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Abstract

Chytrid fungal parasites are ubiquitous in aquatic ecosystems and infect a wide array of aquatic organisms,
including all phytoplankton groups. In addition to their role as parasites, chytrids serve as food to zooplankton,
thereby establishing an alternative trophic link between primary and secondary production in pelagic food
webs, the so-called mycoloop. We hypothesized that, in addition to the mycoloop, chytrid infection facilitates
grazing of filamentous phytoplankton by rendering it more edible to zooplankton consumers through
infection-induced fragmentation. We undertook grazing assays to compare the ability of the key zooplankter
Daphnia to graze on a filamentous cyanobacterium in the presence or absence of chytrid infection. A near dou-
bling in mean clearance rates was consistently recorded when Daphnia were fed with infected cultures of the
cyanobacterium as compared to uninfected ones. Infected filaments were shorter than noninfected ones, indi-
cating that infection-induced fragmentation undermines resistance of filamentous phytoplankton to grazing.
We propose an extended conceptualization of the mycoloop that includes both direct effects (i.e., transfer via
grazing of chytrid zoospores) and indirect effects (i.e., trophic upgrading and facilitated grazing on phytoplank-
ton via fragmentation) of chytrid infection on trophic transfer at the base of pelagic food webs.

Pelagic ecosystems occupy over 70% of the Earth’s surface.
Primary production in these systems is dominated by phyto-
plankton, accounting for over 50% of total carbon fixation on
a global scale, thereby playing a key role in biogeochemical
cycling and climate regulation (Falkowski 2012). These large-
scale processes are profoundly modulated by fluctuations in
phytoplankton production, which are in turn controlled by a
complex matrix of abiotic (e.g., nutrients, light, temperature)
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and biotic factors. Traditionally, the most studied biotic fac-
tors are competition for light and nutrients among phyto-
plankton species, and grazing of phytoplankton by
zooplankton (e.g., Lampert et al. 1986; Sommer et al. 1986).
However, some phytoplankton taxa, for example colonial
diatoms or filamentous cyanobacteria, display morphological
and biochemical features which make them particularly resis-
tant to grazing (e.g., Wilson et al. 2006). Other biotic factors,
such as infections by parasites or pathogens, can also exert
strong top-down control of phytoplankton and elicit significant
effects on ecosystem carbon cycling (e.g., Bratbak et al. 1994;
Fuhrman 1999; Wommack and Colwell 2000).

Parasitic fungi of the phylum Chytridiomycota (i.e., chytrid
parasites) are lethal infective agents of all major phytoplankton
groups (reviewed in Frenken et al. 2017a). Although chytrid
parasites of phytoplankton have long been described already
(Braun 1856; Canter 1946; Sparrow 1960), a growing number
of environmental molecular surveys in marine, brackish, and
freshwater ecosystems are documenting their ubiquitous distri-
bution and so-far underestimated diversity (e.g., Lefévre
et al. 2008; de Vargas et al. 2015; Comeau et al. 2016). Chytrid
infection is now regarded as an omnipresent phenomenon that
often leads to the development of epidemics capable of driving
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phytoplankton succession and bloom dynamics (Rasconi
et al. 2012; Gerphagnon et al. 2015; Haraldsson et al. 2018).

Chytrids’ most characteristic feature is a free-living infec-
tious life stage as flagellated zoospores that actively seek new
hosts to infect (Canter and Jaworski 1980; Muehlstein
et al. 1988). Besides infecting their hosts, chytrid zoospores
can serve as food for zooplankton consumers, including
cladocerans, copepods, and rotifers (Kagami et al. 2007b, 2011;
Agha et al. 2016; Frenken et al. 2018). This observation led to
the formulation of the mycoloop, a trophic link (alternative to
the herbivory pathway) mediated by chytrids that connects
primary and secondary production (Kagami et al. 2007a).
Model approximations estimate chytrid infection to channel
as much as 20% of total primary production (in terms of car-
bon), providing up to 40% of zooplankton dietary require-
ments (Grami et al. 2011; Rasconi et al. 2014). Trophic
transfer via the mycoloop seems to be particularly relevant
when herbivory is constrained by the dominance of large inedi-
ble and/or nutritionally inadequate phytoplankton, such as
cyanobacteria, whose biomass typically accumulates as massive
algal proliferations. These blooms alter the functioning of eco-
systems and often lead to reduced water quality and human
health hazards due to the production of toxic metabolites
(Havens 2008).

