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A new software is presented for the determination of crystal lattice parameters

from the positions and widths of Kikuchi bands in a diffraction pattern. Starting

with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown

phase, the traces of all visibly diffracting lattice planes are manually derived

from four initial Kikuchi band traces via an intuitive graphical user interface. A

single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice

point distances. Kikuchi band detection, via a filtered Funk transformation, and

simultaneous display of the band intensity profile helps users to select band

positions and widths. Bandwidths are calculated using the first derivative of the

band profiles as excess-deficiency effects have minimal influence. From the

reciprocal lattice, the metrics of possible Bravais lattice types are derived for all

crystal systems. The measured lattice parameters achieve a precision of <1%,

even for good quality Kikuchi diffraction patterns of 400 � 300 pixels. This

band-edge detection approach has been validated on several hundred

experimental diffraction patterns from phases of different symmetries and

random orientations. It produces a systematic lattice parameter offset of up to

�4%, which appears to scale with the mean atomic number or the backscatter

coefficient.

1. Introduction

Up to now, the determination of crystal lattice or structure

parameters from Kikuchi diffraction (KD) patterns has been a

topic that has rarely moved into the focus of interest. The

reason for this is the high expectation of users who compare

results with the standard method for lattice parameter deter-

mination, X-ray diffraction (XRD). Meanwhile the high

automation of XRD techniques makes one forget that even

this method has only been automated in the past 2–3 decades

to such an extent that users should be able to obtain highly

accurate and reliable data after some practice.

Bragg angles extractable from electron backscatter

diffraction (EBSD) or transmission Kikuchi diffraction

(TKD) patterns are significantly smaller and less precise than

those of the frequently used Cu K� radiation in XRD owing to

the considerably shorter wavelength of commonly used elec-

tron energies. However, the application of electron diffraction

is not to be seen as in competition with XRD, but rather as an

option when XRD as a method is no longer able to provide the

desired results. This case occurs mainly when the fraction

of the phase to be determined falls below a reliably measur-

able value. It is only when minimal precipitates are to be
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characterized that electron diffraction becomes interesting,

and even general statements about the symmetry of the phase

or the order of magnitude of the lattice parameters are often

sufficient to draw conclusions about the nature of the preci-

pitating phase.

This task has been covered for decades by transmission

electron microscopy (TEM), which with diffraction methods

such as selected-area electron diffraction (SAED) produce a

point pattern equivalent to the distribution of lattice points in

reciprocal space (Dorset, 1995; Zou et al., 2004, 2011; Lábár,

2005; Lin, 2014; Yang et al., 2017; Li, 2019). Several of these

point patterns as sections through the reciprocal space are

necessary to estimate the Bravais lattice type, the crystal

system expected from it and, roughly, the lattice parameters.

TEM makes it possible to obtain diffraction information from

even the smallest crystals, which in XRD would produce

broadened reflections (increased peak widths caused by the

small grain size, not to mention the small phase amount) due

to the longer wavelength, making XRD unsuitable as an

investigating method.

But TEM also has certain disadvantages, for example the

need to take several diffraction patterns of the same crystallite

from different angles, which quickly becomes extremely

experimentally challenging. One solution is electron diffrac-

tion tomography (Kolb et al., 2008; Zhang et al., 2010).

Another requirement is that the samples have to be elec-

tron transparent, i.e. a preparation of very thin samples (about

100 nm) is necessary, which reduces the probability of finding

the desired phase in sufficient quantity in the remaining

specimen volume. This problem at least could be solved by tar-

get preparation techniques like the use of a focused ion beam.

Therefore, even during the early research on EBSD, there

was hope that this technique could also be used for locally

resolved phase analysis or identification. Over the years there

have been repeated attempts to reevaluate the possibilities of

lattice parameter or symmetry determination, often after

introduction of improved detectors (Baba-Kishi & Dingley,

1989; Goehner & Michael, 1996; Michael & Eades, 2000;

Dingley & Wright, 2009; Saowadee et al., 2017), but these were

never followed by commercial success, so that a further

dissemination of the developed approaches failed to materi-

alize. In contrast to this, the belief has prevailed that EBSD is

a technique which can be used very well for the fast analysis of

orientation and phase distribution but which seems comple-

tely unsuitable for a crystallographic phase characterization.

This is astonishing, because the diffraction patterns of

different structures can look very diverse. One reason for the

lack of faith may be that a physically based simulation of

diffraction patterns was published very late (Winkelmann et

al., 2007). It took another 12 years until the intensity infor-

mation of such simulations was used for the first time to

improve the indexing of KD patterns (Wright et al., 2019). So

far, all EBSD systems have worked with purely geometrically

derived band positions and have been based on the kinematic

diffraction theory, which is actually unsuitable for electrons

because individual reflectors are used for indexing instead of

the entire band information.

The most promising approach for lattice parameter deter-

mination and Bravais lattice type derivation so far was

provided by a Chinese group around Ming Han. They showed

with the software EBSDL (Li et al., 2014) that with only

information on the electron wavelength and a single KD

pattern a derivation of the crystal lattice is possible (Li & Han,

2015; Han et al., 2018; Han & Zhao, 2018a,b). This includes not

only the lattice parameters and Bravais lattice types derived

from the band positions and widths but also the simultaneous

determination of the projection centre. If the projection centre

position is correct, the fit between the band positions and

widths given on the diffraction image and the crystal and

measurement quantities derived from them are perfect.

