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Abstract The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) consists of
simulations at three fixed sea-surface temperatures (SSTs: 295, 300, and 305 K) and thus allows for a
calculation of the climate feedback parameter based on the change of the top-of-atmosphere radiation
imbalance. Climate feedback parameters range widely across RCEMIP, roughly from —6 to 3Wm=2 K1,
particularly across general-circulation models (GCMs) as well as global and large-domain cloud-resolving
models (CRMs). Small-domain CRMs and large-eddy simulations have a smaller range of climate feedback
parameters due to the absence of convective self-aggregation. More than 70-80% of the intermodel spread
in the climate feedback parameter can be explained by the combined temperature dependencies of
convective aggregation and shallow cloud fraction. Low climate sensitivities are associated with

an increase of shallow cloud fraction (increasing the planetary albedo) and/or an increase in convective
aggregation with warming. An increase in aggregation is associated with an increase in outgoing longwave
radiation, caused primarily by mid-tropospheric drying, and secondarily by an expansion of subsidence
regions. Climate sensitivity is neither dependent on the average amount of aggregation nor on changes in
deep/anvil cloud fraction. GCMs have a lower overall climate sensitivity than CRMs because in most
GCMs convective aggregation increases with warming, whereas in CRMs, convective aggregation shows no
consistent temperature trend.

Plain Language Summary To determine how much Earth will warm in response to
anthropogenic greenhouse gas emissions, we need to understand the atmospheric response to this forcing.
The amount of warming in response to a given forcing is called climate sensitivity. Although global climate
models are a useful tool to estimate climate sensitivity, estimates remain uncertain, in particular because
the response of tropical clouds to warming is uncertain. The weakness of climate models is their coarse
grid spacing, with which they cannot resolve important aspects of the weather like clouds and convection.
In this study, we use a popular idealization for the tropics, the radiative-convective equilibrium setup,

to compare climate sensitivities across a wide range of models including global climate models and
cloud-resolving models. We find that more than 70-80% of variations in climate sensitivity across these
models result from changes in shallow cloud fraction and changes in the spatial organization of convection
with warming. Our results indicate that climate sensitivity might be underestimated by global climate
models, in which the amount of spatial organization of convection mostly increases with warming, leading
to low climate sensitivities, while the cloud-resolving models show no consistent trend in spatial
organization, and thus have higher climate sensitivities.

1. Introduction

Climate sensitivity describes the amount of global warming that occurs in response to an external

radiative forcing. Therefore, climate sensitivity controls many aspects of the climate response to global
warming, both globally and locally, like the probability of droughts and flooding (IPCC, 2018). Thus, the
value of halving the uncertainty in climate sensitivity may be in the trillions of dollars (Hope, 2015).
The earliest estimates of equilibrium climate sensitivity (ECS), defined as the global-mean equilibrium
surface air temperature response to a doubling of CO, concentration in the atmosphere, were made by
Arrhenius (1896). His first ECS estimate of 5-6 K, which he later corrected to 4K, is remarkably close to
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modern estimates. For example, Charney et al. (1979) estimated ECS to be in the range of 1.5 to 4.5 K, with
a best estimate of 3K. The range of possible equilibrium climate sensitivities has not been significantly
reduced over the last decades (e.g., Knutti et al., 2017), despite the use of increasingly complex models. In
this study, we return to a less complex model setup that was used in many early studies to estimate ECS
(e.g., Ramanathan & Coakley, 1978), the radiative-convective equilibrium (RCE) framework, to get a better
quantitative understanding of the processes that explain most of the intermodel spread in climate sensitivity.