In its original formulation, the mycoloop operates by
repacking otherwise inaccessible carbon from completely ined-
ible phytoplankton (i.e., colonial diatoms) in the form of read-
ily ingestible chytrid zoospores (Kagami et al. 2007b). More
recently, experiments have generalized these findings to other
phytoplankton groups, revealing additional facets of the
mycoloop: under dominance of poorly edible phytoplankton,
such as filamentous cyanobacteria, zooplankton displayed
higher fitness and population growth when cyanobacteria
were infected by chytrids, as compared to quantitatively equal
diets in the absence of parasites (Agha et al. 2016). In addition
to their high resistance to grazing, cyanobacteria represent a
nutritionally suboptimal food source, as they lack lipids essen-
tial to zooplankton (von Elert et al. 2003; Martin-Creuzburg
et al. 2008). Analyses of lipid compositions of chytrids and
their hosts have demonstrated de novo synthesis of sterols
and long-chain polyunsaturated fatty acids by chytrid para-
sites (Kagami et al. 2007b; Gerphagnon et al. 2018). Thereby,
in addition to conveying carbon from inaccessible primary
producers, chytrids supply lipids essential to zooplankton that
might be otherwise absent in their hosts, leading to trophic
upgrading of cyanobacterial carbon and enhanced carbon
transfer efficiency up the food web.

An additional consequence of chytrid infection is the frag-
mentation of filamentous phytoplankton, leading to reductions
of about 50% in mean filament length (Gerphagnon et al. 2013;
Agha et al. 2016). Filamentous morphologies of cyanobacteria
confer grazing resistance by interfering with zooplankton filter-
ing apparatus (De Bernardi and Giussani 1990), with shorter fila-
ments being easier to ingest by grazers (DeMott et al. 2001;
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Kurmayer 2001; Oberhaus et al. 2007). Therefore, fragmentation
of filaments by chytrid infection may undercut cyanobacterial
resistance to grazing and thus enhance trophic transfer through
the herbivory pathway, but so far this has not been empirically
evaluated.

Here, we tested putative modulation of phytoplankton edi-
bility as a result of chytrid infection. Specifically, we per-
formed grazing assays to quantitatively evaluate the ability of
a key zooplankter to graze on a filamentous cyanobacterium
over the course of a chytrid epidemic, as compared to control
conditions without parasites. Changes in cyanobacterial fila-
ment length distributions were analyzed to disentangle the
effects of chytrid infection and zooplankton grazing on fila-
ment fragmentation.

Materials and methods

Study system and culture conditions

The experimental host-parasite system consisted of
the commonly occurring, bloom-forming, filamentous cya-
nobacterium Planktothrix rubescens and its obligate parasite,
the chytrid Rhizophydium megarrhizum (Senstebo and
Rohrlack 2011). The cyanobacterium (strain NIVA-CYA98)
and its parasite (strain Chy-Kol2008) were isolated from the
Norwegian Lakes Steinsfjorden in 1982 and Kobotnvannet
in 2008, respectively. Planktothrix was routinely maintained
as batch cultures in Z8 medium (Kotai 1972) at 16°C under
continuous 10 ymol photons m~2 s™! light. The chytrid par-
asite was maintained at 16°C and 20 ymol photons m~2 s!
by transferring infected cultures into uninfected Planktothrix
cultures every 3 weeks. Three Daphnia clones belonging
to the Daphnia longispina complex, some of the most com-
mon cladoceran herbivores in permanent lakes (e.g., Yin
et al. 2014; Ma et al. 2019), were used as grazers: AMME-51,
AMME-12, and AMME-3, isolated from Lake Ammersee
(Germany) in 2008. Daphnia cultures were kept in a syn-
thetic medium (Saebelfeld et al. 2017) at 20°C with a 16:8
light-dark period and fed three times per week with
> 1.0 mg C L' of the green alga Scenedesmus obliquus.