We take up this idea and show that the derivation of the

lattice metric from a single KD pattern can be greatly

simplified by the specific application of some basic crystal-

lographic principles. This reduces possible errors and is

furthermore associated with significantly lower requirements

on the resolution of the diffraction patterns as well as the

monitor used.

In addition, new visualization tools make the systematic

relationships between diffraction patterns and crystal-

lographic laws and rules easier to understand than the

approach used in EBSDL of minimizing deviations between

individually and independently described band positions and

widths and a possible crystal lattice.

We assume, in contrast to EBSDL, that the projection

centre is sufficiently known to a first approximation, for

example determined from a pattern corresponding to a known

phase of the surrounding matrix.

2. General functionality

2.1. Diffraction pattern projection

CALM is a C++ program with its own graphical user

interface. It displays the KD pattern as it was originally

recorded by the detector and as background-corrected by the

used acquisition software. Although the image can be

captured by either a round or a rectangular detector screen,

the latter has the advantage of using the entire image area of a

CCD or CMOS chip [see Fig. 1(a)]. Therefore, the captured

sector is effectively larger.

Besides the gnomonic projection as the central projection

from a point source onto a flat plane, the KD pattern is also

displayed in stereographic projection using the projection

centre (PC) position as origin [see Fig. 1(b)]. Among other

advantages, this presentation makes the captured sector size

visible.

A fully automated detection of bands as equivalents for

traces of diffracting lattice planes is only possible to a limited

extent from KD patterns. The search for an acceptable tool

ended with the introduction of the Hough transform, which

modifies the line-like into point-like intensity features whose

maxima are comparatively easy to determine (Krieger Lassen,

1992). Unfortunately, typical crystallographic properties such

as the affiliation of lattice planes to a zone are no longer so
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obvious. Therefore, we decided to use an alternative trans-

formation, which to our knowledge was first applied to EBSD

patterns by Day (2008). It is based on the Funk transform

(Funk, 1915), often also called the spherical Radon transform,

which integrates the diffracted intensity projected on a sphere

along great circles. Displayed as a stereographic projection

and modified by appropriate edge filtering and intensity

adjustment, it makes the bands appear as rings (cf. Fig. 2).

In the case of an incomplete diffraction signal such as a KD

pattern, the bands form degenerated rings, which are,

however, still lined up along a great circle when they belong to

a zone. The degeneration becomes stronger the smaller the

solid angle detected by the camera. When the bands in the

diffraction pattern become even shorter at corners or outer

edges, the typical (half) rings look more like an eye that

increasingly degenerates into two parallel lines (Fig. 1). But

their distance is still equal to the diameter of the ideal circle

which indicates the bandwidth.

A major advantage of the adapted Funk transform is that

up to twice as many bands can be detected, especially wide

bands that are difficult to identify in gnomonic projection but

very beneficial for the determination of lattice parameters.

2.2. Fixing the lattice plane position

It is generally accepted that the centres of Kikuchi bands

mark the imaginary intersection of infinitely extended

diffracting lattice planes (hkl) with the detector screen. This is

not entirely true, because the gnomonic distortion leads to the

fact that with increasing distance from the so-called pattern

centre (orthogonal projection of PC onto the detector screen)

the displacement of the intersection line from the local band

centre increases. This means that the assumption that the

Hough peak represents the normal direction of the diffracting

lattice plane is suitable for a rough orientation determination

computer programs
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Figure 2
Stereographic projection of the edge-filtered Funk transform of the full
Kikuchi diffraction signal simulated for the same orientation of cassiterite
(SnO2) [cf. Fig. 1(c)].

Figure 1
Different projections in CALM of a diffraction pattern of cassiterite
(SnO2): (a) gnomonic projection, (b) stereographic projection and (c)
edge-filtered Funk transform.



but too vague for more advanced analytical techniques like

the derivation of lattice parameters.

On the other hand, the point of intersection of lattice plane

traces marks a lattice direction [uvw], which is the zone axis.

Lattice planes belong to the same zone when they have an

identical zone axis, i.e. their traces meet at a point. This

concept describes the trace definition using the four-line

approach formulated by Nolze & Winkelmann (2017) for

EBSD. It states that by fixing only four traces, no three of

which are tautozonal, the traces of all other visible bands can

be inferred without doubt. Thus the error in the trace position

is determined by only these four initial traces. Conversely, the

setting of the four initial traces can be significantly enhanced

by improved matching of all other traces in this way, and most

importantly, gnomonic distortions are easy to recognize and to

correct. This approach is further extended by another tool

which represents the intensity summation �IIð�Þ ¼
P

� Ið�; �Þ
and gives the intensity profile of the band as function of the

diffraction angle � (cf. the grey curve in Fig. 3).