Generally, a large fraction of the spread in model-based climate sensitivity estimates can be attributed to
the response of clouds, and particularly low clouds, to warming (e.g., Bony & Dufresne, 2005; Sherwood
et al., 2014; Vial et al., 2013; Webb et al., 2013). In global climate models, clouds as well as the majority
of processes that lead to their formation, such as moist convection, which is a main source of precipita-
tion, are not resolved by the coarse grid and thus need to be parameterized. In a recent study, Fiedler
et al. (2020) showed that the representation of tropical precipitation has not substantially improved over
three generations of global climate models participating in the Coupled Model Intercomparison Project
(CMIP; Meehl et al., 2007; Taylor et al., 2012; Eyring et al., 2016). To escape this deadlock, Stevens et al.
(2019) proposed to replace general-circulation models (GCMs), which parameterize deep convection, with
models that explicitly resolve deep convection, for example, a global cloud-resolving model (GCRM; Satoh
et al., 2019). However, due to computational constraints, GCRM simulations are limited to short time scales
and to kilometer-scale resolution, with the consequence that clouds, whose correct representation is cru-
cial for climate sensitivity, are still poorly represented. Thus, to develop a deeper understanding of complex
multiscale systems, it is beneficial to use a hierarchy of models (Bony, Stevens, et al., 2013; Held, 2005;
Jeevanjee et al., 2017; Medeiros et al., 2008), for example, by linking GCRM:s to coarse-resolution GCMs, to
limited-area cloud-resolving models (CRMs) and to hectometer-scale large-eddy simulations (LES).

RCE, a balance between convective heating and radiative cooling, is a surprisingly accurate simplification
of the tropical troposphere (e.g., Dines, 1917; Manabe & Strickler, 1964). The RCE framework is accessible
to many types of atmospheric models, and there is probably no other framework that is so relevant for
understanding climate change and so accessible to a hierarchy of models (e.g., Jeevanjee et al., 2017). Early
RCE studies were conducted with single-column models (SCMs; e.g., Ramanathan & Coakley, 1978, and
references therein), and later with CRMs (e.g., Held et al., 1993; Nakajima & Matsuno, 1988; Tompkins &
Craig, 1998) and GCMs (e.g., Popke et al., 2013), for example, to improve the understanding of how clouds
and convection couple to circulations and to contribute to the development and evaluation of atmospheric
models and their parameterizations (e.g., Becker et al., 2018; Held et al., 2007; Reed & Medeiros, 2016).

A weakness of past RCE studies is that the analysis is usually limited to a single model and that differ-
ent boundary conditions are used, which means that results have been difficult to compare across studies.
These limitations are overcome by the Radiative-Convective Equilibrium Model Intercomparison Project
(RCEMIP; Wing et al., 2018), which defines a standardized RCE protocol for many types of atmospheric
models: GCMs, SCMs, GCRMs, CRMs, and LES. RCEMIP was motivated by three goals: (1) to investigate
the robustness of the RCE state, (2) to analyze the response of clouds to warming and the impact on climate
sensitivity, and (3) to understand how convective self-aggregation depends on temperature. One intriguing
initial result of RCEMIP is that in those simulations that permit spatial organization of convection, there is a
very wide range of climate sensitivities (Wing et al., 2020). This motivates our present study, which seeks to
develop an understanding of the extreme spread in climate sensitivity in the RCEMIP ensemble. The focus
of our investigation is on changes in cloud amount and spatial organization, which are expected to affect
climate sensitivity (e.g., Bony et al., 2015; Cronin & Wing, 2017).

In addition to the ability to compare RCE across model types, the absence of large-scale heterogeneities in
boundary conditions or forcing allows for an undistracted analysis of convection and its spatial organization
in a setup that, due to the lack of external constraints, reveals differences between atmospheric models par-
ticularly well. Indeed, Wing et al. (2020) found that there was a wide range in the representation of mean
profiles of temperature, humidity, and cloudiness in the RCEMIP ensemble. Convective self-aggregation,
which is the spontaneous organization of convection despite homogeneous boundary conditions and

forcings, was found to occur in nearly all large-domain RCEMIP simulations, though the spatial