Experiment

A stock culture of exponentially growing Planktothrix with
a final biomass of 25 ug Chl a L™! was split into two flasks of
1.2 L volume each. Twenty milliliters of a highly infected
Planktothrix culture were added into one of them to obtain an
infected culture. After a 3 h incubation period, the uninfected
and infected cultures were split as 15 mL aliquots into 30 mL
glass vials, resulting in a total of 70 replicate cultures of either
uninfected or infected cyanobacteria. Glass vials were incu-
bated at 16°C and 10 umol photons m™2 s™', and mixed daily
by gentle manual swaying, and their position within the incu-
bator randomized every day during the experiment (18 d). At
days 0, 3, 6, 9, 12, 15, and 18, sets of 20 bottles (10 uninfected,
10 infected) were randomly selected and used destructively to
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perform seven grazing assays over the course of the experi-
ment. All grazing assays followed the same full factorial
design, with four treatments that combined (1) presence or
absence of chytrid infection and (2) presence or absence of
zooplankton grazers, resulting in a total of 20 experimental
units (4 treatments x 5 replicates) for each grazing assay. For
every grazing assay, 5 mL of the replicate cultures containing
either uninfected or infected cyanobacteria (the remaining
10 mL were used for analytical measurements, see below) were
incubated for 3 d in the presence of ten 10-d old Daphnia in
the above described glass vials (three individuals from clones
AMME-51 and AMME-12 and four from clone AMME-3).
Whereas these high Daphnia densities might not be represen-
tative of natural conditions, they aimed at detecting changes
in algal biomass that provide proof of concept for the effect of
chytrid infection in zooplankton clearances rates. All Daphnia
were washed thrice with Z8 medium, left in this medium over-
night, and washed thrice again with the respective culture
before being transferred to the grazing assay vials. The number
of surviving Daphnia was recorded daily. Control assays with-
out grazers were subject to a mock pipetting procedure, using
the medium in which Daphnia was previously grown, but oth-
erwise identical to that performed for vials with grazers. All
grazing assays were performed at 16°C under continuous
10 ymol photons m~2 s~ light.

Sample processing

Duplicate measurements of chlorophyll a (Chl a) concen-
tration at the start and end of every grazing assay were per-
formed on all 20 experimental units (10 grazed, 10 ungrazed)
using a Phyto-PAM with an ED-101US/MP Optical Unit
(Heinz Walz GmbH, Effeltrich, Germany) to calculate zoo-
plankton clearance rates. At the start and end of every grazing
assay, 2 mL of culture was fixed with formaldehyde to a final
concentration of 2% and stored in the dark at 5°C. These sam-
ples were analyzed (blinded) for prevalence of infection and
filament length distribution.
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Zooplankton clearance rates

Clearance rates were used as a proxy of the ability of zoo-
plankton to feed on the filamentous cyanobacteria and,
thereby, of trophic transfer through the herbivory link. Daph-
nia clearance rates (CR, in mLind™* d~!) under presence or
absence of chytrid infection were calculated for every grazing
assay according to Coughlan (1969),
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where V is the volume of the grazed suspension (mL), N is the
average number of grazing Daphnia over the grazing experi-
ment, and T is the time interval over which grazing took place
(days). By and B; stand for the Chl a concentrations at the start
and end of the grazing assay in grazed vials, respectively. By,
and By are the average Chl a concentrations at the start and
end of the grazing assay in the control vials, respectively.
Daphnia survival was recorded over the course of each grazing
assay (see Supporting Information Fig. S1) and Daphnia densi-
ties were included in the CR calculations as monitored. Clear-
ance rates were calculated for each grazed biological replicate
as the mean CR calculated iteratively from all possible combi-
nations with control (ungrazed) biological replicates, resulting
in five CR values per treatment. Within single grazing assays,
clearance rates in uninfected and infected treatments were
compared using f-tests. Sequential Bonferroni correction was
applied to correct for multiple comparisons.

Prevalence of infection and filament length distribution
Prevalence of infection in infected vials was determined at
the beginning of every grazing assay in 5 (out of 10) randomly
chosen replicates by inspecting 100 random filaments for
infection (i.e., attached chytrid sporangia) under a Leica DM
IL inverted microscope. Filament length distribution with and
without grazers, and with and without infection, was analyzed
for the grazing assay performed on day 6. Specifically, in each
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Fig. 1. Changes over time of (A) Chl a concentration in uninfected and infected cyanobacterial cultures (n = 10) and (B) prevalence of infection in the