The band edge positions (extrema of the red curve indicated

by the green lines) are only symmetric to the trace if the trace

is centred with respect to the diffraction angle �. The shift out

of the centre is given in Fig. 3 by the value Th.cent., which is

for the displayed band +0.012�. Both conditions together, the

qualitative match of all band positions and the quantitative

deviation Th.cent., allow a sufficient description of the lattice

plane traces by shifting and tilting the initial traces only, even

for low-resolution patterns.

The match between experimentally derived and ideal lattice

planes in 3D depends not only on the trace description but

also on a correct position of the projection centre PC. Since

PC is always subject to small errors, lattice planes can never be

exactly described, even if the trace positions appear to be

perfect.

The manual setting of the four initial lattice planes is

possible in the gnomonic projection, where four straight lines

must be drawn as their traces, as well as in the filtered Funk

transformation, where the centres of circles can be roughly

described as the direction of the normal vector by a double-

click on the mouse button.

The derivation of other lattice planes from the four initial

traces, however, is possible in all three projections: gnomonic

and stereographic projections of the pattern as well as in the

computer programs
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Figure 3
Band profile (grey) and derived band edge positions (green vertical lines)
given by the extrema of the first derivative (red curve) (Saowadee et al.,
2017). The vertical dashed lines are the adapted Bragg angles for the first
reflection orders. Ampl. describes the maximum amplitude of the profile.
The Bragg angle (Th.ang.) and the asymmetry of the extremum positions
(Th.cent.) displayed by the green lines are given in degrees.

Figure 4
Different options to represent crystal lattice features: (a) gnomonic
projection, (b) stereographic projection and (c) edge-filtered Funk
transform. In (a) and (b) all zone axes are marked by white dots where
more than two lattice planes (blue lines) intersect each other. Green lines
indicate the four initial traces. In (c) the blue dots indicate the normals to
the lattice planes and the dotted lines represent zone axes.



Funk transformation. This is done by combining declared

lattice directions [uvw], whereby newly usable [uvw] are

created by the intersections of already fixed lattice planes. In

the stereographic projection in Fig. 4(b), main zones are

characterized by low-indexed zone axes aligned along great

circles. These zone axes describe again zones of several bands.

From Fig. 4(b) it is also clear that a KD pattern contains

practically all information about the entire crystal lattice, since

the majority of the used zone axes and lattice planes lie far

outside the region represented by the KD pattern. Thus,

possible symmetries can be analysed even if they are not

visible directly in the KD pattern.

In the edge-filtered Funk transform in Fig. 4(c) planes and

directions appear opposite. Lattice planes are represented by

directions (blue dots), while zone axes become great circles

(thin dotted lines) along which all band-forming lattice planes

of this zone are aligned. Asymmetric positions of the extrema

of the first derivative are displayed as black lines for each

given lattice plane. The direction of the black line points to the

projection centre, whereas the sign of the angular shift

determines whether the line points to or away from the centre.

Systematic deviations, as visible in the lower right sector

where all lines are directed toward the centre, indicate a

slightly imperfect positioning of at least one of the four initial

traces. A slight readjustment can help to reduce such

systematic shifts.

All three available possibilities of fixing the lattice planes

have their advantages and disadvantages. The gnomonic

projection allows a rather simple description of lattice plane

traces but is unbeatable especially during visual alignment and

readjustment of the four initial traces. The human brain is

optimized to recognize deviations from parallel alignments so

that the gnomonic projection is perfect for fine-tuning. In the

case of many overlapping bands, however, most errors occur

there, because despite the adjustable magnification of the

angular range [zoom-out compared with Fig. 1(a)] similarly

aligned bands can easily be mistaken for each other.

The stereographic projections in Figs. 4(b) and 4(c), on the

other hand, offer more systematic approaches, because there

zones whose zone axes lie far outside the segment covered by

the EBSD detector screen can still be reliably recognized and

used. The KD pattern shown in Fig. 4(b), however, only helps

to a limited extent owing to its small size, so that a combined

use with the gnomonic projection is recommended.

The Funk transformation in Fig. 4(c) is unusual because of

its inverted character: traces become points and zone axes

(points) become great circles. Apart from the lower suitability

for the alignment of the four initial traces, it is, however, the

most universal possibility for an unequivocal detection of

lattice planes. In particular, it shows the bands of lattice planes

that one would never find in a gnomonic projection even if

there was no strong overlapping of bands. In experimental KD

patterns of complex but nearly perfect crystal structures (e.g.

metal alloys) we discovered up to 160 bands. For the pattern in

Fig. 4 more than 130 bands can be identified.

Misinterpretations can be almost completely eliminated by

displaying the band profiles simultaneously (cf. Fig. 3). If

computer programs

1016 Gert Nolze et al. � Crystal lattice metric from EBSD patterns J. Appl. Cryst. (2021). 54, 1012–1022

Figure 5
Bandwidth selection using the gnomonic projection (a). Here, all zone
axes are marked by white dots where more than two described lattice
planes intersect. After rotation to the centre of the stereographic
projection (b), only a limited number of solutions result which satisfy the
translation symmetry of the reciprocal lattice plane (c). Whether the trace
actually represents a lattice plane of the zone can be recognized by its
alignment. Which interference order is then relevant has to be decided on
the basis of the band profile (d).



