
1.  Introduction
Volcanic activity along diverging plate boundaries in oceanic and continental settings commonly is the re-
sult of interacting magmatic and tectonic processes. Magmatism at oceanic and continental rift systems and 
mid-ocean ridges (MOR) plays a significant role in global plate tectonics, for example, leading to continen-
tal breakup and new oceanic crust formation (Heezen, 1960; Wilson, 1968). MORs as well as oceanic and 
continental rifts erupt a variety of chemically distinct lavas and have different morphological appearances 
depending among other processes on the extension rate. Fast-spreading MORs, for example, the East Pacific 
Rise (EPR), have continuous volcanically active segments and erupt large volumes of melt from the depleted 
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of mafic to felsic lavas at D. João de Castro gives evidence for both a deep and a shallow crustal melt 
reservoir generating a subordinate local stress field at the seamount. New Sr-Nd-Pb isotope data along 
with incompatible trace element ratios indicate that D. João de Castro and the Castro Ridges originated 
from similarly heterogeneous mantle source but did not form simultaneously. Our new model implies 
that central volcanoes along the Terceira Rift form by the growth of volcanic ridges and transitioned into 
circular edifices after magmatic systems generate local changes in the regional lithospheric stress field. 
The geometry of D. João de Castro and other magmatic systems along the Terceira Rift combined with the 
alkaline nature of the erupted lavas, and the large lithosphere thickness indicates that young oceanic rifts 
are more similar to continental rifts rather than mid-ocean ridges.

Plain Language Summary  Dom João de Castro seamount is a large submarine volcano 
located in the submarine Hirondelle Basin in the Azores archipelago. The Hirondelle Basin is formed as 
a result of extensional forces in the oceanic crust along the Azorean Terceira Rift that causes rifting of the 
Eurasian and Nubian plates. The presence of the D. João de Castro volcano and several elongated volcanic 
ridges inside the basin shows that the extensive magmatic activity in the Azores contributes to the opening 
of the basin. By quantifying the orientations of the tectonic and volcanic structures in the basin, it can be 
shown that the formation is controlled by a dominant SW-NE directed extensional stress combined with 
extensive magmatic activity. Based on combined structural and geochemical observations, we conclude 
that the D. João de Castro seamount formed from the growth of elongated volcanic ridges and transitioned 
into a circular edifice after a magma system generates a local change in the crustal stress field. The 
geometry and geochemical composition of volcanic rocks from the D. João de Castro magmatic system, as 
well as other magmatic systems along the Terceira Rift are more similar to continental rift systems rather 
than oceanic spreading centers.
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upper mantle forming symmetrical axial heights (Carbotte & Macdonald, 1994; Perfit & Chadwick, 1998). 
In contrast, slow-diverging continental rift systems and slow-spreading oceanic ridges, for example, the 
Southwest Indian Ridge (SWIR; Dick et al., 2003), erupt primitive lavas with a large overall chemical var-
iability (Rubin & Sinton, 2007) but volcanic activity occurs rarely and scattered (Mendel et al., 2003). The 
temporal quiescence of volcanism in slowly diverging systems results in magmato-tectonic cycles of volcan-
ic construction and tectonic phases forming axial valleys and basins in both oceanic (Mendel et al., 2003) 
and continental rift settings (Ebinger et al., 2013). Slow-rifting oceanic and continental systems are often 
characterized by alternating amagmatic and magmatic sections, for example, deep rift valleys are separated 
by volcanically active regions (Acocella, 2014; Michael et al., 2003). Here, most volcanic activity occurs in 
the center of a magmatic segment (Cannat et al., 1995) and lack of volcanism at the segment's edges implies 
transport of small degree melts from the sides toward the center (Carbotte et al., 2015). Magmato-tectonic 
segments in continental rifts, for example, in the Main Ethiopian Rift (MER) can be distinguished based on 
the type of deformation occurring during rift evolution, where the extension in the center of each segment 
is induced by magmatic intrusion. In contrast, at the extremities of the segments, the influence of diking 
decreases and deformation mainly occurs by tectonic faulting (Kurz et al., 2007).

The geochemical signatures of the lavas erupting in slowly diverging environments yield essential insights 
into crustal ascent conditions (Schwarz et al., 2004), mantle melting processes (Shen & Forsyth, 1995), and 
also reflect the chemical heterogeneity of the mantle (Shirey et al., 1987). The tectonic forces in these rift 
systems are manifested in tectonic structures, for example, several tens of kilometers long rift basins form-
ing segments along MORs (Dick et al., 2003; Mutter & Karson, 1992) and continental rift systems (Hayward 
& Ebinger, 1996). Tectonic stresses are also a major controlling factor on the pathways of melts in the crust 
and influence the morphology of volcanic structures on the scale of a single edifice (Acocella & Neri, 2009). 
In slowly diverging continental and oceanic rift systems, focused magmatism leads to the formation of cen-
tral volcanoes (Acocella, 2014). These are the surface expression of processes with an origin in the mantle 
and the crust, and thus, yield important insights into the evolution of rift systems. In this study, we focus 
on the evolution of central volcanoes in slow-diverging rift systems and on the related mantle-derived and 
crustal processes.

The Terceira Rift in the Eastern Azores Plateau combines features of both slow-spreading oceanic ridges 
and continental intraplate rift systems (Beier et al., 2008). It allows studying the evolution of a rift system 
with active volcanism from melting beneath variably thick lithosphere. The volcanic centers along the Ter-
ceira Rift are formed from melting of a geochemically anomalous mantle potentially associated with a 
small, thermal mantle plume (Beier et al., 2012; Bonatti, 1990; Gente et al., 2003; Madureira et al., 2005; 
Métrich et al., 2014; Montelli et al., 2004; Moreira et al., 2018; O'Neill & Sigloch, 2018; Schilling, 1975; White 
et al., 1976; Yang et al., 2006), which allows investigating mantle source heterogeneity and variation of melt-
ing conditions with respect to changing lithosphere thicknesses. The D. João de Castro seamount is a young, 
central volcano located right at the center of the active Terceira Rift and represents the only solitary central 
volcano along the entire rift formed from melting of the anomalous Azores mantle (Béguelin et al., 2017; 
Beier et al., 2008). The term central volcano here refers to a polygenetic volcano, which in the case of the 
Azores are stratovolcanoes with or without calderas (e.g., Sete Cidades on São Miguel, Santa Bárbara on Ter-
ceira Island). D. João de Castro volcano is therefore ideally suited to investigate the formation and evolution 
of central volcanoes in an active, slowly diverging oceanic rift system due to its transitional nature between 
rift systems and a central volcano.

