
1.  Introduction
In the middle atmosphere (10–100 km) spring is the time period when the winter westerly winds reverse 
to summer easterly winds. The final breakdown and warming of the polar vortex is in general called “strat-
ospheric final warming” (SFW). The timing and dynamical evolution of the stratospheric final warming 
is characterized by a combination of radiative forcing, due to seasonal changes of the solar zenith angle, 
and planetary wave (PW) forcing effects due to nonlinear interactions of PWs with the mean flow (Butler 
et al., 2019; Salby & Callaghan, 2007; Waugh et al., 1999). These dynamical processes significantly influence 
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reverses from winter westerly to summer easterly which has a strong impact on the vertical wave 
propagation influencing the ionospheric variability. The spring transition can be rapid in form of a final 
sudden stratospheric warming (SSW, mainly dynamically driven) or slow (mainly radiatively driven) 
but also intermediate stages can occur. In most studies spring transitions are classified either by their 
timing of occurrence or by their vertical structure. However, all these studies focus exclusively on the 
stratosphere and it is not clear if and how pre-winter conditions have an impact on when and how 
spring transitions take place. Here we classify the spring transitions regarding their vertical-temporal 
development beginning in January and spanning the whole middle atmosphere in the core region of 
the polar vortex. This leads to five classes where the timing of the SSW in the preceding winter and a 
downward propagating Northern Annular Mode plays a crucial role. First, we use Microwave Limb 
Sounder satellite data to describe the five classes for recent single years, and then we use Modern-Era 
Retrospective analysis for Research and Applications Version 2 reanalysis data for a composite analysis. 
The results show distinctive differences between the five classes in the months before the spring transition 
especially in the mesosphere. We hypothesize that this will help to improve the prediction of the spring 
transition. Additionally, meteor radar winds are used to link spring transition effects in the upper 
mesosphere and lower thermosphere with the stratospheric final warming.

Plain Language Summary  Springtime is characterized by a dramatic change in circulation 
from winter westerly to summer easterly in the Arctic middle atmosphere (20–100 km). The timing 
and structure of this change process largely varies from year to year. In most studies spring transitions 
are classified either by their timing of occurrence or, slightly less common, by their vertical structure. 
However, all these studies focus on the stratosphere (20–50 km) only and do not consider a large 
part of the spring transitions because they only investigating for example, particularly early or late 
occurring spring transitions. Here we classify the spring transitions regarding their vertical and temporal 
development already starting in mid-winter. This leads to five classes where the timing of large polar 
vortex disturbances in the preceding winter as well as the vertical structure of the polar vortex plays 
a crucial role. This allows a certain prediction at least for some of the five spring transition classes. 
Additionally, the spring transition in the upper mesosphere and lower thermosphere (80–100 km) is 
investigated regarding the new spring transition classes and its impact on the ionosphere and therefore on 
our communication and navigation system is discussed.
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not only the date of the springtime polar vortex breakup but also its vertical development and the speed 
of transition from westerly to easterly winds (Hardiman et al., 2011; Hu, Ren, Yu, & Xu, 2014; Wei, 2007).

In the northern hemisphere there is a large interannual variability in the onset dates of the SFW varying 
by about 2 months between early March and late May (Butler et al., 2019; Savenkova et al., 2012; Wang 
et al., 2019; Waugh et al., 1999). The temporal-vertical structure of the zonal wind reversal also varies from 
year to year where the wind reversal can first occur in the upper or middle stratosphere or even simultane-
ously at all altitudes in the stratosphere (Hardiman et al., 2011; Thiélemont et al., 2019). Additionally, the 
wind reversal can be sudden, indicative of stronger wave forcing, or gradual, indicative of radiative relaxa-
tion as the dominant process (Butler et al., 2019).

All studies investigating the spring transition in the stratosphere use a classification of the stratospheric fi-
nal warming. The most common way is to distinguish SFWs by the timing of their onset in the middle strat-
osphere into early and late SFWs (Akiyoshi & Zhou, 2007; Ayarzagüena & Serrano, 2009; Butler et al., 2019; 
Kelleher et al., 2020; Li et al., 2012; Waugh & Rong, 2002; Wei, 2007). A second way is to classify SFWs by 
their vertical-temporal development in the stratosphere rather than by their timing. Here, the SFWs are 
distinguished by the first occurrence of the wind reversal at 10 or 1 hPa (Hardiman et al., 2011; Thiélemont 
et al., 2019). Other classification methods, but less common, are by distinguishing between synchronous 
and asynchronous SFWs (Wang et al., 2019) or by the occurrence of Sudden Stratospheric Warmings (SSWs) 
in the preceding winter (Hu et al., 2015).