infected cultures (n = 5). Data are shown as means + SE.
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experimental unit, the length and infection status (hereafter
referred to as filament health) of at least 100 individual fila-
ments was analyzed before and after the 3-d grazing incuba-
tion period, using a Nikon Ti Eclipse inverted microscope with
the Nikon NIS-Element Br 4.5 software. Linear models were
used to evaluate the effect of experimental treatments on
mean filament length, testing for fixed and interactive effects
of (1) presence or absence of chytrid infection in the
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Fig. 2. Mean clearance rates (& SE) in infected and uninfected cultures
(n=5) for each of the seven grazing assays conducted. All pairwise t-tests
comparing mean clearance rates between infected and uninfected cul-
tures showed significant differences (p < .05 after sequential Bonferroni
correction).
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treatment, (2) presence or absence of grazers, (3) filament
health (uninfected/infected), and (4) time (before/after the 3-d
grazing assay). Model assumptions were confirmed by visual
inspection of the residuals. In order to account for repeated
measures on biological replicates before and after the grazing
assay, experimental unit (from which repeated measures were
taken) was included as a random factor in the model. Within-
group variability was not sufficient to justify incorporating the
random factor, as shown by the poorer quality of the mixed
model (higher Akaike information criterion values) and zero
sum of its variance components. Consequently, the output of
the degenerate model was reported. The proportion of the
total variance explained by the individual terms was deter-
mined as sum of squares quotients.

Results

Uninfected Planktothrix cultures showed positive growth
over the study period, whereas total Chl a concentrations
declined in infected cultures (Fig. 1A) reflecting cyanobacterial
decay as a result of chytrid infection, which spread gradually
among the population over the course of the experiment
(Fig. 1B). Mean Daphnia clearance rates on infected cyanobacterial
cultures were consistently higher (about twofold) than on uni-
nfected cultures (Fig. 2).

Mean filament lengths and their frequency distribution
were studied for the grazing assay performed on day 6.
Infected filaments were conspicuously shorter than uninfected
ones, as indicated by differences in the skewness of the histo-
grams of uninfected and infected filaments and their mean
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Fig. 3. Frequency distribution of uninfected (green) and infected filaments (red) across uninfected and infected treatments, in presence or absence of a
grazer, and before and after the grazing assay. Histograms depict length frequency distribution of all (pooled) measured filaments across replicates. Bar
graphs in the upper-right corner of each panel show mean lengths + SE of uninfected (green) and infected (red) cyanobacterial filaments in the respec-

tive treatment (n = 5).
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Table 1. Output of the linear model for fixed and interactive
effects of (1) infection (uninfected/infected culture), (2) grazing
(grazing/no grazing), (3) filament health (uninfected filament/
infected filament), and (4) time (before/after grazing assay) on
mean cyanobacterial filament length. Significant p values are
depicted in bold. Variance explained on individual terms stems
from sum of squares quotients.

Variance

explained
df Fratio pvalue (%)
Infection 1 1.632 0.207 0.6
Grazing 1 21.400 <0.001 7.4
Filament health 1 85486  <0.001 29.5
Time 1 79.208 <0.001 27.4
Infection x grazing 1 0.71 0.403 0.2
Grazing x filament health 1 11.795 0.001 4.1
Infection x time 1 4.949 0.031 1.7
Grazing X time 1 22.198 <0.001 7.7
Filament health x time 1 4.849 0.032 1.7
Infection x grazing x time 1 1.467 0.231 0.5
Grazing x filament 1 7.630 0.008 2.6

health x time

Residuals 48 16.6

lengths (Fig. 3). Filament health was in fact the best linear pre-
dictor of filament length in the model (29.5% variance
explained; Table 1). Filament length was reduced over the
incubation period (Fig. 3; significant effect of Time, Table 1).
However, in the presence of grazers, reduction in filament
lengths was even more pronounced, both in uninfected and
infected treatments (Fig. 3; significant effects of Grazing and
Grazing x Time, jointly explaining 15% of the variance,
Table 1). Interestingly, uninfected filaments in the presence of
chytrids underwent length reduction only in the presence of
grazers (Fig. 3; significant Grazing x Filament health x Time,
Table 1).

Discussion

Parasites are more and more recognized for their ability to
structure food webs and increase the stability of ecosystems
(Lafferty et al. 2008; Poulin 2010). Parasites can establish
new trophic links and modulate existing ones, providing
alternative pathways for carbon and energy to flow up the
food web. This also applies to aquatic food webs, where fun-
gal parasites of phytoplankton constitute an additional high
quality food source to consumers, especially when primary
production is dominated by inedible or biochemically inade-
quate phytoplankton (Kagami et al. 2007b; Agha et al. 2016;
Gerphagnon et al. 2018). In addition to providing new tro-
phic links, parasites often have the ability to modulate exis-
ting ones (Amundsen et al. 2009). Our findings exemplify
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this by showing that trophic transfer through the herbivory
link is enhanced when cyanobacteria are infected by chytrid
parasites, as demonstrated by higher zooplankton clearance
rates recorded under infection relative to conditions without
parasites.