Here, we use both geochemical and structural data to disentangle the influence of both mantle and crustal 
processes that are important during volcano formation and rift evolution. We show that the opening of the 
Terceira Rift results in the formation of several magmatic segments with volcanism concentrated at their 
centers leading to the formation of one or more central volcanic edifices. We propose a model based on 
volcano-tectonic features from the D. João de Castro seamount showing that central volcanoes along the 
Terceira Rift are formed from growth and merging of single volcanic ridges accompanied by changes in the 
tectonic stress field. The geometry of the D. João de Castro and other magmatic systems along the Terceira 
Rift in combination with the slow diverging rate, the alkaline nature of the erupted lavas, and the large 
crustal and lithosphere thickness indicates that the Terceira Rift is more similar to continental rift systems 
than to MORs.
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2.  Geological Setting
The Azores archipelago in the central North Atlantic is separated by the Mid-Atlantic Ridge (MAR) into 
an eastern (Figure 1a) and western part. The eastern Azores Plateau is bordered by the Terceira Rift in the 
north. Three volcanically active islands (Graciosa, Terceira and São Miguel) and two seamounts (D. João de 
Castro and East Formigas High, Figure 1a) are located on the Terceira Rift. The Azores Plateau as a whole 
formed above a melting anomaly in the mantle, either due to extensive melting of a small thermal plume 
head (Cannat et al., 1999; Schilling, 1975; White et al., 1976) or of an anomalous volatile-rich mantle (Asi-
mow et al., 2004; Beier et al., 2012; Bonatti, 1990; Métrich et al., 2014; O'Neill & Sigloch, 2018; Schilling 
et al., 1980). The Terceira Rift is interpreted as an ultraslow oblique spreading axis, with a divergence rate of 
2–4 mm/a (Luis & Miranda, 2008; Vogt & Jung, 2004), forming part of the diffuse plate boundary between 
the Eurasian and Nubian plates (Marques et al., 2013; Miranda et al., 2018; Sibrant et al., 2014). The rela-
tively thick lithosphere and the lack of a systematic magnetic pattern parallel to the Terceira Rift, however, 
are contradictory to the occurrence of seafloor spreading in the rift (Storch et al., 2020). The young volcanic 
islands of the eastern Azores formed along the Terceira Rift or its predecessors (Krause & Watkins, 1970). 
The volcanic structures along the Terceira Rift occur in discrete tectonic segments with a regular spac-
ing of 80–100 km (Lourenço et al., 1998) and are separated by deep nonvolcanic basins (Figure 1a, Beier 
et al., 2008). Volcanic fissure zones follow the trend of the tectonic structures and are observed at most 
islands and seamounts in the eastern Azores (Beier et al., 2017; Casalbore et al., 2015; Casas et al., 2018; 
Hildenbrand et  al.,  2014; Hübscher et  al.,  2016; Marques et  al.,  2015; Romer et  al.,  2018,  2019; Sibrant 
et al., 2014, 2016; Weiß, Hübscher, Wolf, et al., 2015). Eruptions from volcanic fissure zones either occur 
subaerially or submarine forming several kilometer-long volcanic ridges that are either isolated or at the 
submarine island flanks. Volcanism at the central volcanoes and fissure zones in the eastern Azores is pri-
marily controlled by the regional tectonic stress fields, evident from the WNW-ESE and NW-SE elongated 
shaped islands and ridges (Hildenbrand et al., 2014; Lourenço et al., 1998). The D. João de Castro seamount 
is a central volcano located in the center of the Hirondelle Basin associated with volcanic ridges and cones 
above an active fissure zone (Figure 1b). The age of the oceanic lithosphere at D. João de Castro is between 
24 Ma and 34 Ma (chrons 6C and 13 of the MAR; Cande & Kent, 1995) and the corresponding lithosphere 
thickness ranges from 50 to 60 km. Seismic tomography models of Spieker et al. (2018) display anomalously 
thick oceanic crust and overall much thicker lithosphere for the neighboring islands of Terceira and São 
Miguel both situated on lithosphere of up to 80-km thickness. This together with geochemical modeling at 
D. João de Castro indicating the presence of residual garnet in the mantle, that is, melting at >80 km (Beier 
et al., 2008; Robinson & Wood, 1998), shows that the lithosphere is thicker than normal oceanic lithosphere. 
The seamount's age is estimated to be <0.5 Ma, whereas lavas from the adjacent NW Hirondelle flank have 
a minimum age of 1.55 Ma (Storch et al., 2020). D. João de Castro volcano is still active as evident from 
seismic activity, hydrothermal venting (Cardigos et al., 2005), and the latest recorded eruption occurred 
1720 CE reaching subaerial levels but was later eroded to a water depth of ∼12 m below sea level (mbsl) 
(Weston, 1964).

3.  Sampling and Methods
3.1.  Bathymetry and Sampling

Bathymetric data from D. João de Castro seamount and its surrounding seafloor in the Hirondelle Basin 
were acquired during R/V Meteor cruises M113 (Hübscher et al., 2016) and M128 (Beier et al., 2017). The 
bathymetric data were obtained using the hull-mounted EM122 and EM710 multibeam systems with signal 
frequencies of 12 kHz and 70–100 kHz, respectively. The bathymetric data have a resolution of ∼20–40 m. 
Mapping of fault scarps and volcanic structures and the quantification of their orientations (Figure 2) was 
based on the bathymetric data using a local UTM projection (UTM zone 26N). Thus, the orientation data is 
a conformal projection of the working area. The geological mapping of the working area (Figure 3) is based 
on topographic differences and related structures from the bathymetry. The classification of units is, thus, 
not based on simple lithological variations (Figures 1c and S1; Table S1), but as interpreted from structural 
surface features and in part seismic profiles.
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Figure 1.  (a) Bathymetric map of the Azores Plateau with major tectonic boundaries. Volcanic islands, seamounts, and tectonic plates are abbreviated as 
follows: Graciosa (G), Terceira (T), São Miguel (SM), East Formigas High (EFH), São Jorge (SJ), Faial (F), Pico (P), Corvo (C), and Flores (F); Basins along the 
Terceira Rift: West Graciosa Basin (WGB), East Graciosa Basin (EGB), and Povoação Basin (PB); Tectonic plates: North-American Plate (Am), Eurasian Plate 
(Eu), Nubian Plate (Nu). Bathymetric maps of (b) the Hirondelle Basin and adjacent magmatic centers along the Terceira Rift axis; and (c) the D. João de Castro 
seamount in the NW Hirondelle Basin. In (b) thick black lines highlight the basin margin faults of the Hirondelle Basin. Note that in the SE Hirondelle Basin 
these faults form left-stepping transfer zones as result of basin segmentation. In (c) symbols highlight locations of volcanic rocks obtained during R/V Meteor 
cruises M113 (Hübscher et al., 2016) and M128 (Beier et al., 2017). Sample locations for literature data are from cruises Pos232 and Pos286 with R/V Poseidon 
(Beier et al., 2008).
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Submarine rock samples and volcanic glasses from D. João de Castro were taken from the uppermost flanks 
at ∼300–1,350 mbsl at the NW and N Castro Ridges (Figure 1c). We grouped the samples from the D. João 
de Castro magmatic system based on whether they derive from the main edifice or the Castro Ridges, re-
spectively. Samples were taken by TV-guided grab (GEOMAR Helmholtz-Zentrum für Ozeanforschung) 
and with a Remotely Operated Vehicle (ROV MARUM Quest 4000). Literature data used here (Béguelin 
et al., 2017; Beier et al., 2008) are from dredge sample locations at the flanks of the edifice.
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Figure 2.  Structural map of the D. João de Castro seamount in the NW Hirondelle Basin. Black and red lines 
indicate fault scarps and volcanic structures with a preferred orientation obtained from the bathymetry. Insets show 
rose diagrams (area proportional to frequency; Nemec, 1988) of strike directions of fault scarps (gray) and volcanic 
structures (red) of the entire shown area. The mean strike directions, the circular variances (CV) and the number of 
tectonic or volcanic lineaments (n) are indicated. White field with dashed line highlights the focused occurrence of 
volcanic features in the NW Hirondelle Basin that are summarized as the Castro Fissure Zone.



Tectonics

ROMER ET AL.

10.1029/2020TC006663

6 of 26

Figure 3.  Geological map of the D. João de Castro seamount in the NW Hirondelle Basin. Geological units are distinguished based on bathymetric surface 
features, rocks samples from the D. João de Castro seamount and the Castro Ridges (see Figure 1) and seismic imagery. “Remobilized volcanic material” 
consists of volcanic debris and talus as well as reworked volcanic units due to rotational slumping. Lines A-A′, B-B′ and C-C′ are seismic profile lines across 
different areas of the NW Hirondelle Basin shown in Figure 4. Volcanic units are indicated with abbreviations: D. João de Castro (DJC), N Castro Ridge (NC), 
NW Castro Ridge (NWC), NE Hirondelle flank (NEF), SW Hirondelle flank (SWF), SE Terceira Ridge (SET), and Central Hirondelle Horst (CHH).
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3.2.  Seismic Imagery

Three seismic profiles in the NW Hirondelle Basin were obtained, crossing the D. João de Castro edifice as 
well as across the regions to its northwest and southeast, respectively (Figures 3 and 4). The seismic profile 
lines were obtained during R/V Meteor expedition M113 (Hübscher et al., 2016). Seismic signals were gen-
erated using an array of three GI-Guns and one Mini-Gun in a water depth of about 2.5 m. The streamer 
used was a digital 144-channel streamer of 600 m active length. Data processing included frequency filter-
ing (15–350 Hz), gain, velocity analysis (every 50 CMPs), NMO-correction, coherency filtering, time migra-
tion, bandpass, white noise removal, dip filtering, and fx deconvolution. The profile across D. João de Castro 
is stacked from individual profiles accordingly in order to receive a line closest to a transect perpendicular 
relative to the Hirondelle flanks. For a detailed overview of the method see Hübscher and Gohl (2014).

3.3.  Geochemical Methods

Major element analyses for whole rocks from cruises M113 and M128 were carried out using a Spectro 
XEPOS He - XRF spectrometer at the GeoZentrum Nordbayern (GZN), Friedrich-Alexander-Universität 
(FAU) Erlangen-Nürnberg following the methods described in Romer et al. (2018). Precision and accuracy 
are better than 0.8% (2σ) and 1% (2σ), respectively, based on repeated measurements of the international 
rock standard BE-N, BR, and BHVO-1 (Tables S1/S2).

The major element analyses of glasses were performed on a JEOL JXA-8200 Superprobe electron mi-
croprobe at the GZN, FAU Erlangen-Nürnberg using methods and standards described in Beier, Brandl, 
et al. (2018). An acceleration voltage of 15 kV, a beam current of 15 nA, and a defocused beam (10 μm) were 
used. Precision and accuracy relative to the natural volcanic glass standards VG A-99 were better than 5% 
(2σ) (Beier, Brandl, et al., 2018; Brandl et al., 2012).