Th.cent. is greater than for adjacent bands, the probability is

very high that an incorrect lattice plane has been assigned to a

zone. Similar situations can occur if a pattern is unusually

noisy. Therefore, the derived band profile is also displayed so

that the user can visually decide whether the deviation is of a

systematic nature or results from a band profile shape that is

influenced by other strong bands [cf. the profile drawn in black

in Fig. 5(d)] which affect the band profile by superimposition.

2.3. Bandwidth selection

The relative metric of the crystal lattice is in practice

already fixed by the trace positions and the assumed projec-

tion centre PC (Nolze & Winkelmann, 2017). This means that

the ratios of the lattice parameters as well as the angles

between the basis vectors are already now invariant. All

directions of the crystal lattice and of the reciprocal lattice are

fixed, although their specific indexing is not yet known since

the basis vectors still have to be found. For fixing the absolute

lengths of the basis vectors we only need a single reference

bandwidth, which is equivalent to the distance of a reciprocal

lattice point from the origin (Nolze & Winkelmann, 2017). The

necessary conditions for all other reciprocal lattice point

positions are given by the combination of lattice directions

and the translation symmetry, which is of course also valid for

the reciprocal lattice. All previously fixed directions and

planes must, without exception, be describable by newly

discovered lattice and reciprocal lattice points. From the

derived reciprocal lattice vectors the reduced cell can be

deduced, which enables the determination of the primitive

basis vectors of the crystal lattice, e.g.

cp ¼
a� � b�

a� � ðb� � c�Þ
: ð1Þ

From the basis vectors ap, bp, cp and the angles �p, �p, �p

between them the most probable Bravais lattice types and

their lattice parameters a, b, c, �, �, � are derivable [see e.g.

Gruber (1973, 1989)].

In CALM the reference bandwidth can be set at any band

and can be adjusted at any time, for example to a band that

seems more suitable than the band originally selected.

The determination of the band edge by the first derivative

was proposed by Saowadee et al. (2017) for an automated

tracking of bandwidths. In Figs. 3 and 5(d) the first derivative

is displayed as a red curve. In CALM it mainly serves as a

decision criterion for the description of a reciprocal lattice

point. If correct, the extrema of the first derivative show a

perfect match with the expected Bragg angle positions �B

derived from the width of the reference band and drawn as

vertical dashed lines.

In Fig. 5 the crystallographic derivation of a bandwidth is

demonstrated for a selected zone defined by intersecting

lattice plane traces. The red point marks the projection of the

zone axis [uvw]. To select the width of the band with the white

trace, the bands with the yellow and blue coloured traces are

used. The developed procedure searches for the combination

of reciprocal lattice vectors which, on the one hand, satisfies

(or adapts) the translation symmetry of the lattice already

known in this zone and, on the other hand, correctly repre-

sents the interference order(s) visible through the band profile

(Nolze & Winkelmann, 2017). There are only a very limited

number of combinations that fulfil both conditions. Zone axes

with only three intersecting lattice planes are very successful,

since it is highly likely that in the case of one known band-

width the other bandwidths can be immediately derived by

vector addition or subtraction. For a better visualization the

selected zone axis can be virtually rotated into the pattern

centre as shown in Fig. 5(b). The corresponding reciprocal

lattice plane ? ½uvw� is now located in the image plane

[Fig. 5(c)]. It contains all reciprocal lattice points of which we

only know the normal directions to (hkl). However, we do not

know the distances of the points from the origin, but we know

that they must all satisfy the conditions of a translation lattice.

The regular line grid, just visible in the background of Fig. 5(c),

is derived from the shortest known reciprocal lattice vectors

that have been discovered up to this point in time in this

specific reciprocal lattice plane. The intersection points of the

grid indicate possible positions of reciprocal lattice points.

They already describe the translation symmetry either in the

reciprocal lattice plane ? ½uvw� or of a sublattice. Newly

derived vectors must therefore either match these lattice

points or create new lattice point layers, which have to be

compatible with the already existing lattice points. In Fig. 5(c)

a yellow vector (given by the position of the left yellow

sphere) and a blue direction have already been selected. The

resulting intersection of the blue with the white line after a

virtual shift of the blue line into the yellow sphere is marked as

a pink sphere. The distance from the pink sphere to the origin

represents the resulting Bragg angle �B and is given as the

dashed lines in Fig. 5(d). In the case of a match with the

extreme positions (green lines) of the first derivative the

probability is very high that the bandwidth is correctly chosen.

Moreover, higher interference order(s) are easy to recognize

(cf. Fig. 3). Starting from a band that contains several zone

axes and thus ensures access to all other bands, all bandwidths

and thus the reciprocal lattice can be derived step by step.