structure and degree of aggregation varied across models (Wing et al., 2020). Consistent with prior
studies (e.g., Bretherton et al., 2005), there is widespread agreement across the RCEMIP ensemble that
self-aggregation affects the mean simulated climate, by drying the non-convective regions and enhancing
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outgoing longwave radiation (OLR) (Wing et al., 2020). Similar relationships between convective aggrega-
tion (of any type) and its large-scale environment are found in observations (Lebsock et al., 2017; Stein et al.,
2017; Tobin et al., 2012, 2013). In addition, Bony et al. (2020) showed that the observed interannual variance
of the tropical top-of-atmosphere (TOA) radiative imbalance depends on the degree of convective aggrega-
tion. Because of the impact of self-aggregation on the mean climate and radiative imbalance, self-aggregation
may modulate climate sensitivity (e.g., Becker et al., 2017; Becker & Stevens, 2014; Cronin & Wing, 2017).
However, there is no scientific consensus on how the propensity of convection to self-aggregate depends on
temperature (reviewed by Wing, 2019). Thus, this study quantifies which intermodel differences contribute
to the extreme spread in climate sensitivity across the different types of RCEMIP models, with a focus on
the temperature dependencies of cloud fraction and convective self-aggregation.

2. What Is the Climate Sensitivity Across the RCEMIP Simulations?

Estimating equilibrium climate sensitivities from climate models that include a dynamical ocean compo-
nent takes several thousand modeling years (e.g., Li et al., 2013; Rugenstein et al., 2019; Senior & Mitchell,
2000). Thus, an effective climate sensitivity is often used, which extrapolates from the transient temperature
increase and TOA imbalance assuming certain behaviors of radiative feedbacks (e.g., Gregory et al., 2004;
Murphy, 1995). To estimate climate sensitivity in the RCEMIP simulations, a third established method must
be used, the Cess sensitivity method (Cess & Potter, 1988). In this method, the climate feedback parameter
(4) is estimated, which can be transformed to ECS if the CO, forcing (Fjco,) is known:

Fyyco,

ECS= ——— 1
= M

where 4 is calculated from the rate of change of the TOA radiative imbalance (R) across simulations at
different fixed surface temperatures (T),

R is the sum of net incoming shortwave (Rgy,) and longwave (R;,) radiation, so a positive value indicates
an energy flux into the atmosphere. In RCEMIP, 4 can be calculated in each model for a higher and a lower
temperature range because each model provides three simulations at different fixed sea-surface tempera-
tures (SSTs), at 295, 300, and 305 K. These are atmosphere-only aquaplanet simulations with no planetary
rotation. In addition to homogeneous surface conditions, the insolation is everywhere equal to the tropical
annual mean (409.6 W m~2), and all trace-gas concentrations are fixed and spatially uniform. More details
on the boundary conditions and RCEMIP model setup are described in Wing et al. (2018, 2020).

RCEMIP simulations were performed with large- and small-domain configurations. Depending on model
type, the large domain is either global (GCMs), global with reduced Earth radius (GCRMs), or an elongated
channel of ~6,000 x ~400 km? (CRMs and one GCM), while the small domain is either the SCM version of
a GCM or a square of ~100 x ~100 km? (CRMs). GCMs have horizontal and vertical grids similar to their
CMIP6 configuration (Eyring et al., 2016), GCRMs and large-domain CRMs have a horizontal grid spacing
of ~3 km, and small-domain CRMs have a horizontal grid spacing of 1 km, but there are also two additional
RCEMIP model types on the small square domain, with approximately doubled vertical (hereafter VERT)
and additionally quintupled horizontal (hereafter LES) resolution. This information is summarized in Table
1, and the snapshots of OLR in Figure S1 in the supporting information visualize differences across the dif-
ferent RCEMIP model types. For further visualizations, in form of snapshots (of OLR and precipitable water)
and movies for all RCEMIP models, the reader is referred to Wing et al. (2020). In Figure 1, we compare
climate feedback parameters across 11 global-domain GCMs, six versions of WRF-GCM on the elongated
channel, three GCRMs with reduced Earth radius (Ry/8 for MPAS; R;/4 for NICAM and SAM-GCRM)
merged with 14 CRMs on the elongated channel, 16 CRMs on the small square domain, six VERT models,
and six LES models. All models except the GCMs resolve convection explicitly. We compute 4 based on aver-
ages of R over the entire simulation, excluding only the first 75 days because within this period of time, an
equilibrium state is reached in the RCEMIP simulations (see Figure 1 in Wing et al., 2020). The exception
is the LES simulations, in which we only exclude the first 25 days because the LES simulations are only run
for 50 days. CRMs and GCRMs are run for 100 days and GCMs are run for ~1,000 days.
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Table 1