Solution trace element analyses for selected submarine whole-rock samples were carried out using a Ther-
mo Fisher Scientific X-Series 2 quadrupole ICP-MS connected to an Aridus 2 membrane desolvating sample 
introduction system at the GZN, FAU Erlangen-Nürnberg. For the dissolution of sample powder and rock 
standards (BHVO-2), we used the method described in detail in Freund et al. (2013), following standard 
techniques using a 3:1 mixture of HF and HNO3. Precision and accuracy are better than 1.1% (2σ) and 1.1% 
(2σ), respectively, based on repeated measurements of the international rock standard BHVO-2.

Strontium-Nd-Pb isotope data from submarine samples from D. João de Castro were processed and analyz-
ed at the GZN, FAU Erlangen-Nürnberg. For Sr-Nd-Pb analysis, ∼150–200 mg dried sample powder and 
glasses were leached in hot 6M HCl for at least 2 h and in a 1:1:2 mixture of H2O2, 2.5M HCl, and Milli-Q 
H2O, respectively, then dissolved using the method described in Haase et  al.  (2017). Strontium and Nd 
were separated in ion-exchange columns using Biorad 50W-X8 (200–400 mesh) cationic resin with variably 
concentrated HCl. Neodymium was separated from Sm using LN-spec resin and the method described in 
Haase et al. (2017).

Strontium and Nd isotopes were analyzed using a Thermo Fischer Triton Plus thermal ionization mul-
ticollector mass spectrometer in static mode. Strontium isotope measurements were corrected for mass 
fractionation using 88Sr/86Sr = 0.1194, and mass 85 monitored to correct for a possible contribution of 87Rb 
to mass 87. Neodymium isotope data were corrected for mass fractionation using a 146Nd/144Nd ratio of 
0.7219. Samarium interference on masses 144, 148, and 150 was corrected by measuring 147Sm, although 
the correction was negligible for all samples presented here. During the analysis, SRM987 standard yielded 
87Sr/86Sr = 0.710256 ± 0.000005, and the Erlangen Nd standard gave 143Nd/144Nd = 0.511543 ± 0.000003 
(corresponding to a value of 0.511850 for the La Jolla Nd isotope standard). The data were not normalized 
to the measured standards.

For the digestions and Pb column chemistry, only double-distilled acids were used to keep the blanks as low 
as possible. The separation of Pb was carried out using the method detailly described in Romer et al. (2018) 
using Sr-spec resin column chemistry. Lead isotope measurements were carried out on a Thermo Fisher 
Neptune MC-ICP-MS using a 207Pb/204Pb double spike to correct for instrumental mass fractionation. Spiked 
and unspiked sample solutions were introduced into the plasma via a Cetac Aridus desolvating nebulizer 
and measured in static mode. Interference of 204Hg on mass 204 was corrected by monitoring 202Hg. An 
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Figure 4.  Seismic profile lines across the NW Hirondelle Basin showing the Hirondelle Basin flanks and the basin 
interior as highlighted in Figure 3. Characteristic features of the profiles are (a) the N and NW Castro Ridges, (b) the D. 
João de Castro volcano, and (c) the Central Hirondelle Horst. The geological units are the same as defined in Figure 3. 
Profiles are seven-times vertically exaggerated.



Tectonics

exponential mass fractionation correction was applied offline using the iterative method of Compston and 
Oversby (1969), the correction was typically 4.5‰ per amu. Twenty measurements of the NBS981 Pb isotope 
standard (measured as an unknown) throughout this study gave 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ra-
tios of 16.9415 ± 0.0004, 15.4992 ± 0.0006, and 36.7243 ± 0.0017, respectively. The Pb blanks are generally 
below 30 pg.

4.  Geology of the Northwest Hirondelle Basin
4.1.  Bathymetry of the Hirondelle Basin

The Hirondelle Basin is the largest of four submarine rift basins along the Terceira Rift (Figure 1a). It is 
located between the islands Terceira in the northwest and São Miguel in the southeast (Figure 1b). The 
Hirondelle Basin extends for 120 km in an NW-SE elongation and has a width ranging from 25 to 40 km. 
The seafloor of the rift basin is between 300 and 2,000 m lower than the surrounding rift flanks, whereas the 
deepest area is located in the southeast, with a maximum water depth of ∼3,200 mbsl. The rift flanks of the 
Hirondelle Basin are not continuous NW-SE structures, indicating that the basin is segmented (Figure 1b). 
At ∼26.0°W, 38.0°N the SW and NE Hirondelle flanks display a lateral offset along an SW-NE line of ∼15 km 
with left-stepping transfer zones.

The northwestern part of the Hirondelle Basin is dominated by the D. João de Castro seamount and related 
structural and volcanic features. D. João de Castro is a subcircular, solitary volcanic edifice comparable to 
some central volcanoes from the Azorean islands, for example, Pico on Pico Island. The edifice has a radius 
of ∼13 km and a height of ∼2,500 m relative to the seafloor at its northeastern flank. The top of the volcano 
is presently at ∼12 mbsl (Figure 1c). The D. João de Castro seamount is a large volcanic edifice representing 
a magmatic center in the otherwise amagmatic or magma deficient Hirondelle Basin (Figure 1). It is situat-
ed in the center of the 30–35 km wide rift basin, bordered by the uplifted NE and SW Hirondelle flanks, the 
SE Terceira Ridge (NW), and the foothills of the Central Hirondelle Horst (SE). The maximum water depth 
of the seafloor at the southwestern flank of D. João de Castro is ∼1,600 mbsl, notably lower compared to the 
northeastern and eastern flanks at ∼2,500 and ∼3,000 mbsl water depth. Similarly, the SW Hirondelle flank 
is less pronounced with ∼350 m vertical difference relative to the neighboring seafloor compared to the NE 
Hirondelle flank with ∼1,200 m.

4.2.  Fault Scarps and Basin Geometry

D. João de Castro and the Hirondelle basin flanks formed from different volcanic eruptions covering some 
0.46 Ma (Storch et al., 2020) affected by different regional tectonic stresses. This resulted in a diverse range 
of volcanic units and structural features of different vertical offset, dip, and orientation. The NE Hirondelle 
flank at D. João de Castro is formed by a well-defined steep border fault with the highest vertical offset in 
the NW Hirondelle Basin (Figure 2). In several places, the NE Hirondelle flank branches into subsidiary 
faults to form relay ramps, for example, north of D. João de Castro (Figures 1c and 2). In contrast, the SW 
Hirondelle flank at D. João de Castro has a diffuse faulting pattern over a broader zone of up to 20 km width, 
gradually increasing in water depth from the flank's top into the faulted basin seafloor. The majority of fault 
scarps at the SW Hirondelle flank and, in particular, the SE Terceira Ridge are dipping toward the SW. The 
NE-dipping fault scarps, however, form the basin margin faults of the Hirondelle Basin with 100–200 m ver-
tical offsets. Further fault scarps dipping toward the northeast are situated in the interior of the Hirondelle 
Basin, in particular at the N and NW Castro Ridges and the northwestern continuation. Here, NE-dipping 
fault scarps are more abundant compared to SW-dipping faults but individually have smaller vertical offsets 
of 100–300 m, comparable to the SW Hirondelle flank. In contrast, the SW-dipping fault scarps at the NE 
Hirondelle flank NE of D. João de Castro have higher offsets of up to 1,200 m. This pattern results in an 
asymmetric, staircase-like geometry of the seafloor, where the NE Hirondelle flank is steeper compared 
to the SW Hirondelle flank. The difference in water depth between, for example, SW and NE across the N 
Castro Ridge is up to 400 m at a lateral distance of 4 km showing that the faults coincide with the volcanic 
structures (Figure 2). This system of fault scarps at and northwest of the Castro Ridges together with exten-
sive normal faulting at the Central Hirondelle Horst (Figure 2) forms an NW-SE-striking band of northeast 
dipping normal faults.
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The orientation of fault scarps in the northwestern part of the Hirondelle Basin have a mean NW-SE strike 
direction (mean: 136°) and a comparably low circular variance of 0.20 (Figure 2). Our data are comparable 
to the structural analyses of Casalbore et al.  (2015) on the fault scarps at the SE Terceira Ridge striking 
between 112° and 163° with a frequency maximum at ∼140°. Fault scarps at the main volcanic structure of 
D. João de Castro are less abundant but display a similar general NW-SE orientation. Additionally, several 
amphitheater-shaped head scarps are concentrated at the top of the edifice (Figure 3), which is a common 
geomorphological feature during the evolution of volcanic edifices and seamounts reflecting local volcano 
instabilities and gravitational failures (Delcamp et al., 2018; Karátson et al., 1999; Mitchell & Lofi, 2008). 
Groups of parallel trending and opposingly dipping scarps being distributed radially around the volcano's 
summit and flanks indicate the presence of distinct sediment pathways such as gullies and channels (Fig-
ure 3). These are associated with erosive processes, for example, turbiditic downslope material transport, 
rather than constructive volcanic processes that lead to the formation volcanic ridges, cones, and lava flows 
(Tempera et al., 2013).