2.4. Bravais lattice type and lattice parameter determination

After transformation of the reciprocal lattice into a real-

space translation lattice its classification is still to be deter-

mined, i.e. possibly matching Bravais lattice types need to be

tested. This procedure uses purely metric conditions, which

are described in detail elsewhere (Le Page, 1982; Macı́ček &

Yordanov, 1992; Grimmer, 2015). Because of small errors in

fixing the band traces and PC position, often a whole series of

basis vector descriptions results. The number of presented

Bravais lattice descriptions depends on the maximal devia-

tions entered for �, � and � as well as for the respective lattice

parameter ratios. Although the highest-symmetry description

is often the most probable (Müller, 2013), simultaneously also

all lower-symmetry solutions are listed in real time. For the

KD pattern of cassiterite (Fig. 5) all solutions are given in

Table 1.
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Owing to experimental errors (fixing the initial traces, PC)

no angle between the base vectors results exactly in 90�, and

the ratio between a and b is not 1 as expected but shows only a

tiny deviation of 	0.1%. However, even under ideal condi-

tions, Bravais lattice solutions can differ considerably from the

common lattice descriptions. For orthorhombic crystals, for

example, the basis vectors can be permuted without restric-

tion, which naturally leads to different sets of lattice para-

meter ratios a/b:1:c/b. This seems surprising when used to

identify minerals in databases.

Therefore, CALM contains a tool that is valuable for the

identification of potentially erroneous Bravais lattice solutions

caused by wrong band descriptions and therefore incorrect

reciprocal lattice points. It displays all derived reciprocal

lattice points in 3D. Fig. 6 shows the reciprocal lattice of an all-

face-centred unit cell F*, which is outlined by the yellow

frame. F* always corresponds to a body-centred point lattice

in real space: F* $ I. If single bandwidths are incorrectly

described, the derived reciprocal lattice points do not fit the

translation symmetry of all other lattice points. Incorrectly

assigned bandwidths that do not fit the translation symmetry

of the reciprocal lattice inevitably produce a larger unit cell.

Fig. 6, however, only displays correct reciprocal lattice

points. Missing points are irrelevant. They simply indicate

non-detected bands. The omnipresent translation symmetry is

assumed to fill all the gaps where points are missing.

2.5. Reducible and unavoidable errors

2.5.1. Experimental errors. The different Bravais lattice

solutions in Table 1 indicate subgroup relationships between

the lattices (Müller, 2013). The errors given in brackets are

only estimates. They are based on a possible misalignment of

the lattice plane traces and simply describe the variation of the

lattice parameters when the bandwidth and band alignment

are changed. Since the four initial traces are set manually,

future improvements can only be expected by automatically

adjusting the traces to minimize the errors.

A modification of the projection centre position of, for

example, �PCx = 0.001 would cause a change in the lattice

parameters of up to |�a| = 0.004 Å, which results in a variation

of the lattice parameter ratios of |�(a/b)| = 0.001. The derived

lattice parameters or lattice parameter ratios change by a

comparable amount in response to a shift or tilt of the lattice

plane traces. Owing to the large number of bands taken into

account, the precision of the lattice parameter ratios is

virtually unchanged even with less well resolved Kikuchi

patterns.

2.5.2. Accuracy and precision. To better estimate the

accuracy and precision, 34 higher-resolution (800 � 576 pixel)

and 41 lower-resolution (400 � 288 pixel) KD patterns of

corundum (Al2O3, rhombohedral) were examined, all showing

arbitrary orientations. The results in terms of both the lattice

parameter ratios (a) and the absolute lattice parameters (b)

are shown in Fig. 7. With purely manual trace positioning,

higher-resolution KD patterns do not automatically lead to a

significant improvement in the precision of the lattice para-

meters [Fig. 7(a)]. The reason is the already discussed band-

width, which can be evaluated for corundum almost loss free

even with lower-resolution patterns. Furthermore, it should

not be forgotten that only a single bandwidth is necessary,

while the others are only used for the discrimination of the

Bravais lattice type. This means that also for phases with

narrower bands only a single wide band affects the absolute

scaling of the lattice parameter. Since the widths of the

reference bands in all patterns were comparable, the uncer-

tainty in the derived lattice parameters is practically identical.

The accuracy of the lattice parameter ratios is in all probability

even highe, since position and slope are in principle better

fixable for narrow bands than for wide bands.

While the precisions of the lattice parameter determina-

tions on corundum performed on 75 samples are comparable

to one another and better than expected for both pattern

resolutions, cf. the deviation from the diagonal in Fig. 7(b) of
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Figure 6
Derived reciprocal lattice points projected along [001]. The unit cell in
reciprocal space (yellow frame) is all face centred which indicates a body-
centred unit cell in real space. Dark-blue spheres represent higher-order
interferences. The red sphere denotes the origin 000.

Table 1
Bravais lattices derived from the KD pattern of cassiterite (SnO2,
P42/mnm, � = 0.366, Zat = 40.3) shown in Fig. 5.