Characteristics of RCEMIP Model Types With Respect to Approximate Domain Size (in km?), Horizontal Grid Spacing
and Number of Vertical Levels, as Well as the Average and Standard Deviation of the Climate Feedback Parameter Based
on Change of Top-of-Atmosphere All-Sky (1) and Clear-Sky (Acrg) Radiative Imbalance With Warming (in Wm=—2 K~1),
Calculated Across Both the Lower (300-295 K) and Higher (305-300 K) SST Range for Each Model Type

GCM WRF-GCM GCRM CRM large CRM small VERT LES
Domain Global 6,000 X 400 Global? 6,000 X 400 100 x 100 100 % 100 100 % 100
Grid spacing ~1° 50 km ~3-4km 3km 1km 1km 200 m
Vert. levels 26-91 48 ~74 ~74 ~74 ~146 ~146
avg(A) —2.7 —24 -1.2 -1.2 -0.8 -0.9
std(4) 1.8 1.6 1.4 0.6 0.9 0.5
avg(Acrr) -23 — -14 -11 -0.8 -0.9
std(AcrRr) 1.0 — 0.8 0.5 0.8 0.6

Note. Clear-sky values are not available in WRF-GCM and WRF-CRM. Results are merged for GCRMs and
large-domain CRMs.
2 With reduced Earth radius: Rp/8 for MPAS and Rp/4 for NICAM and SAM-GCRM.

A comparison of the average climate feedback parameters (in Figure 1 and Table 1) across the different
RCEMIP model types shows that A is on average more negative in GCMs than in GCRMs and CRMs.
Interestingly, the average climate feedback parameter is the same in the small-domain CRMs and in the
large-domain CRMs (including the three GCRMs). Note that Cronin and Wing (2017) found a more negative
climate feedback parameter (lower climate sensitivity) in a large domain than in a small domain. This con-
trast can be reproduced by about 50% of the large/small pairs of CRM simulations in RCEMIP (Wing et al.,
2020), but the other 50% of CRMs behave differently and compensate in such a way that the average climate
feedback parameter is the same in the large and small domain. This is also subtly different than in Wing et
al. (2020), who found that in models with explicit convection, the average climate feedback parameter was
slightly more negative in large-/global-domain simulations than in small-domain simulations (see Figure 17
in Wing et al., 2020). This is because the six VERT and LES models, which on average have the least negative
feedback parameter (highest climate sensitivity), were included in the explicit group of small-domain sim-
ulations, whereas here, we consider them separately. These six models also have a similar climate feedback
parameter in the default small-domain CRM setup, which means that climate sensitivity is almost indepen-
dent of vertical and horizontal resolution across the analyzed resolutions in these small-domain simulations.
In most models, 4 becomes less negative with increasing temperature, in particular in the setups with explicit
convection. In these setups, 4 is on average 0.5 W m~2 K~! less negative between 305 and 300 K than between
300 and 295 K, and when 4 is based on clear-sky radiative fluxes, the change with warming is even slightly
larger (0.6 W m~2 K~1, Figure 1b). This indicates that the temperature dependency can be linked to clear-sky
mechanisms like an intensification of the water vapor feedback with increasing temperature, as explained
by Held and Soden (2000). As an aside, Wing et al. (2020) found that 4 was much more negative in GCMs
than in SCMs (comparing the large and small versions of models with parameterized convection), but we
don't consider SCMs here because our focus is on three-dimensional models that can represent circulations.