Our analyses point toward infection-induced filament
fragmentation as the cause (although not necessarily the
only cause) behind the twofold increase in clearance rates.
Infected cyanobacteria were conspicuously shorter than
noninfected ones, as also reported in previous laboratory
and field studies (Gerphagnon et al. 2013; Agha et al. 2016).
Additionally, length of uninfected filaments was reduced
both in infected and uninfected treatments in the presence
of grazers, confirming that Daphnia is capable of mechani-
cally fragmenting cyanobacteria, as has been reported else-
where for Daphnia and other zooplankton, and also at lower
zooplankton densities than those provided in our experi-
ment (Burns and Xu 1990; Dawidowicz 1990; Sikora and
Dawidowicz 2017). One could reason that fragmentation of
infected filaments was facilitated by zooplankton. However,
analyses indicate that the effect of grazers and fungal
infection on filament length is additive, not synergistic
(Infection x Grazing x Time Interaction and Infection X
Grazing interaction were not significant, Table 1). If grazers
are able to fragment cyanobacterial filaments, one could
argue that the presence of zooplankton alone (i.e., in the
absence of parasites) can increase Planktothrix edibility and
thus neutralize its grazing resistance. Whereas this may be
true, filament fragmentation is likely energetically costly to
Daphnia, leading to higher respiration and rejection rates
which in turn reduce mnet carbon assimilation
(Conover 1966; Porter and McDonough 1984). Instead, in
the presence of parasites, chytrid infection contributes fur-
ther to filament length reduction, making cyanobacteria
more edible and facilitating zooplankton grazing, as reflected
by higher Daphnia clearance rates. This speaks for more effi-
cient carbon assimilation and hence enhanced trophic trans-
fer via the herbivory pathway under conditions of chytrid
epidemics.

An important consideration refers to the fact that Planktothrix,
like many other cyanobacterial taxa, can synthesize the
cyanotoxin microcystin, together with a wide array of intracellu-
lar oligopeptides with diverse bioactive properties (Welker and
von Dohren 2006; Agha and Quesada 2014). These compounds
might cause toxic effects on zooplankton upon ingestion
(e.g., Rohrlack et al. 1999, 2004; Czarnecki et al. 2006). Increased
grazing on infected cyanobacteria might thus lead to higher
exposure to these potentially harmful compounds, which might
ultimately reduce Daphnia carbon assimilation in the long term.
Moreover, given the indication that cyanobacterial oligopeptides,
including microcystins, might be involved in defense against
chytrid parasites (Rohrlack et al. 2013), chytrid infection could
result in the upregulation of metabolite production, potentially
exposing Daphnia to higher amounts of oligopeptides and toxins.
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Yet, our data are not in line with this hypothesis: Daphnia mor-
tality was relatively stable over the course of the experiments and
was not higher under conditions of chytrid infection (Supporting
Information Fig. S1), as also observed in previous experiments
using the exact same host-parasite system (Agha et al. 2016). In
fact, chytrids penetrate and digest their host’s cells, including
their intracellular metabolites, as indicated by lower toxin (micro-
cystin) cell quota observed in infected Planktothrix (Frenken
et al. 2017b). Chytrid infection might hence hypothetically
reduce exposure of Daphnia to cyanobacterial metabolites after
ingestion, as compared to noninfected cyanobacteria. Exploring
the fate and production of cyanotoxins and other bioactive sec-
ondary metabolites under chytrid infection will provide valuable
insights into this issue.