The first line (bold) refers average values and standard deviations derived
from entries of the American Mineralogist Crystal Structure Database
(Downs & Hall-Wallace, 2003). The four lattice descriptions below are
possible solutions derived with CALM. The resulting angles �, � and � are
listed in italics below the lattice parameters. The numbers in brackets refer to
the estimated experimental uncertainty

Lattice a b c a/b c/a

tP 4.7374 (4) 3.1861 (7) 1 0.6725

tI 4.775 (60) 4.769 (60) 3.217 (40) 0.999 0.674
90.2 (1) 90.0 (1) 89.9 (1)

oF 3.217 (40) 6.740 (84) 6.757 (85)
89.9 (1) 90.2 (1) 89.8 (1)

mA 3.738 (72) 3.217 (40) 6.740 (60)
89.8 (1) 90.2 (1) 64.7.1 (1)

aP 3.217 (40) 3.729 (47) 3.738 (47)
100.5 (1) 64.7 (1) 115.4 (1)



approximately �0.025 Å (
 �0.5%), the accuracy of

approximately �0.1 Å (
 �2%) is somewhat lower. But it is

also much better than expected, especially if we consider the

low pixel resolution of some of the patterns.

More worrying is the size of the absolute lattice parameter

determined, which is consistently
3% short. This observation

suggests that the bandwidth determination by the first deri-

vative does not correlate exactly with the Bragg angle. Further

reasons for the observed offset could be excess-deficiency

effects, which might influence the accuracy of the projection

centre determination systematically. Therefore, an alternative

determination of the projection centre based on four indexed

lattice directions [uvw] was applied (Nolze et al., 2020). This

actually reduced the deviation from the ideal lattice metric but

did not eliminate the observed shift.

2.5.3. Lattice parameter offset. In order to prevent any

uncertainty resulting from varying lattice parameter ratios, for

the investigation of the nature of the observed offset only

experimental KD patterns of cubic phases and random

orientation were analysed. Table 2 lists the 23 cubic phases for

which the lattice parameters were determined from KD

patterns, some of them with considerably different image

resolutions.

The phases are ordered according to the backscatter coef-

ficient �, which is calculated by a polynomial using the atomic

number Z (Reuter, 1972; Reimer, 1998):

� ¼ 	0:0254þ 0:016 Z 	 0:000186 Z2
þ 0:00000083 Z3: ð2Þ

For compounds, the mean value Zm has been taken, which is

corrected by the atomic mass of the respective elements and

the stoichiometry. As an alternative correlation, the mean

atomic number Zat derived from stoichiometry only is also

listed in Table 2 but not shown as a separate graphic.

In Fig. 8, the relative deviations between Bragg angles

determined experimentally from the first derivative and

computed theoretically from databases are shown as a func-

tion of the backscatter coefficient �.

Fig. 8(a) indicates that the deviation between the extremum

positions of the first derivative �max and the Bragg angle �B

computed from lattice parameters in Table 1 is different from

phase to phase but apparently scales with �. Only for phases

with � ’ 0.35 like GaAs (� = 0.324), BaSO4 (� = 0.356) or

SnO2 (cassiterite, � = 0.372) does the first derivative

approximately deliver the absolute lattice parameters

correctly. For phases with lower backscatter coefficients the

first derivative slightly overestimate �B, i.e. a < ao, while for

computer programs
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Table 2
Twenty-three selected cubic phases, the image resolution of the analysed
KD patterns and the lattice parameters used for the deviation from the
experimentally determined Bragg angle displayed in Fig. 8.

Resolution (pixels)

Phase Zat �
320 �
230

400 �
300

673 �
512

800 �
600

1600 �
1200 ao (Å)

CaF2 12.7 0.172 1 5.463
Al 13.0 0.177 5 4.049
Si 14.0 0.190 2 5.431
CrN 15.5 0.231 1 4.160
FeS2 19.3 0.233 10 5.428
Fe3O4 15.7 0.236 1 3 8.393
Ti (�) 22.0 0.245 2 3.270
Cr3Si 21.5 0.250 2 4.564
Cu3VS4 21.8 0.260 2 5.391
ZnS 23.0 0.275 2 5.408
GaP 23.0 0.280 1 5.451
Ni 28.0 0.295 24 3.524
GaAs 32.0 0.324 1 5.653
NbC 23.5 0.354 3 4.470
InP 32.0 0.379 1 5.869
GaSb 41.0 0.380 1 6.096
Mo 42.0 0.380 3 3.147
PbSe 58.0 0.465 1 1 6.121
Ta 73.0 0.474 3 2 4.420
PbS 49.0 0.475 18 5.914
W 74.0 0.476 1 4 3.158
Au 79.0 0.487 1 6 4.078
Pb 82.0 0.494 3 4.951

Figure 7
Analysis of 41 patterns of rhombohedral corundum (Al2O3) collected
with a resolution of 400 � 288 pixels and 34 patterns of 800 � 576 pixels.
(a) Displays the deviation of a/b and c/b from 1, whereas (b) presents the
absolute lattice parameters derived for a and c (b as well as �, � and � are
not shown). The red dot shown in (b) and labelled TRUE-3% marks a 3%
shorter basis vector length than that typical for corundum (a = 5.1288 Å).



stronger scattering phases �B is slightly underestimated and

the derived lattice parameters a, b and c thus appear propor-

tionally larger. Fig. 8(b) proves that the averaged lattice

parameter ratio is not affected, which is no surprise since the

ratios do not depend on the bandwidths. Moreover, compared

with Fig. 7(a) the deviations tend to be smaller because of the

higher redundancy for phases of cubic symmetry. Slightly

misaligned traces are typically easier to recognize.