In the RCEMIP simulations, only a rough estimate of ECS can be made with Equation 1 because the CO,
concentration is not varied, and thus, the CO, forcing is unknown and needs to be estimated. Here, we
assume Fy,c, = 3.5W m~2, which is the average CO, forcing in CMIP6 (see Figure 1b in Zelinka et al., 2020).
Across RCEMIP, this leads to an average ECS of ~1.3K in GCMs and ~2.9K in large- and small-domain
CRMs. Compared to previous RCE studies (e.g., Cronin & Wing, 2017; Popke et al., 2013; Ramanathan &
Coakley, 1978), these two values are at the lower and upper limit of the expected range. The average ECS
in CMIP6, however, is higher, 3.9 K (Zelinka et al., 2020). This is expected because RCE climate feedbacks
should be compared to local climate feedbacks over the tropical oceans in more comprehensive models;
amplified warming over the poles and over land is absent in RCE (Popke et al., 2013). Nonetheless, some
RCEMIP models have a positive climate feedback parameter, which would be associated with an unstable
climate state and an infinite ECS. In the remainder of the paper, we refrain from making an assumption on
the CO, forcing and only discuss A rather than ECS.
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Figure 1. Climate feedback parameter based on change of top-of-atmosphere (a) all-sky (1) and (b) clear-sky (Acrr)
radiative imbalance with warming (Equation 2), calculated across both the lower (300-295K) and higher (305-300 K)
SST range. Downward fluxes are defined positive. All RCEMIP models are ordered by type. The average and the +1
standard deviation, calculated across both SST ranges for each model type, are indicated by the black circle and line.
Clear-sky values are not available in WRF-GCM and WRF-CRM. Results are merged for large-domain CRMs and
GCRMs.
A comparison of the intermodel spread in climate feedback parameters across the different RCEMIP
model types shows that intermodel spread is largest in the GCMs, where A ranges from —6 to 2Wm~2 K1
(Figure 1a), which translates to a standard deviation of 1.8 W m~2 K~! (Table 1). Intermodel spread is second
largest in the different versions of WRF-GCM and third largest in the large-/global-domain CRMs/GCRMs.
All small-domain setups, which are too small for convection to self-aggregate (Wing et al., 2020), have a
comparably small intermodel spread in A, with a standard deviation of 0.6 Wm=2 K~! (Table 1). The large
spread in WRF-GCM is remarkable, given that the only difference is which convective parameterization is
used. Nonetheless, the remainder of our analysis focuses on the other model types because the main pur-
pose of WRF-GCM is to bridge the gap between global GCMs and limited-domain CRMs. WRF-GCM was
therefore configured with a very small number of model grid points, which means that robust results are
more difficult to find in this setup. Note that ECHAMS6 has both the highest climate feedback parameter of
all GCMs (between 300 and 295 K), and the most negative climate feedback parameter (between 305 and
300 K). This reflects the nonlinear temperature dependency of the governing processes within individual
models. In total, eight RCEMIP models have positive climate feedback parameters for at least one of the two
5K SST ranges.
To get a general idea of the processes that are responsible for the extreme intermodel spread, Figure 2 shows
the domain-mean vertical profiles of relative humidity and cloud fraction for the three CRMs with the
BECKER AND WING 50f20
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Figure 2. Relative humidity (left) and cloud fraction (right) versus height, for the three CRMs that have the most
positive (top) and the three GCMs that have the most negative (bottom) climate feedback parameters. Solid lines show
the simulations at higher SST and dashed lines at lower SST. Cloud fraction either results from the cloud
parameterizations, or, in case of FV3 and UCLA-CRM, is calculated based on the cloud condensate thresholds defined
by the RCEMIP protocol (Wing et al., 2018).