4.3.  Basin Morphology and Volcanic Structures

Unfaulted and intact, and faulted volcanic cones occur both within the Hirondelle basin and on the flanks 
(Figures 2 and 3), respectively. In the basin, these are located either at D. João de Castro along the volcanic 
ridges or as solitarily cones on faulted sections of the seafloor. We interpret the volcanic formations in the 
center of the actively rifting Hirondelle Basin to be the result of syn-rift volcanism. Seismic profiles A-A′ 
and B-B′ across the main edifice and the Castro Ridges display that these volcanic formations are located 
on top of the rifted volcanic basement (Figures 4a and 4b). Volcanic cones on top of the rift flanks could 
be of pre-rift and/or syn-rift origin, considering that the Terceira Rift is active. The basin seafloor around 
D. João de Castro is strongly faulted and forms an irregular, rough topography. In contrast, some areas are 
dominated by a flat, smooth, and less-faulted surface. Particularly, the seafloor at the base of NE Hirondelle 
flank is notably deeper than its surroundings and forms the sediment depocenter in this section of the ba-
sin indicating higher subsidence rates compared to the seafloor at the SW flanks (Figures 3 and 4c). In the 
interpreted seismic profiles, sediment fillings occur as faulted (Figure 4c) and non-faulted layered strata 
(Figure 4a), whereas non-faulted sedimentary deposits occur exclusively on top of syn-rift volcanic units 
north and northwest of D. João de Castro.

The D. João de Castro seamount consists of the main volcanic edifice and a series of volcanic cones situated 
along its flanks that commonly occur in alignments along with volcanic ridges (Figures 2 and 3). Two paral-
lel volcanic ridges extend from the northern (N Castro Ridge) and northwestern (NW Castro Ridge) flanks of 
D. João de Castro in a northwestern direction (Figures 3 and 4a). These features are comparable to the sub-
marine and subaerial volcanic ridges that extend from many of the Azores islands, for example, the Serreta 
Ridge (Terceira; Chiocci et al., 2013), the Capelo Fissure Zone, the Capelinhos rift (Faial, Romer et al., 2018; 
Trippanera et al., 2014), and the western part of Sete Cidades volcano (São Miguel; Weiß, Hübscher, Wolf, 
et al., 2015), as well as those observed at other ocean islands, for example, Fernandina Island (Galápagos; 
Geist et al., 2006). The N and NW Castro Ridges extend from the volcano's center ∼10 and 15 km into the 
rift basin, respectively (Figure 3). Single and alignments of cones and narrow, symmetric ridges adjoin the 
volcanic ridges in the northwest forming a ∼35 km long and ∼8 km wide volcanically active zone extending 
from D. João de Castro's center into the rift basin (Castro Fissure Zone, Figure 2). Numerous large volcanic 
cones and lava domes straddle the flanks of D. João de Castro seamount corresponding to parasitic volcanic 
vents on the flanks of the central volcano.

The western, southwestern, and eastern flanks of D. João de Castro are dominated by fan-shaped deposits, 
with a much smoother topography compared to the rougher areas dominated by volcanic ridges and cones 
(Figure 3). The units with a smooth topography occur close to the volcano's top as narrow fillings in the 
radiating gullies and channels and become broader along the flank and the base of the edifice. The volcanic 
fan at the southwestern flank reaches a total width of ∼15 km at the base. Despite their large size and the 
high-resolution bathymetry, these fans cannot be easily subdivided into single units, for example, individual 
debris flows. All fans along the flanks of D. João de Castro display downstream sediment wave structures 
of 0.5–3 km width and ∼50–100 m height in the overall smooth topography (Figure 3). These most com-
monly occur along continental margins (e.g., Nelson et al., 2000) but also along the flanks of ocean island 
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associated with either eruption-fed supercritical density flows (turbidity currents) or rotational landslides 
(Pope et al., 2018). Seismic imagery on the southwestern flank of D. João de Castro reveals sequences of 
layered volcanic strata extending from the edifice's top toward its flanks. The uppermost layers display re-
mobilization of volcanic material at D. João de Castro, partly due to rotational slumping (Figure 4b).

The majority of volcanic features in the NW Hirondelle Basin have a preferred orientation either by the 
alignment of volcanic cones or elongated ridges of variable size. Quantitative mapping of these volcanic 
structures yields a mean NW-SE strike direction (mean: 144.6°, Figure 2) with a comparably high circular 
variance of 0.38. Thus, the mean orientation of volcanic structures is comparable to the orientation of fault 
scarps in the same area. The orientation of volcanic structures in the NW Hirondelle Basin is also similar 
compared to those observed in the neighboring volcanic systems, that is, the western part of São Miguel 
(Carmo et al., 2015) and its submarine volcanic ridges (Weiß, Hübscher, & Lüdmann, 2015) and the NW 
Terceira Ridge offshore Terceira Island (Casalbore et al., 2015) all of which are striking NW-SE. The N and 
NW Castro Ridges are the most pronounced volcanic structures at D. João de Castro that have NW-SE ori-
ented volcanic structures. There is no systematic difference between the orientation of volcanic structures 
at the Hirondelle Basin rift flanks and within the basin along the ridges. However, other volcanic features 
at the flanks of D. João de Castro are often oriented contrasting the mean strike direction (striking between 
5° and 110°) without forming a second frequency maximum (Figure 2). Instead, they form a subordinate 
circumferential azimuthal distribution around the edifice's center. These contrasting structural features are 
limited to the flanks of the seamount within a radius of ∼15 km from the center. A seismic profile (C-C′) 
across the Central Hirondelle Horst (Figure 4c) reveals that syn-rift volcanism is absent southeast of D. João 
de Castro and predominantly occurs in a northwesterly direction (Figures 2 and 3).

5.  Geochemistry of D. João de Castro
5.1.  Major and Trace Element Geochemistry

Lavas from D. João de Castro seamount and the Castro Ridges (Figure 1) cover the entire range from al-
kali basalts to trachytes (Figure 5a). Based on the TAS (total alkali vs. silica) classification from Le Maitre 
et al. (1989), few highly porphyritic lavas with MgO contents >12 wt. % are subalkaline basalts, whereas the 
majority of D. João de Castro lavas are lavas from the alkaline series (Figure 5a). Consistent with data from 
Beier et al. (2008), lavas from D. João de Castro range from ∼17 wt. % to 0.9 wt. % MgO (Figure 5). The most 
primitive volcanic glass rim has a MgO content of 5.9 wt. %. Lavas exceeding ∼12 wt. % MgO are highly 
olivine- and clinopyroxene-phyric and reflect the accumulation of clinopyroxene and olivine phenocrysts. 
The major element composition of lavas from D. João de Castro and the Castro Ridges lie on well-defined 
trend lines versus MgO contents. The variability of major element contents is comparable to those from São 
Miguel and Terceira, for example, ranging from 3 to 4 wt. % Na2O and 8 to 12 wt. % CaO at a given MgO 
content of ∼6 wt. %. Lavas from the D. João de Castro edifice and the Castro Ridges overlap, indicating no 
systematic differences except for their K2O contents (Figure 5c). In terms of K2O, a few Castro Ridge lavas 
are slightly lower, with 0.8–1.0 compared to 1.7–2.0 wt. % K2O at 9–6 wt. % MgO, respectively.

Incompatible trace element ratios such as Nb/Zr display similar ranges compared to those from Terceira 
and São Miguel (Figure 6a). For MgO contents >5 wt. %, Nb/Zr ratios range from 0.18 to 0.25. There is 
no systematic difference in these ranges, depending on whether they derive from D. João de Castro or the 
Castro Ridges. Lavas from D. João de Castro have higher La/Yb and Tb/Yb ratios of ∼18–25 and 0.42–0.50, 
respectively, than lavas from the Castro Ridges ranging from 12 to 19, and from 0.38 to 0.45 (at ∼6 wt. % 
MgO), respectively (Figures 6b and 6c). The overall differences in Tb/Yb between the Castro Ridges and the 
central edifice are, however, subtle.