Fig. 8 again shows that a high KD pattern resolution does

not necessarily lead to an improved accuracy of the lattice

parameter determination. It is definitely an advantage, if only

because of the resulting lower noise in the band profiles, but

smaller image formats obviously provide sufficiently accurate

lattice parameters. However, if the image quality is improved

by a suitable averaging of low-resolution KD patterns, the

results are practically equivalent to those derived from high-

resolution KD patterns.

2.5.4. Pseudosymmetry. Table 1 suggests that the derived

lattice point arrangement can be described by different

Bravais lattice types. The geometrically necessary conditions

are discussed in detail by Grimmer (2015) and Flack (2015)

and explain why in Table 1 not only tI but also the subgroups

oF, oI, mS and aP are listed. It cannot be excluded that, for

example, an apparently hexagonal pattern is not actually

formed by an orthorhombic phase. In order to control the

consideration of different lattice descriptions, the maximum

accepted deviations for angles between basis vectors and for

symmetry-equivalent basis vector lengths can be varied in

CALM.

Comparing the XRD reference data with the derived

tetragonal cell dimensions in Table 1, CALM obtained lattice

parameters which are about 1% larger than expected: �a/a ’

1.1% and �c/c ’ 0.9%. Since for SnO2 � = 0.366, this devia-

tion is also expected from the linear approach in Fig. 8(a).

In contrast to the absolute lattice parameters, their ratio

shows a much better match:�(c/a)/(c/a)’	0.16%. Therefore,

for non-cubic phases, lattice parameter ratios are often much

better suited for phase identification with EBSD than the

derived lattice parameters themselves (Dingley & Wright,

2009). It is therefore only important to know the projection

centre position and to have very well described lattice plane

traces. Bandwidths are of minor worth.

Although the lattice parameters for cassiterite are suffi-

ciently extracted by CALM, a careful look at Table 1 shows

that the Bravais lattice type is not correctly identified. Instead

of the primitive tP, a body-centred tetragonal tI lattice has

been identified (cf. Fig. 6). This misinterpretation has its origin

in the crystal structure of cassiterite (see Fig. 9).

Sn (Z = 50) is much heavier and occupies the same position

as the lattice points in tI. Only the remaining O atoms are

responsible for the clearly lower symmetry. O atoms (Z = 8)

have, however, a significantly lower scattering power so that

the visible diffraction signal used in CALM is actually domi-

nated by Sn but considers of course the whole structure of

cassiterite. The dynamical simulation of Kikuchi patterns

reported by Winkelmann et al. (2007) allows one to separate

the intensity contributions of each individual element to the

overall pattern. The extracted intensity profiles of Sn and O in

Fig. 10(b) confirm the suspicion of a weak signal of oxygen

compared with Sn. As expected, the simulated pattern in

Fig. 10(a) reveals the correct Bravais lattice type tP.

The example of SnO2 shows that a diffraction signal can

fake higher translation symmetry if low-intensity bands are

difficult to identify and therefore reciprocal lattice points

are systematically hidden. In this specific case the lattice

computer programs
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Figure 9
The crystal structure of cassiterite (SnO2) reflects the symmetry of space-
group type P42/mnm. The Kikuchi signal is, however, dominated by the
Sn atoms, which suggests a description by a body-centred tetragonal (tI)
lattice.

Figure 8
(a) The deviation of the experimentally derived reference Bragg angle
�max (first derivative) from the Bragg angle �B computed using the lattice
parameters given in Table 2. (b) The averaged lattice parameter ratio
�ratio = (a/b + c/b) demonstrates the low deviation from the cubic metric.
For the analysis, different pattern resolutions have been used (cf. legend
and Table 2).



parameters are only accidentally not influenced, because all

undiscovered translation vectors describe without exception

centred reciprocal lattice points and therefore the basis

vectors for tI and tP are identical. However, the resulting

primitive, reduced cells are different. In the cassiterite pattern

for approximately 1/4 of bands the interference order was

wrongly assigned. Their first order actually has only half the

Bragg angle as actually fixed.

Similar effects are known for ordered structures where

independent atomic positions are occupied by atoms with

comparable atomic number Z. Typical examples are pseudo-

cubic chalcopyrites and stannites or intermetallics like TiAl or

Ni-base superalloys. Often the ordering causes multiplied

basis vectors, which results in larger unit cells. This results in

bandwidths that are narrower than the base vector and longer

by the same factor. However, the resulting new first order is

often so weak in intensity that it is hardly detectable in the

centre of the high-intensity band of the now higher inter-

ference order.

2.5.5. Sample charging. Additionally to all uncertainties

related to band positioning, Bragg angle approximation and

projection centre position, one effect is not considered at all:

the electron energy which delivers the wavelength. CALM

uses the acceleration voltage and the relativistic de Broglie

relationship for the computation of the electron wavelength

(Nolze & Winkelmann, 2017). Local charging, however, can

easily reduce the energy so that the wavelength �e might be

larger than assumed. If the bandwidth 2� is taken as a

measured constant, then according to Bragg’s equation for

EBSD,

�e ’ dhkl 2�; ð3Þ

the derived dhkl increases by the same factor as �e changes by

the decrease of the electron energy and suggests larger lattice

parameters. This means that the real lattice parameters could

be proportionally shorter than those calculated by CALM.