There are two main modes to distinguish between early and late SFWs, one is based on the potential vortic-
ity (Nash et al., 1996; Waugh et al., 1999) and the other one on zonal winds (e.g., Black & McDaniel, 2007; 
Labitzke, 2000). The most common approach is using the zonal wind since the zonal wind in the strato-
sphere influences the upward propagation of waves and hence the coupling between the different atmos-
pheric layers (Wei, 2007). Using the zonal wind, the SFW date is defined as the day when the zonal mean 
zonal wind in the core region of the polar vortex (10–50 hPa, 60–70°N) drops below zero without returning 
to a specified threshold value until subsequent fall. The mean climatological SFW date is between fourth 
and 17th April depending on the data set (Black et al., 2006; Butler et al., 2019; Wei, 2007). Early and late 
SFWs are then defined by exceeding ±1.0 standard deviations from the average respectively (Ayarzagüena 
& Serrano, 2009; Kelleher et al., 2020; Li et al., 2012; Wei, 2007). Early SFWs occur on average in the second 
half of March while late final warmings occur on average in the first half of May (Li et al., 2012). In early 
SFW years the wind reversal to easterly winds happens on average rather quickly within a few days, starts 
at upper stratospheric levels and propagates downward to lower levels (Ayarzagüena & Serrano, 2009; Li 
et al., 2012; Wei, 2007). There are strong easterly winds in the middle stratosphere directly after the SFW, 
which weaken in the following weeks, but never get westerly until subsequent fall (Butler et al., 2019; Hu, 
Ren, Yu, & Xu, 2014; Li et al., 2012; Wei, 2007). However, after some early SFWs, a reconstruction of wester-
ly winds can be observed in the upper stratosphere (Ayarzagüena & Serrano, 2009; Wei, 2007). In late SFW 
years the westerly wind decreases on average gradually and almost simultaneously at all levels (Hu, Ren, 
Yu, & Xu, 2014; Wei, 2007). While early SFWs are characterized by a strong wave activity before the wind 
reversal, which decreases sharply afterward, only a weak wave activity is observed around late SFWs (Hu, 
Ren, & Xu, 2014; Wei, 2007). Thus, early SFWs are mainly dynamically driven, while late SFWs are mainly 
radiatively driven.

The classification between 10 hPa-first and 1 hPa-first SFWs works similar to the early and late classifica-
tion. Here, the day when the wind reverses to easterly in the core region of the polar vortex is calculated 
for every vertical level resulting in a vertical-temporal information about the final wind reversal (Hardiman 
et al., 2011; Thiélemont et al., 2019). The key difference is whether or not the SFW takes place first in the 
middle stratosphere. SFWs occurring first in the middle stratosphere and later in the upper stratosphere im-
ply that the upper stratosphere is then somewhat decoupled from the middle and lower stratosphere since 
waves are unable to propagate through the mean easterly flow at 10 hPa and hence the upper stratospheric 
final warming is expected to be dominated by radiative processes (Hardiman et al., 2011). Stratospheric 
final warmings classified as 1 hPa-first start in the mesosphere and propagate downward through the strato-
sphere with time. On average, 10 hPa-first SFWs occur around 10 April, while 1 hPa-first final warmings oc-
cur around 20 April at 1 hPa and later at 10 hPa (Thiélemont et al., 2019). Thus, in general, 1 hPa-first events 
occur later than 10 hPa-first events. Shortly before 10 hPa-first events planetary waves break at 10 hPa and 
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thus decrease the zonal wind below, while for 1 hPa-first events the PWs break around 1 hPa (Hardiman 
et al., 2011; Thiélemont et al., 2019).