In agreement with observations made by Beier et al. (2008), the major and trace element patterns of the D. 
João de Castro, Terceira, and São Miguel magmatic systems display systematic differences. The TiO2 con-
tents of D. João de Castro lavas overlap with those from Terceira, both being generally lower compared to 
lavas from western São Miguel (Figure 5b). In contrast, the K2O contents of D. João de Castro lavas overlap 
with those from western São Miguel, and both systems generally have higher K2O contents compared to the 
Terceira lavas (Figure 5c). The La/Yb ratios of D. João de Castro overlap with São Miguel, whereas lavas 
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from the Castro Ridges have as low La/Yb ratios as Terceira. The Tb/Yb ratios of lavas from D. João de Castro 
generally overlap with Terceira lavas and are lower than those from São Miguel (Figures 6b and 6c).

5.2.  Isotope Geochemistry

Lavas from the D. João de Castro magmatic system cover a wide range in Sr-Nd-Pb isotope space. They 
lie on a mixing line between the “common Azores” mantle endmember with a Pb isotope composition 
of 206Pb/204Pb ∼19.5, 207Pb/204Pb ∼15.62, and 208Pb/204Pb of ∼39.2 (Béguelin et  al.,  2017; Beier, Haase, 
et al., 2018, Figures 6e and 6f) and the mantle endmember specific to D. João de Castro which has compara-
bly unradiogenic Pb isotope ratios. Similarly, the Sr-Nd isotope space describes a broad field, where several 
Azores magmatic systems form mixing lines between individual sources and the common Azores mantle 
source (Figures 6d and 6e). For systems along the Terceira Rift this endmember has 87Sr/86Sr ratios around 
∼0.7035 and 143Nd/144Nd ratios between 0.5129 and 0.5130 (Beier et al., 2008). In the case of D. João de 
Castro this source mixes with a low 143Nd/144Nd but only slightly more radiogenic 87Sr/86Sr of ∼0.7037 end-
member (Figure 6d). New data from the central seamount and the Castro Ridges overlap with existing data 
from Beier et al. (2008) but significantly increase the isotopic range of the D. João de Castro magmatic sys-
tem toward both enriched and depleted compositions, particularly in Pb isotope space, that is, ranging from 
∼18.6 to 19.6 and from ∼38.4 to 39.2 for 206Pb/204Pb and 208Pb/204Pb, respectively (Figures 6e and 6f). The 
143Nd/144Nd isotope ratio of the D. João de Castro endmember is <0.5128 and defines a binary mixing trend 
with an Azores-typical endmember of 143Nd/144Nd = 0.5129 (except for two outlier samples [IEAZO0898, 
IEAZO0923]; Figure 6e). In agreement with observations made based on source sensitive trace element 
ratios, the isotopic signature of lavas from the Castro Ridges and the central edifice overlap.

The D. João de Castro magmatic system thus has a distinct, well-defined mantle source signature like oth-
er magmatic systems along the Terceira Rift and the eastern Azores (Beier et al., 2008). The neighboring 
islands of São Miguel and Terceira as well as other magmatic systems along the Terceira Rift, for example, 
Graciosa and lavas from the Northern Hirondelle Basin, are isotopically extremely variable and distinct 
from D. João de Castro (Beier, Haase, et al., 2018; Storch et al., 2020). The differences in major and trace ele-
ments and Sr-Nd-Pb isotopes at D. João de Castro and the variability observed in the neighboring magmatic 
system indicate a systematic variability of mantle sources and the melting conditions along the Terceira Rift 
and the eastern Azores Plateau.

6.  Discussion
Volcanoes forming in active rift systems are the manifestation of the interaction of magmatic and tectonic 
processes. The composition of the erupted lavas reflects the composition of the mantle sources as well as 
the melting and melt extraction processes and magma evolution. The morphology of the volcanic edifice 
reflects the lithospheric stress regime and also the vertical and horizontal transport of magma through the 
crust. The spatial distribution of structural features related to tectonic stresses and volcanic processes allows 
reconstructing how volcanic rift systems evolve in time and space.

6.1.  The Distribution of Tectonic and Volcanic Structures in the Northwest Hirondelle Basin

The consistent NW-SE strike direction of fault scarps in the NW Hirondelle Basin (Figure 2) shows that 
this region has been dominated by a single regional tectonic stress field since the opening of the basin. The 
movement of the Nubian and Eurasia Plates and the opening of the Hirondelle Basin results from an ex-
tensional movement in northeastern and southwestern directions (Marques et al., 2013). This is consistent 
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Figure 5.  (a) Total Alkali versus SiO2 (TAS) classification of Le Maitre et al. (1989). Dashed line separates the alkaline from the sub-alkaline volcanic series 
(after Irvine & Baragar, 1971). (b) TiO2, (c) FeOT, (d) CaO, (e) Na2O, and (f) K2O versus MgO contents for lavas from D. João de Castro volcano and the N and 
NW Castro Ridge. Literature data show lavas from the adjacent magmatic systems Terceira (Beier et al., 2008; Hildenbrand et al., 2014; Madureira et al., 2011; 
Pimentel et al., 2016; Romer et al., 2019; Self, 1976; Zanon & Pimentel, 2015), São Miguel (Beier et al., 2006; Elliott et al., 2007; Haase & Beier, 2003; Turner 
et al., 1997; Widom et al., 1997; Zanon, 2015), and the Northern Hirondelle Basin flank (Storch et al., 2020). Literature data from D. João de Castro from Beier 
et al. (2008). Arrows in (b–d) show generalized liquid lines of descent typical for ocean island basalts (modified from Prytulak & Elliott, 2007).
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with previous structural studies on this section of the Terceira Rift, that is, the SE Hirondelle Basin (Weiß, 
Hübscher, & Lüdmann, 2015), the western part of São Miguel (Beier et al., 2006) at Terceira's eastern vol-
canoes (Madeira et al., 2015), and the offshore continuations at the NW and SE Terceira Ridges (Casalbore 
et al., 2015).

The dominant NW-SE orientation of volcanic structures in the NW Hirondelle Basin is comparable to the 
strike direction of the fault scarps (Figure 2). This implies that the lithospheric extension along the Terceira 
Rift is the dominant process controlling the shape and arrangement of volcanic structures, forming fault 
scarps and finally resulting in the opening of the Hirondelle Basin. It is commonly observed that tectonic 
stresses are a significant factor controlling the volcano's morphology. This is the case, both on large scales, 
for example, the alignments of central volcanoes in continental rift systems (Ebinger et al., 1999) or on a 
smaller scale within a single volcanic edifice, for example, oriented dike swarms at the Krafla volcanic sys-
tem on Iceland associated with the extension along the MAR (Gudmundsson, 1987, 1998). The injection of 
dikes commonly occurs perpendicular to the maximum extensional stress σ3 (Walker, 1999), that is, along 
a NW-SE strike direction in the Hirondelle Basin area of the Terceira Rift. Thus, the elongated alignment 
of volcanic cones and the formation of volcanic ridges in the NW Hirondelle Basin are the results of the 
emplacement of volcanic dikes in the framework of the regional tectonic stress field.

The concentration of volcanic activity along the Castro Fissure Zone, northwest of D. João de Castro is 
associated with the presence of normal faults with a large vertical offset (100–300 m) located in the center 
of the basin (Figures 2 and 4a). Profile A-A′ across the Hirondelle Basin shows that the SW Castro Ridge 
volcanism is located at boundaries between vertical topographic offsets of the faulted basin seafloor (Fig-
ure 4a). In contrast, seismic profile C-C′ (Figure 4c) and other seismic studies on the southeastern part 
of the Hirondelle Basin indicate amagmatic rifting of the volcanic basement with no evidence for syn-rift 
volcanism (Weiß, Hübscher, & Lüdmann, 2015). These areas are characterized by a negative free-air gravity 
anomaly relative to the surrounding seafloor, including the NW Hirondelle Basin (Vogt & Jung, 2004). Thus, 
the combined occurrence of large fault scarps and volcanism in the NW Hirondelle Basin is predominantly 
the result of the magmatism beneath D. João de Castro and the Castro Ridges (Figures 4a and 4b). The 
additional weakening of the lithosphere due to extensive diking events is thought to cause faulting and 
eruptions comparable to continental rift systems, for example, in the Main Ethiopian Rift (Corti, 2009; Kurz 
et al., 2007).

The circular azimuthal variance of the volcanic structures is significantly higher than those of the fault 
scarps (Figure 2). This shows that the syn-rift volcanic formations in the NW Hirondelle Basin have been in-
fluenced by an additional, albeit subordinate, process that has not visibly impacted on the formation of the 
fault scarps. Volcanic structures oriented differently from the mean NW-SE strike direction are controlled 
by a stress field in the crust that is different from the regional tectonic stress field. The distribution of these 
volcanic structures is radially around the D. João de Castro center (Figure 2) within a radius of ∼15 km. We 
interpret this to be a local subordinate stress field associated with the emplacement of the D. João de Castro 
edifice, generating circumferential extensional stresses (Acocella & Neri, 2009). These local stresses super-
impose the regional tectonic stress field prevailing along this section of the Terceira Rift.