most positive (high climate sensitivity) and the three GCMs with the most negative (low climate sensitivity)
climate feedback parameters. In the high climate sensitivity cases, the relative humidity in the middle tro-
posphere and clouds in the upper troposphere increase with warming while clouds in the lower troposphere
decrease with warming. The opposite tendencies can be found in the cases with low climate sensitivity. This
is in line with expectations from previous work (e.g., Held & Soden, 2000; Manabe & Wetherald, 1967). In
these previous studies, an increase in relative humidity with warming is associated with a strong water vapor
feedback, which results in a TOA longwave radiation imbalance (Ryy,) that is less negative. An increase in
high cloud fraction also means that Ry, is less negative, while an increase of shallow clouds increases the
atmospheric albedo and thus results in a TOA shortwave radiation imbalance (Rqy,) that is less positive. If
the climate feedback parameter is based on the clear-sky TOA radiative fluxes (A¢; ), the intermodel spread
is 45% smaller in GCMs and 41% smaller in large-/global-domain CRMs/GCRMs (Table 1 and Figure 1); this
is another indication that cloud changes have a significant contribution to the intermodel spread in climate
sensitivity across the large-/global-domain RCEMIP models, as further discussed in the next section. How-
ever, note that for all small-domain simulations, the intermodel spread in Aq;x and A is similar (Table 1),
indicating that, on the small domain, clear-sky processes are responsible for intermodel differences in 4. On
the large/global domain, about 60% of the average difference in 4 between the GCMs and CRMs/GCRMs can
be attributed to differences in A (Table 1), emphasizing the important contribution of clear-sky processes
to general differences between these two model types.
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3. What Explains the Extreme Spread in Climate Sensitivity?

This section investigates the mechanisms that are responsible for the extreme spread in climate sensitivity
across RCEMIP. The analysis will focus on the GCMs and the large-/global-domain CRMs/GCRMs (here-
after collectively referred to as CRMs for simplicity) because the intermodel spread in the climate feedback
parameter A is much larger in these simulations than in the small-domain simulations (Figure 1a). As
described by Wing et al. (2020), convective self-aggregation only occurs in the global and large-domain sim-
ulations. Given that the degree of aggregation and its changes with warming vary across models (Wing et al.,
2020), we investigate differences in convective aggregation as a possible explanation for the extreme spread
in climate sensitivity (Section 3.1). In addition, changes in cloud fraction are known to affect climate sen-
sitivity (see Section 2), which we investigate further in Section 3.2. The combined influence of convective
aggregation and changes in cloud fraction is discussed in Section 3.3.

Because of missing model output, DAM will not be considered when indices are dependent on 500 hPa verti-
cal velocity, WRF-CRM will not be considered for clear-sky radiative fluxes, and FV3 will not be considered
at all due to a general shortage of two-dimensional model output. If not stated otherwise, hourly averages
will be analyzed, excluding the first 75 days, except in IPSL-CM6 where only daily output is available.

3.1. Convective Aggregation

In this study, we quantify convective aggregation primarily with the organization index, I,,,, which is a clus-
tering metric in which nearest neighbor distances of convective entities are compared to that expected from
arandom distribution. I, has been used to characterize the spatial organization of deep convection across a
variety of both modeling (e.g., Cronin & Wing, 2017; Tompkins & Semie, 2017; Wing et al., 2020) and obser-
vational (Bony et al., 2020) studies. I, has the advantage that its computation is temperature independent
and easy to interpret; values greater than 0.5 represent aggregated convection. However, I, is integrated
over multiple spatial scales and thus covers both large-scale organization related to moisture gradients and
smaller-scale clustering within a region of convective activity. Our calculation of I, is identical to that in
the RCEMIP overview paper (Wing et al., 2020) and uses a threshold value of OLR (Ryy,, < 173Wm™2)
to define a convective column, following the RCEMIP protocol (Wing et al., 2018). To identify convective
columns that are part of the same convective entity, 4-point connectivity (considering straight neighbors) is
employed. Our results are insensitive to instead using 8-point connectivity (also considering diagonal neigh-
bors). With respect to GCMs, I, has some weaknesses and limitations. For example, to avoid problems with
varying grid spacing in spherical models, we only consider grid points between —30° and 30° latitude. In the
NICAM simulation at 305 K, convection occurs almost entirely outside of this latitude band between simu-
lation day 75 and 80, so this time interval is excluded when calculating I, In addition, due to the coarse
resolution of GCMs, it may be just as justified to consider each convective column as its own entity (zero
connectivity), rather than identifying connected columns. Therefore, we test the sensitivity of our results
for GCMs to using 4-point or zero connectivity. We also compare to two other metrics of aggregation: sub-
sidence fraction and the spatial variance of precipitable water scaled by its mean value. The latter is similar
to spatial variance of column relative humidity, which was used in Wing et al. (2020) together with I, and
subsidence fraction to quantify convective self-aggregation.

