that of the mainshock plane and let the dip and rake
vary to calculate the Coulomb stress.

The uncertainties and finite resolution of finite-fault models reduce the capability of Coulomb stress to
reproduce the on-fault aftershocks (Steacy et al., 2004). With majority of aftershocks occurring in the prox-
imity of the mainshock rupture plane (Felzer & Brodsky, 2006; Gu et al., 2013; Moradpour et al., 2014), the
Coulomb stress metric is expected to suffer more strongly than the simple metrics from those limitations.
In order to test whether this explains our results, we repeated the ROC analysis by eliminating near-fault
grid cells as well as their respective aftershocks (see Figure S3). While MAS0 and MAS do not significantly
improve, the performance of the OOP metric deteriorates when excluding near-fault aftershocks. While this
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is counterintuitive, it is likely related to the effect of background activity, which is not associated to the
mainshock stress. Excluding the near-fault area also excludes the area with the highest signal-to-noise ratio.

The recent studies of Meade et al. (2017) and DeVries et al. (2018) claimed that simple stress metrics, which
do not need any specification of the receiver mechanism, are superior to the Coulomb stress calculations.
However, their claim can be challenged because of the unrealistic CFS calculations, which did not account
for the known uncertainties in the CFS calculations, as well as the potential artifacts and shortcomings of
their ROC analysis. Thus, we performed a systematic reanalysis including (i) previously introduced CFS
scalars accounting for receiver fault variability (OOP and VM), (ii) improved stress calculations based on
regional, layered velocity models, (iii) different time windows and magnitude cutoffs, and (iv) the LL test
quantifying the forecasts of the spatial distribution of aftershock numbers. Countering the approach of
DeVries et al. (2018) and Mignan and Broccardo (2019) shows that a logistic regression model using aver-
age mainshock slip and measured distance performs better than DNN approach. Hence, we consider the
distance-based model as reference model and perform a detailed analysis to compare the performance of
stress metrics.

Our comprehensive analysis shows that the results of OOP and VM are significantly better than the pre-
viously tested MAS value. This indicates the importance in accounting for the variability of aftershock
mechanisms to get more realistic CFS predictions. Further, geological constraints can be used to narrow
down the standard deviation in receiver fault distribution to obtain more realistic results. While there are
improvements observed in the performance of OOP and VM, scalar stress metrics still performed signif-
icantly better than receiver dependent metrics. The underlying reason is not yet clear and needs further
research. It might be that MS and VMS are more efficient in accounting for triggering mechanisms, which
are not directly considered, such as afterslip, poro/visco-elastic deformations, and dynamic stress triggering.
However, our tests show that distance-slip (R) is the best performing model for forecasting the aftershock
area (binary forecast). This result indicates that there might not be any need to calculate stress tensors when
forecasting the activation area. In contrast, the best stress metrics are found to outperform the R-model in
regards to forecasting earthquake numbers, that is, the spatial density of aftershocks which is more impor-
tant for seismic hazard studies. It should be noted that our analysis of alternative stress metrics is not
exhaustive, and other metrics might be even better. For example, Terakawa et al. (2020) just introduced a new
energetics-based stress metrics ΔETS, jointly accounting for coseismic stress changes and the background
stress field. While their test for the case of the Landers aftershock sequence shows encouraging results,
Mignan and Broccardo (2020) replied that it is likely not better than their distance-based approach. Whether
or not ΔETS systematically improved forecasts might be tested in a future study similar to the present one.

For our analysis, we tried to use some meaningful parameters for the CFS calculations. Using more realistic
friction coefficients, background stresses (OOP), or uncertainties in the receiver mechanisms (VM) might
improve the results of the CFS metrics. However, such a retrospective optimization of model parameters
would bias the comparison, because MS and VMS have no free parameters. Although the background stress
field for the OOP model could be set according to alternate rules. For example, Mignan (2020) suggested
that the prestress is released by the mainshock stress drop. So, we recalculate the OOP metric for deviatoric
background stress, which is calculated for each mainshock individually to equal the estimated stress drop
(see details in the supporting information Figure S5). A notable improvement is observed in the OOP results,
but it does not change the ranking of stress metrics and distance-slip model.

Our test results might be distorted by background events and aftershocks triggered by aftershocks, so-called
secondary triggering. Our analysis already indicates that the results change for different time windows,
with best results for aftershocks in the shortest time period after the mainshock. This points to the blur-
ring effect of background activity. Declustering may possibly remove the effect of higher order aftershocks,
but no simple method exists which could be applied on our diverse data set. In general, the epidemic type
aftershock sequence (ETAS) model accounts systematically for background as well as secondary aftershock
triggering. Implementing a spatial kernel based on the stress metrics could be one way to do systematic tests
including background and secondary aftershock triggering. However, those studies can only be performed
for individual sequences with high data quality.

In our study, we do not consider the effect of dynamic stress changes, which is used to explain aftershock
locations within a week of a large mainshock (Prejean et al., 2004). However, our results indicate that the
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stress metrics works best for the largest aftershocks triggering in the shortest time period after the main-
shock. This is encouraging, because they have the largest impact on seismic hazard. A thorough analysis can
be performed like in Figure 5c to specify the forecasting thresholds on the time period and cutoff magnitudes
for different tectonic regions.

It is important to note that our study does not discard the use of CFS in general and Coulomb failure theory
might still describe the physics for earthquake triggering. It rather indicates that CFS in the case of limited
fault information is not the best choice for aftershock forecasting. However, if precise information about the
receiver planes are available, CFS might still be the best choice, for example, to evaluate the trigger potential
on well-known neighboring fault segments.

7. Conclusion
Despite its frequent application for several decades, Coulomb failure stress calculations have been ques-
tioned by recent studies and shown to be outperformed by other stress scalars and state-of-the-art methods
like deep neural network in forecasting aftershocks. However, the recent results are also questionable
because of an artificial DNN application (Mignan & Broccardo, 2019) as well as simplified CFS calculations.
As this has broad implication for this research area, we performed a comprehensive reanalysis of the previ-
ous ROC-based study. Here we include CFS metrics accounting for the variability of aftershock mechanisms
and additionally taking account of the incompleteness of catalogs as well as the occurrence of background
activity. In addition to the previously conducted ROC analysis for binary forecasts, we also tested forecasts
of aftershock numbers.

To summarize, we find that the results of the ROC analysis are dependent on the magnitude cutoff, after-
shock duration, and grid sizes and that more realistic CFS calculations (OOP and VM) can significantly
improve the results. However, our analysis verifies that the stress scalars MS and VMS, and distance-slip
probabilistic model (R), all of which do not rely on any specification of receiver mechanisms, outperform
on average the CFS metrics in all test setups. While CFS might still be used for the evaluation of the stress
changes on well-defined fault segments, our results indicate that spatial forecasts of the aftershock density
might be generally improved by using von-Mises stress (VMS) instead of Coulomb stress.

Data Availability Statement
All the slip data are freely available on https://equake&hyphen;rc.info/srcmod/ and International Seismo-
logical Center (ISC) event catalog (https://www.isc.ac.uk/iscbulletin/search/catalogue/).
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