6.2.  Mantle Source Heterogeneity

Volcanic activity along fissure zones is often directly linked with the magmatic activity at the central volcan-
ic edifice. Several studies on volcanic systems, for example, on Iceland, have shown that fissure zones can 
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Figure 6.  (a) Nb/Zr, (b) La/Yb, and (c) Tb/Yb trace element ratios versus MgO contents for lavas from D. João de Castro volcano and the N and NW Castro 
Ridge. Data sources are as in Figure 5. (d, e, f) Strontium-Nd-Pb isotope ratios of lavas from D. João de Castro volcano and the N and NW Castro Ridge along 
with literature data for lavas of other magmatic systems along the Terceira Rift, that is, Graciosa (Béguelin et al., 2017; Beier et al., 2008; Larrea et al., 2014), 
Terceira (Beier et al., 2008; Hildenbrand et al., 2014; Madureira et al., 2011; Romer et al., 2019), Northern Hirondelle Basin (Storch et al., 2020), and São Miguel 
(Beier et al., 2006; Elliott et al., 2007; Haase & Beier, 2003; Turner et al., 1997; Widom et al., 1997), and the MAR (Agranier et al., 2005; Dosso et al., 1999; Gale 
et al., 2011, 2013; Hamelin et al., 2013; Shirey et al., 1987). Literature data from D. João de Castro from Beier et al. (2008) and Béguelin et al. (2017). Blue fields 
in (e, f) highlight the area defined as “common Azores mantle” by Béguelin et al. (2017) and Beier et al. (2018). Blue field in (d) highlights typical Sr-Nd mantle 
endmember for volcanic systems along the Terceira Rift from Beier et al. (2008). Black arrows in (d, e, f) indicate possible mixing lines for the D. João de Castro 
lavas.
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be fed from melt reservoirs situated beneath the central edifice by lateral 
melt transport via dikes (Sigurdsson & Sparks, 1978). The Castro Fissure 
Zone expands from the D. João de Castro seamount in a northwestern 
direction (Figure 1). Based on the distribution of volcanic and structural 
features and the focused volcanic activity at D. João de Castro and along 
the Castro Fissure Zone, we suggest that lavas from these localities form 
from the same mantle source. The geochemistry of these lavas allows dis-
entangling the processes that lead to the formation of the central volcano 
and the fissure zone.

The Sr-Nd-Pb isotope ratios and source sensitive trace element ratios of 
lavas from D. João de Castro and the Castro Ridges are variable but cov-
er a similar range and lie on a single mixing array for the entire system 
(Figure  6). This implies that both volcanic formations originated from 
the same mantle source, which is, however, highly heterogeneous like 
observed on other Azores volcanoes (Beier et al., 2007; Elliott et al., 2007; 
Turner et al., 1997; Widom et al., 1997). The eruption of lavas with dis-
tinct source isotopic signatures in a single magmatic system may be the 
result of episodic volcanic activity tapping discrete mantle sources. Epi-
sodic volcanic activity is well known from other magmatic systems in the 
Azores, for example, from the adjacent NW Hirondelle flank, where in-
compatible trace element and Nd-Hf isotope ratios of the lavas show dis-
tinct source compositions after a phase of volcanic quiescence of <90 ka 
(Storch et al., 2020). Lavas sampled at the N Castro Ridge and the eastern 
flank of D. João de Castro are fresh, glassy basaltic pillow lavas and sub-
marine sheet flows, whereas lavas from the NW Castro Ridge display a 

higher degree of alteration with a higher proportion of volcanic breccias and sediments (Beier et al., 2017; 
Hübscher et al., 2016) (Figure S1). This could be indicative that these lavas are younger relative to those 
sampled from the NW Castro Ridge and possibly the SW flank of D. João de Castro, which would be consist-
ent with an episodic volcanic activity; however, this remains speculative in the absence of radiometric ages.

Differences in La/Yb ratios between D. João de Castro and the Castro Ridges do not correlate with mantle 
source indicators (e.g., Sr-Nd-Pb isotopes, Nb/Zr) and are best explained by changes in the degree of melt-
ing. Lower La/Yb from the Castro Ridges suggest higher degrees of melting, while subtle differences in Tb/
Yb imply similar amounts of residual garnet in the source and hence comparable melting depths (Bourdon 
et al., 2005, Figures 6b and 6c). In spite of similar variable source signatures, this implies that lavas from 
the Castro Ridges and at D. João de Castro are not all co-magmatic and either erupt at D. João de Castro 
or at the Castro Ridges. We conclude that the two different volcanic structures are fed from different melt 
batches from the melting region in the mantle and ascend through a similar lithospheric plumbing system.

6.3.  Melt Ascent in the D. João de Castro Magmatic System

The compositional variability of the D. João de Castro lavas reflects the source and conditions of melting 
in the mantle but also yields important insights about ascent conditions in the crust. The combination of 
structural and geochemical observations allows determining how melts are transported from the mantle 
through the crust and along the rift system.

Lavas from D. João de Castro and the Castro Ridges range from alkali basalts to trachytes (Figure 5a). The 
mafic basalts and trachybasalts from D. João de Castro erupt without enhanced crystal fractionation in the 
crust, whereas the felsic lavas indicate periods of stagnation at different crustal levels and fractionation to 
trachyandesite and trachyte composition, respectively (Figure 5a). The distribution of lavas with varying 
degrees of fractionation is, however, not systematically restricted to a specific area or a certain distance 
relative to the main seamount, that is, mafic to evolved lavas occur on all volcanic structures (Figure 7). 
At the Castro Ridges, only a single sample has MgO contents <3 wt. %, indicating that extensive fractional 
crystallization influences lavas erupted at the central edifice. We note, however, that this could also be 
the result of denser sampling at the main edifice compared to the Castro Ridges. Contrastingly, the Santa 
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Figure 7.  MgO contents versus the distance from the volcano's center of 
lavas from D. João de Castro volcano and the Castro Ridges along with 
literature data from the Santa Bárbara magmatic system consisting of the 
Santa Bárbara central volcano and the submarine Serreta Ridge. Data 
sources are as in Figure 5.
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Bárbara magmatic system on the neighboring island Terceira displays a bimodal distribution between the 
Santa Bárbara central volcano, which erupts intermediate and evolved lavas and the fissure system that 
extends >10 km offshore to form the Serreta Ridge, which erupts mostly mafic lavas (Figure 7, Madureira 
et al., 2017). Both at D. João de Castro volcano and the Castro Ridges a large proportion of lavas are mafic, 
with the highest MgO contents occurring close to the volcano's center (Figure 7). This indicates that mafic 
melts may pass through the uppermost crust beneath the edifice and the volcanic rift zones and possibly 
accumulate olivine-clinopyroxene-rich crystal mush in a shallow magma reservoir beneath the central vol-
cano before erupting (Cashman et al., 2017).

The Santa Bárbara volcano on Terceira is part of a mature magmatic system where ascending mafic melts 
stagnate in the plumbing system and are laterally transported along the mid-crustal rift zone to the offshore 
Serreta Ridge (Romer et al., 2019). Santa Bárbara central volcano also developed a large caldera with numer-
ous felsic lava domes (Self, 1976), which is in contrast to the occurrence of both mafic and evolved lavas at D. 
João de Castro. The abundance of mafic lavas on the seamount suggests that the plumbing system beneath 
the edifice is less mature and ascending mafic melts can erupt without extensive crystallization compared to 
Santa Bárbara or Sete Cidades volcano on São Miguel (Beier et al., 2006; Romer et al., 2019). The abundance 
of olivine-clinopyroxene-rich lavas indicates interaction with crustal magma bodies where the crystals are 
mobilized. The presence of intermediate and evolved lavas at D. João de Castro, however, shows that frac-
tional crystallization also is an important process during the ascent of melts and the evolution of the edifice. 
Thus, we suggest that the D. João de Castro seamount is an evolving central volcano on an active rift system 
with a high proportion of erupted mafic melt. As opposed to the more evolved, mature volcanoes on the 
islands, the seamount represents an early stage in the evolution of a central volcano.