The analysis of filament length distributions sheds light on
the mechanism of chytrid infection. At present, it is unclear
whether overrepresentation of short filaments in the infected
filament cohort is the consequence of, or a cause for, chytrid
infection. On the one hand, chytrid rhizoids penetrating and
digesting the filament over the course of the infection may
structurally compromise host filaments, resulting in fragmen-
tation. On the other hand, it is also possible that shorter,
freshly divided (or broken) filaments are more susceptible
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to infection and, once infected, their growth is arrested. Cya-
nobacteria are covered by a sheath of complex carbohydrates
(e.g., lipopolysaccharides, glycans) and lectins, which repre-
sents a barrier between the filament and its immediate envi-
ronment and plays a role in a number of intra- and
interspecies interactions (Kehr and Dittmann 2015). This
sheath is the first contact surface between a chytrid and its
host and likely constitutes a barrier defense against infection
(sensu Dybdahl et al. 2014). Upon filament division during
growth, a sheath-free surface is temporarily produced where
the host’s cell wall is exposed and might be particularly sus-
ceptible to chytrid encystment. The fact that chytrid zoo-
spores encyst only at the tips of Planktothrix filaments is
compatible with this possibility (Agha et al. 2018). Overrepre-
sentation of short filaments among infected individuals might
be the result of the arrested growth of recently divided (and
therefore shorter and more susceptible) filaments upon infec-
tion. Indeed, uninfected cyanobacterial filaments in the pres-
ence of chytrids were longer than in the treatments without
parasites (Fig. 3), supporting the hypothesis that filaments
that grow without dividing might have a better chance to
evade infection. These mechanistic considerations aside, our
experiment shows that chytrid-induced reductions in
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cyanobacterial filament length lead to doubled Daphnia clear-
ance rates, in comparison to conditions without infection.
Clearance rates recorded in our assays were lower than reported
elsewhere and likely do not represent maximal rates
(Hessen 1985; Kurmayer and Juttner 1999). We attribute this to
partial sedimentation of cyanobacterial biomass at the bottom
of the vials despite daily resuspension, which might make cya-
nobacteria less available for grazing. Yet, the significant differ-
ences between uninfected and infected treatments demonstrate
increased grazing under conditions of chytrid infection. This
indicates a subsequent enhancement of trophic transfer through
the herbivory pathway. In addition to increased cyanobacterial
edibility, an alternative, nonexclusive cause for increased zoo-
plankton clearance rates might be an improvement in Daphnia
physiological conditions, as a result of a dietary upgrade in the
presence of chytrid zoospores. While cyanobacteria alone are a
nutritionally inadequate food source lacking long-chain polyun-
saturated fatty acids and sterols, chytrids synthesize these essen-
tial lipids de novo (Gerphagnon et al. 2018). Several fitness
traits, including age at maturity, growth rate, and body size,
improved when Daphnia were fed with infected cyanobacteria
relative to feeding conditions without parasites (Agha et al. 2016).
The increased clearance rates recorded here may hence reflect
higher cyanobacterial edibility due to shorter filaments under
infection, or improved physiological status of Daphnia as a
result of better nutrition, or a combination of the two. Direct
effects of chytrid dietary supplements on zooplankton intrinsic
filtering rates remain to be evaluated.

When integrating our findings with those reported else-
where, it becomes evident that chytrid infection counteracts
two of the main features that endow cyanobacteria with
increased resistance to grazing. While the poor nutritional qual-
ity of cyanobacteria is countered by the production of essential
lipids and subsequent trophic upgrading by their chytrid para-
sites (Gerphagnon et al. 2018), we show that morphological
features constraining grazing are minimized by reductions in
filament length upon chytrid infection. This subsequently led
to an about twofold increase in zooplankton clearance rates,
which reflects enhanced herbivory in the presence of parasites.
Thereby, this work reveals an additional indirect effect of
chytrid infection on the functioning of aquatic food webs,
which, together with the recently described trophic upgrading
of cyanobacterial carbon (Gerphagnon et al. 2018), depicts
novel facets of the mycoloop (Fig. 4): in the absence of chytrid
infection, carbon transfer is constrained by the limited edibil-
ity and poor nutritional quality of cyanobacteria, which act
as a trophic bottleneck. In contrast, chytrid infection estab-
lishes a direct link to consumers via the mycoloop (Kagami
et al. 2007b; Agha et al. 2016), which can elicit trophic
upgrading of phytoplankton carbon if this is of poor nutri-
tional quality (e.g., cyanobacteria; Gerphagnon et al. 2018).
In addition, poorly edible or inedible phytoplankton becomes
fragmented and thereby more susceptible to grazing, enhanc-
ing trophic transfer via the herbivory link. These findings
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contribute to a better understanding of the effects of
chytridiomycosis on carbon flows at the base of pelagic food
webs, and exemplify how parasites can create new trophic
pathways and boost existing ones, facilitating carbon and
energy flows in the ecosystem and increasing its resilience
against perturbations.
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