3. Summary and conclusions

CALM is a Windows software that allows the recognition of

the Bravais lattice type as well as the determination of lattice

parameters from a single wide-angle Kikuchi diffraction

pattern, such as those obtained during EBSD or TKD

measurements. The requirements for such crystal lattice

analyses are

(i) an EBSD pattern of highest possible quality, but not

necessarily of high resolution,

(ii) knowledge about the projection centre (PC) position

(alternatively, a reference pattern of a cubic phase collected

under identical conditions is suitable to derive PC in CALM

directly),

(iii) the applied acceleration voltage, which is also used as

electron energy, and

(iv) a monitor resolution of at least 1920 � 1080 pixels.

CALM has a graphical user interface and mainly uses

combined keyboard and mouse interactions to fix and derive

lattice planes and directions. In this way, all further planes are

derived from four selected non-tautozonal planes by

connecting two already existing zone axes. The derivation of

the lattice planes and directions is possible in the original KD

pattern, but also in the stereographic projections of the

pattern or its Funk transformation. For the manual adjustment

of lattice plane and direction alignment the original pattern is

best, whereas for a fast and reliable fixing of trace positions

the stereographic projections are recommended.

Regardless of the crystal symmetry, only one single band-

width is required for the calculation of the lattice parameters.

All other bandwidths must be describable from this band-

width, which ultimately determines the Bravais lattice type.

This and the lattice parameters are displayed during the

selection of the bandwidths.

The software has been tested on hundreds of experimental

and some simulated patterns for different image resolutions

and for phases of different symmetries. The experience gained

leads to the following initial conclusions:

(1) The developed algorithms work reliably for any crystal

symmetry. Although complicated crystal structures make it

difficult to fix the band positions, the selection of the bands is

still straightforward.

(2) CALM also enables less experienced users to develop a

feeling for the relationship between crystal and reciprocal

lattice. Fundamental laws and rules of crystallography can be

experienced visually through consistent use.

(3) The applicable image resolution starts at about

400 � 300 pixels, but also smaller images like 160 � 120 pixels

enable the recognition of the Bravais lattice type with errors

still <5%. Larger images are of course better, but not as much

better as their size might suggest.
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Figure 10
Simulated contribution (a) of oxygen to the total signal of SnO2 [cf.
Fig. 5(a)]. According to the 110 profile in (b) the O signal is about ten
times weaker than the Sn signal so that the distribution of Sn dominates
the total signal.



(4) The projection centre position is the key information.

The better it is, the higher the correctness of the derived

crystal lattice.

(5) With the help of the Funk transformation, far more than

100 (especially wider) bands can be identified in a single high-

quality pattern.

(6) The band positions in combination with the position of

the projection centre already fix the lattice parameter ratios as

well as �, � and �. However, the actual values still require

knowledge of any single bandwidth in order to determine the

lattice and thus the basis vectors from all subsequently

selected bandwidths.

(7) Fortunately, the first derivative of a band profile allows

the bandwidth to be determined automatically in a suitable

way. Subjective errors are thus also reduced to a single value,

similar to the drawing of the band positions using a four-line

approach, which is valid for all bands.

(8) The double Bragg angles are not perfectly described by

bandwidths derived from the first derivative (|�2�| < 5%) but

can be satisfactorily corrected by the backscatter coefficient �,

which is roughly derivable from the background intensity of

the original raw EBSD pattern.

(9) Owing to the small sector covered by the detector

compared with the total signal, there is a risk that a number of

band profiles will be more or less influenced by neighbouring

bands or dominant zone axes as well as by excess-deficiency

effects in an unfavourable way. Therefore, it must be assumed

that the determined lattice parameters will always contain

deviations from the ideal values.

(10) Patterns with exclusively narrow visible Kikuchi bands

are a challenge because it is difficult to determine the Bravais

lattice type and thus the lattice parameters from a single KD

pattern. The band edge profile practically has the width of the

Bragg angle, which makes its correct derivation considerably

more difficult.

(11) As with all other diffraction techniques, pseudosym-

metry can become a serious problem. Superstructure reflec-

tions of ordered phases are more likely to be detected in

exceptional cases, so that in such cases SAED in a transmis-

sion electron microscope is recommended for clarification. In

such cases a superlattice will be derived.

(12) Also problematic are phases in which non-equivalent

positions are occupied by different elements with almost the

same scattering power. But also clearly different scattering

powers can lead to wrong Bravais lattice types, if the

significantly stronger scattering element occupies a special

Wyckoff position and thus suggests a higher symmetry of the

lattice.

(13) The detectability of minor lattice distortions is limited

by the uncertainty in the position of the projection centre and

very small errors in the trace positions.

(14) Local charging needs to be prevented. It not only

results in an unpredictable overestimation of the lattice

parameters but, together with local magnetic fields, can also

lead to image distortions.

Interested persons can obtain the software from the authors

on request.
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