6.4.  Melt Transport and Volcano Growth in Active Rift Systems

In slowly diverging rift systems, large polygenetic volcanoes commonly form as a result of magma focusing 
within segments along the rift axis (Beutel et al., 2010; Sauter & Cannat, 2010). In order to understand how 
a central volcano such as D. João de Castro initially forms and develops further, it is crucial to understand 
the processes that influence the melt transport from the mantle through the crust. The formation of large 
central volcanoes requires the presence of a shallow magma chamber (Burchardt & Gudmundsson, 2009). 
These upper crustal magma reservoirs act as sinks for mafic melts that ascend via dikes from the deeper 
crust as well as serving as sources for fractionated melts that erupt from the central edifice (Gudmunds-
son, 2020). The deep situated reservoir of ocean islands is frequently located around the Moho from which 
mafic to intermediate melts are feeding fissure zones and replenishing the shallow magma reservoir (Klügel 
et al., 2015).

In young magmatic systems, for example, small seamounts, melts that are stored in the lithospheric man-
tle are transported subvertically to the surface without significant stagnation (Klügel et al., 2015). Mature 
magmatic systems associated with large central volcanoes form when the deep situated magma reservoir ex-
pands vertically and laterally leading to enhanced melt accumulation at the crust-mantle boundary as a re-
sult of dike arrest and deflection and subsequent trapping of further ascending dikes (Kühn & Dahm, 2008). 
Shallow crustal magma reservoirs are formed by repeated injection of dikes from large lower crustal and up-
per mantle reservoirs (Gudmundsson, 2011). Dike injection may result in arrest or deflection to sills in the 
upper crust, where low-density layers or elevated temperatures along with higher viscosities are an obstacle 
for the propagating mafic dikes (Menand, 2011). Based on geophysical studies, the depth for the crust-man-
tle boundary in the Azores ranges from 13 to 17 km (Spieker et al., 2018), and a recent study indicates a 
range from 10 to 16.5 km with shallower depths closer to the MAR (Ferreira et al., 2020). These observations 
are consistent with the prevalent depth of stagnation inferred from thermobarometric studies on selected 
volcanic islands (Romer et al., 2019; Zanon & Frezzotti, 2013; Zanon & Pimentel, 2015). Shallow magma 
chambers beneath other Azorean central volcanoes are located between 2 and 7  km (Beier et  al.,  2006; 
Dias et al., 2007; Jeffery et al., 2016, 2017; Romer et al., 2019). We suggest that D. João de Castro's shallow 
reservoir is located at a comparable depth interval beneath the central volcano and that the variable degree 
of fractionation indicates that melts derive from both a deep magma reservoir and from a shallow magma 
reservoir where extensive cooling and crystal fractionation occurs prior to eruption.
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The formation of a shallow magma chamber is accompanied by changes in the lithospheric stress field. The 
circumferential orientation of volcanic structures at D. João de Castro (Figures 2 and 8b) shows that the 
regional tectonic stress field is superimposed by the local influence of a shallow magma chamber, where 
the overpressure results in radiating σ1 stress trajectories (Burchardt et al., 2018; Gudmundsson & Bren-
ner, 2004). In contrast, the Castro Fissure Zone, including the Castro Ridges, is formed from dike injections 
directly from the deep-seated reservoir in a northwesterly direction from D. João de Castro. The orientation 
of the entire fissure zone volcanism is controlled by the regional tectonic stress field in the NW Hirondelle 
Basin.

The presence of both mafic and evolved lavas from deep and shallow magma reservoirs implies that D. João 
de Castro has not reached a mature stage of evolution like those of the neighboring subaerial volcanoes 
(e.g., Santa Bárbara or Sete Cidades). The Castro Ridges are of predominantly mafic rock composition, 
however as opposed to the volcanic structures further to the NW, they are more massive and cannot easily 
be distinguished into single monogenetic cones. Based on the bathymetry and seismic imagery, however, 
the Castro Ridges are formed by clusters of individual cones that are concentrated along this section of the 
rift axis (Figures 3 and 4b). These structures and the occurrence of few basaltic-trachyandesites and tra-
chyandesites indicates that continuous dike injections have led to deflection and initial sill formation in the 
upper crust (Figure 8a). Therefore, we conclude that volcanic ridges such as the Castro Ridges represent the 
initial phase in the formation of a central volcano in rift systems.

Based on the structural analysis of the fault scarps and volcano orientations, this initial phase is dominated 
by the regional tectonic stress field (Figures 2 and 8a), resulting in NW-SE striking elongated morphological 
patterns. Once a shallow magma chamber is established, the regional stress field-controlled morphology is 
overprinted by the subcircular morphology of the evolving central volcano (Figure 8b). D. João de Castro 
represents this transitional phase of evolution from a predominantly mafic volcanic system toward a poly-
genetic central volcano. A comparably weak upper crustal stress barrier leads to the occurrence of both 
mafic and highly fractionated lavas that occur radially around the volcano's center. In addition, mafic dikes 
that get hampered at upper crustal levels, for example, at the base of the volcanic edifice, either stall or are 
deflected and propagate laterally along the rift zone, bypassing the stress barrier and erupting at the Castro 
Fissure Zone (Figure 8b; Gudmundsson, 2020).

Continued injections of mafic dikes into the upper crust may then facilitate the growth of the shallow mag-
ma chamber, and the proportion of dikes that erupt directly from the deep reservoir decreases whereas the 
portion of dikes propagating into the fissure zone increases (Klügel et al., 2015). This process leads to the 
formation of a mature magmatic system with a bimodal distribution in the degree of fractionation between 
the central volcano and the fissure zone, comparable to the Santa Bárbara magmatic system (Figure 8c). 
The continuing growth of the shallow magma chamber may ultimately lead to the formation of a collapse 
caldera and the injection of cone sheets (Galland et al., 2014).

6.5.  Geometry of Magmatic Segments Along the Terceira Rift

The positioning of D. João de Castro in the Terceira Rift as a relatively young central volcano allows deter-
mining the magma flow along the Terceira Rift. The Terceira Rift comprises features of both oceanic spread-
ing ridges and continental rift systems (Beier et al., 2008). The Terceira Rift is located on a thick lithosphere 
between ∼35 km close to the MAR and ∼75 km in the southeast at São Miguel (Spieker et al., 2018), which 
results in deep generation of alkaline melts comparable to continental rifts (Figure 5, Beier et al., 2012). 
Similar to both oceanic and continental diverging systems, the Terceira Rift displays a regular pattern of 
amagmatic areas (basins) and magmatic centers like volcanic islands, volcanic ridges and seamounts, for 
example, at the Gakkel Ridges (Michael et al., 2003) or the East African Rift system (Ebinger et al., 2013). 
At diverging systems, the segmentation pattern is inferred to be generated by focused mantle melts from 
the asthenosphere producing locally thinned lithosphere and a thickened crust (Carbotte et al., 2015). The 
regularity in the spacing of the magmatic systems is associated with the diapiric ascent of Rayleigh-Taylor 
type gravitational instabilities in the partially molten mantle which leads to local upwelling zones of the 
asthenosphere and focused melt supply systems (Schouten et al., 1985).
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Figure 8.  Schematic three-dimensional lithospheric profile through a (slow-diverging) rift system, showing the initiation and the evolution of a central 
volcano and the melt transport characteristics in the lower and upper crust. Melts are transported from a deep-seated magma reservoir located around the 
Moho via near vertical dikes toward the surface, where (a) they erupt, forming monogenetic cones and in part deflect into sills. The formation of sills results 
in the formation of elongated volcanic ridges, as a result of accumulation of monogenetic cones along areas with high volcanic activity. (b) Sills develop into a 
shallow magma chamber that acts as pool for ascending melts from the deep reservoir and source for more fractionated melts that form the edifice. The shallow 
magma reservoir influences the stress patterns in the upper crust and superimposes the regional tectonic stress field prevailing in the rift system resulting in 
the formation of a subcircular edifice with radiating volcanic structures. (c) The growth of the shallow magma chamber and changed crustal stress conditions 
leads to further trapping of ascending mafic melts and also forces dikes to propagate along the rift system bypassing the edifice. (d) Simplified bird's-eye view 
of the volcanic stage shown in (c) with highlighted potential melt pathways based on regional and local stress fields. Based on models and modified from 
Gudmundsson (2016) and Klügel et al. (2015). Not to scale.
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Along the Terceira Rift, the volcanic islands and D. João de Castro seamount are the surface expression 
of the magmatic segment where melts are focused (Beier et al., 2008; Vogt & Jung, 2004). The magmat-
ic centers along the Terceira Rift have a regular spacing of ∼80–100 km (Lourenço et al., 1998; Marques 
et  al.,  2013), whereas offsets, for example, in the Hirondelle Basin (Figure  1b) show that the magmatic 
segments are shifted against each other. In slowly diverging rift systems like in the Main Ethiopian Rift 
(MER), the deformation at segment centers is mainly magmatically induced, whereas the edges are tecton-
ically, brittlely deformed (Corti, 2009). Similarly, basins between the volcanic islands and seamounts along 
the Terceira Rift represent the edges of the segments, where volcanism appears to be absent or sparse, and 
extension occurs by normal faulting (e.g., at Central Hirondelle Horst, Figure 4c).