Convective aggregation can affect climate sensitivity due to its influence on the mean state or by changing
with warming (Becker et al., 2017; Cronin & Wing, 2017). Both the average degree of convective aggrega-
tion and its temperature dependence may vary across models. In both cases, our initial expectation is that,
if convective aggregation is high or increases with warming, climate sensitivity will be small because of a
weak water vapor feedback due to drying or a dry mean state. However, we note that the overall cloud feed-
back is less certain because while it is agreed upon that high clouds decrease with aggregation (Bony et al.,
2016), changes in low clouds are ambiguous. To evaluate the dependence of climate sensitivity on the aver-
age degree of convective aggregation, we calculate the correlation between A (based on the entire 10 K SST
range) and I, (averaged over the three different SSTs) for the CRMs and GCMs (Figure 3). To quantify the
robustness of the results, we use two complementary approaches, a t test and an outlier exclusion method.
A t test assumes that data must be randomly sampled from the population of interest and that the data vari-
ables follow a normal distribution, which is not necessarily fulfilled for the RCEMIP models, in particular
within one family of models. Keeping this caveat in mind, the sign of any correlation discussed in the follow-
ing paragraphs is correct with 99% confidence when correlation coefficients are higher than approximately
0.5 to 0.6 in most cases. Generally, confidence is a bit higher for the CRMs than for the GCMs because the
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Figure 3. Climate feedback parameter (based on the entire 10 K SST range) versus organization index (averaged over
the three different SSTs), for all GCMs and large-domain CRMs (including GCRMs). GCM_4c and GCM_0Oc stand for
4-point and zero connectivity when calculating I,,,. Horizontal and vertical lines illustrate the +1 standard deviation in
each dimension for each model type, and their intersection is the mean value. Correlation coefficients (r) are given for
CRMs and GCMs, using both I, approaches for the latter. To test robustness, the largest as well as the two largest
outliers (product across both dimensions) are excluded in r_; and r_,.

correlations are based on a larger number of models. Because of the aforementioned caveats with the ¢ test
and because the ¢ test only estimates uncertainty in the sign of the correlation, but not in the strength of
the correlation, our second approach is to estimate uncertainty by recalculating the correlation twice, once
after removing the largest and once after removing the two largest outliers. We define the outliers based on

the product of deviations from the model-category mean across both dimensions, in this case 4 and I,

Based on these two approaches, 4 does not show a robust dependency on the average degree of convective
aggregation (Figure 3). In the CRMs, 4 is on average slightly more negative when I, is large, in line with our
initial expectation, but the correlation is weak, so the ¢ test fails. The ¢ test also fails for the GCMs, and the sign
of the correlation is even opposite depending on whether the 4-point or zero connectivity approach is used
in the I, calculation. The results remain similarly inconclusive for the correlation of I, with 4 based only
on longwave fluxes (A;y; Figure S2) and when using different metrics to quantify convective aggregation
(spatial variance of scaled precipitable water and subsidence fraction; Figure S3). The only correlation we
find that is significant with 95% confidence is that between A and subsidence fraction in CRMs. The climate
feedback parameter also varies across the small-domain CRM simulations, for reasons that are unrelated to
aggregation. Therefore, in an attempt to remove this baseline spread in 4 across CRMs and to investigate
the effects of convective aggregation in isolation, we scale the large-domain climate feedback parameter
by the feedback parameter in the small, non-aggregated domain. However, the correlation of this scaled
feedback parameter with I, is even weaker (Figure S4). In sum, despite the initial expectation of a smaller
climate sensitivity in simulations with on average more aggregated convection, climate sensitivity does not
show a clear dependency on I . In line with this, the small- and large-domain CRMs have on average the
same climate feedback parameter (Figure 1a and Table 1). The expectation that simulations with aggregated
convection have lower climate sensitivities than simulations with non-aggregated convection is only fulfilled
if 1 is based on the clear-sky TOA radiative fluxes: A is more negative in the large-domain CRMs than in
the small-domain CRMs (Figure 1b and Table 1), but the imprint on the all-sky climate feedback parameter
is compensated by effects attributable to clouds.

T