The geometry of magmatic segments in rift system is controlled by the rate of extension. Acocella (2014) 
showed that the ratio between the width (W) and the length (L) of magmatic segments in rift systems in-
creases as the extension rate decreases (Figure 9). At an extension rate of <25 mm/a the length of Icelandic 
magmatic systems (up to 200 km) is much greater compared to the East Pacific Rise, however, resulting 
in a W/L ratio of 0.1–0.3 considering the large widths between ∼10 and 25 km. The East Pacific Rise has 
extremely high extension rates between 75 and 150 mm/a. The segment lengths are between 25 and 100 km 
but are also extremely narrow with widths that are commonly around ∼1 km resulting in W/L ratios of 
<0.05. In contrast, continental rift system, such as Afar and the MER, have high W/L ratios between 0.2 and 
0.8, reflecting their generally lower extension rates of <18 mm/a.

The lengths and widths of magmatic segments along the Terceira Rift are variable between the volcanic is-
lands, for example, the western part of São Miguel is ∼60 km long and ∼20 km wide compared to the 30 km 
long and 10 km wide East Formigas High. The W/L ratios of all volcanic systems are, however, remarkably 
similar between 0.3 and 0.4 (Figure 9, Table 1) at very low extension rates of ∼4 mm/a (Vogt & Jung, 2004). 
The comparably high W/L ratios of the segments along the Terceira Rift and the low overall extension 
rate shows that this rift system is very similar to the MER and Afar continental rift systems (Figure 9). 
Additionally, magmatic centers along the Terceira Rift exclusively erupt alkaline melts (Figure 5a) from 
low degree melting beneath thick lithosphere (Beier, Haase, et al., 2018) and have large crustal thicknesses 
(Gente et al., 2003) atypical for slow-spreading oceanic ridges (Cannat, 1996). There is no clear evidence for 
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Figure 9.  Relationship between (a) the width (W) and length (L) and (b) W/L ratio and extension rate of magmatic systems along the Terceira Rift in 
comparison with other oceanic and continental rift systems from the literature. Data sources in (a) and (b) are from Acocella (2014) and from Smith et al. (1995) 
for geometry data and DeMets et al. (2010) extension rates of the Mid-Atlantic Ridge (MAR), respectively. (c) Model showing the relationship between 
extension rate and the geometry of a magmatic segment in rift systems. Modified from Acocella (2014).
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ocean seafloor spreading at the Terceira, neither geochemically (Storch et al., 2020) nor from gravity data 
(Luis et al., 1998) or geophysical data excluding extensive lithosphere thinning (Spieker et al., 2018). This 
along with the geometric similarities of magmatic segments along the Terceira Rift and the MER (Figure 9) 
suggests that initial oceanic rifts may be comparable to slow-diverging continental rifts rather than oceanic 
spreading centers.

The magmatic systems along the Terceira Rift are located on a lithosphere that varies in thickness of ∼40 km 
from Graciosa to São Miguel (Beier et al., 2013). The increasing lithosphere thickness with increasing dis-
tance from the MAR, however, does not affect the geometry of the magmatic systems, showing that it is 
controlled by shallower crustal processes rather than the far-field stress field. As opposed to the Terceira 
Rift, the crustal thickness at the MER and Afar rift is very variable (18–40 km) and correlated with variable 
extension rates (Acocella, 2014). The low extension rates along the Terceira Rift (∼4 mm/a) and compara-
bly homogeneous crustal thicknesses (10–17 km) (Ferreira et al., 2020; Spieker et al., 2018) result in the 
formation of magmatic segments with consistent geometry, that is comparable to continental rift systems. 
Thus, we conclude that the extension rate and crustal thickness are controlling the geometry of magmatic 
systems.

7.  Conclusions
The D. João de Castro seamount in the NW Hirondelle Basin is a solitaire central volcano defining a mag-
matic segment along the ultraslow diverging Terceira Rift in the Azores. Northwest of the edifice the N 
and NW Castro Ridges form part of a volcanic fissure zone (Castro Fissure Zone). The orientation of fault 
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Magmatic segment W (km) SD n L (km) SD n W/L Extension rate (mm × a−1)

Graciosa 18.1 7.4 12 50.1 10.8 7 0.36 4.4

Terceira 31.9 4.6 15 79.1 8.1 13 0.40 4.4–4.2

D. João de Castro 15.0 6.3 10 48.5 2.1 4 0.31 4.2–4.0

São Miguel* 19.8 7 13 58.1 5.4 5 0.34 4.0–3.9

East Formigas High 9.4 2.7 7 31.3 5.7 4 0.30 3.9–3.7

MAR 2 8 - - 33 - - 0.24 23.85 ± 1.1

MAR 3 7 - - 48 - - 0.15 22.9 ± 0.7

MAR 4 8 - - 28 - - 0.29 23.8 ± 2.0

MAR 5 10 - - 38 - - 0.26 20.76 ± 1.0

MAR 6 5 - - 38 - - 0.13 23.8 ± 0.6

MAR 7 5 - - 29 - - 0.17 23.6 ± 0.6

MAR 8 6 - - 33 - - 0.18 23.45 ± 1.3

MAR 9 6 - - 24 - - 0.25 22.6

MAR 10 5 - - 57 - - 0.09 24.38 ± 0.9

MAR 11 5 - - 57 - - 0.09 24.07 ± 1.15

MAR 12 5 - - 44 - - 0.11 24.95 ± 0.89

MAR 13 4 - - 64 - - 0.06 22.1 ± 0.99

*The geometry of the São Miguel magmatic systems, solely derive from the westernmost Sete Cidades volcano and 
associated volcanic rift zone because the more eastern volcanoes are not dominated by the regional SW-NE extension 
along the Terceira Rift, but situated on a transform fault (Sibrant et al., 2016). MAR: Mid-Atlantic Ridge.

Table 1 
Overview of the Mean Widths (W) and Lengths (L) of Magmatic Segments Along the Terceira Rift (This Study) and the 
Mid-Atlantic Ridge (MAR) (Smith et al., 1995) and Resulting W/L Ratios. For the Determination of Single W and L 
Values of the Magmatic Systems Along the Terceira Rift a Regular 5 × 5 km Grid was Added to the Bathymetric Map. 
The Widths and Lengths Were Measured From the Map Every 5 km and Then Averaged. The Standard Deviation (SD) 
and Number of Values (n) Contributing to the Mean Value for Each Segment are Indicated. The Extension Rates for the 
Terceira Rift and the MAR are From Vogt and Jung (2004) and DeMets et al. (2010), Respectively
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scarps and volcanic structures at D. João de Castro and the fissure zone display that the morphology in 
the NW Hirondelle Basin is predominantly controlled by the regional SW-NE extending stress field. The 
regional tectonic stress field controls the melt pathways in the crust and leads to dike emplacement along 
the fissure zone and eruption of predominantly mafic lavas. The presence of mafic along with intermediate 
and evolved lavas at D. João de Castro indicates the presence of a shallow magma chamber beneath the 
seamount, which generates a subordinate local stress field and circumferential volcanic structures at the 
edifice.

Strontium-Nd-Pb isotope data along with incompatible trace element ratios show that D. João de Castro and 
the Castro Ridges originated from a small-scale heterogeneous mantle source. We propose a model in which 
D. João de Castro volcano formed from the growth of volcanic ridges, and by the formation of a shallow 
magma chamber that forced dike systems to deflect into sills. This leads to shallow stagnation of melts that 
ascend from a deep-seated reservoir accompanied by dike deflection at upper crustal stress barriers (e.g., the 
base of the volcanic edifice) and propagation and eruption along the fissure zone. The geometry of D. João 
de Castro and other magmatic systems along the Terceira Rift and the alkalic nature of the lavas, as well as 
the large lithosphere thickness, indicates that the Terceira Rift is more similar to continental rift systems 
than to oceanic spreading centers

D. João de Castro is one of the few examples globally in which the transition from ridge volcanism to the 
establishment of a large, central intraplate volcano can be observed. This model may be applicable to the 
volcanic systems along the Terceira Rift and other volcanically active rift systems that may initiate in areas 
in which the structural integrity of the crust controls much of the early stages of volcanism. Continuous 
diking and magma stagnation in the crust and the associated cooling and fractionation will then lead to the 
establishment of a central volcano.

Data Availability Statement
The data is available in the PANGAEA data repository at https://doi.org/10.1594/PANGAEA.932080.
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