There is a huge interest in predicting the timing and vertical structure of SFWs due to its potential role in 
tropospheric and ionospheric predictions also on subseasonal to seasonal time scales (Butler et al., 2019; 
Yiğit & Medvedev, 2015). Several studies found a linkage between the timing of SFWs and the polar vortex 
conditions in the preceding winter (e.g., Hu et al., 2015; Newman et al., 2001; Waugh et al., 1999; Wei, 2007). 
The occurrence of SSWs in previous winter affects both the timing and type of SFWs in the following spring 
(Hu, Ren, & Xu, 2014; Thiélemont et al., 2019). While early SFWs are mostly preceded by non-SSW winter, 
late SFWs are mostly preceded by major SSW winter (Hu, Ren, & Xu, 2014). More generally, SFWs will be 
delayed when major or minor SSW events occur in the preceding winter (Hu et al., 2015). However, the 
occurrence or absence of SSWs in the previous winter is not sufficient to anticipate a late or early SFW in 
the following spring (Hu et al., 2015; Hu, Ren, & Xu, 2014). More recently, Thiélemont et al. (2019) found 
that winters with a SSW are more likely followed by a 10 hPa-first SFW, while winters without SSWs usually 
end up with 1 hPa-first final warmings. Additionally, SSWs occurring in winter preceding a 1 hPa-first event 
are earlier in the season than SSWs preceding a 10 hPa-first SFW event in spring (Thiélemont et al., 2019).

SSWs are accompanied by a negative Northern Annular Mode (NAM) index which can propagate down-
ward into the troposphere influencing our weather for up to eight weeks (Baldwin & Dunkerton, 2001). In 
the middle atmosphere the NAM index is a manifestation of the strength of the polar vortex where large 
positive values stand for a strong polar vortex, while negative values represent a breakdown of the polar 
vortex. Thus, the NAM variability is largely driven by wave forcing. The downward propagating negative 
NAM during SSWs is associated with a suppression of PW activity in the stratosphere which might explain 
the general weakness of PW activity and late SFWs after mid-winter SSWs (Hu, Ren, & Xu, 2014). Savenk-
ova et al. (2012) even found a link between the NAM index in the middle stratosphere and the SFW date, 
describing that the lower the NAM index in mid stratosphere in March and April, the earlier the final 
warming. However, March and April are the months where the early SFWs take place making it difficult to 
interpret the results especially considering the results of Li et al. (2012). They found a positive NAM signal 
before and a negative NAM signal after both early and late SFWs in the mid and upper stratosphere. These 
signals are stronger for early SFWs and propagate downward into the troposphere. Thus, the negative NAM 
signals in the regression analysis of Savenkova et al. (2012) might originate from the SFW itself. Neverthe-
less, it seems that there is a connection between the SFW and the behavior of the NAM index.

Studies investigating the spring transition in the northern hemisphere mesosphere and ionosphere are 
much rarer and less systematic than stratospheric studies. Hoffmann et al. (2010) investigated the zonal 
wind reversal in spring 2008 in the mesosphere and lower thermosphere (MLT) which was characterized 
by an abrupt transition to easterly winds at all heights (70–100 km) simultaneously. At 91 km the average 
wind reversal occurs at 24th March with a standard deviation of 9 days whereas the year-to-year variability 
of MLT zonal wind reversal correlates with stratospheric polar vortex variability (Aushev et al., 2006; Mer-
zlyakov et al., 2012). Closely related to the wind reversal in the MLT in spring is an enhancement followed 
subsequently by a strong decrease in atomic oxygen and temperature (G. G. Shepherd et al., 1999; M. G. 
Shepherd et al., 2002). Additionally, during some spring transitions, oscillations of 10–16 days are observa-
ble in the MLT and ionosphere (Gordienko et al., 2007; Yamazaki & Matthias, 2019; Yu et al., 2019) generat-
ed by instabilities in the stratosphere and lower mesosphere (Yamazaki & Matthias, 2019).

All studies mentioned above either investigate the spring transition systematically in the stratosphere only, 
or they investigate the spring transition in the MLT region only, decoupled from the stratospheric studies 
and without being systematic. Thus, systematic studies of the spring transition covering the whole middle 
atmosphere are missing. Furthermore, the classification of SFWs, which has been used so far, leads to a 
systematic neglect of many SFWs, since all SFWs, which are neither early nor late or happen simultaneously 
at all altitudes, are not considered at all. Additionally, while it is generally accepted that the occurrence or 
absence of SSWs in the preceding winter has an impact on the SFW, only tendencies can be given for the 
timing and type of SFWs in the following spring. Therefore, it is still not possible to predict the timing and 
type of the final wind reversal during the northern hemisphere spring transition.
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Here, we want to introduce a new type of classification according to the vertical-temporal evolution of the 
zonal mean zonal wind in the core region of the polar vortex and the NAM index between January and May 
in the stratosphere and mesosphere. This way, we systematically investigate the spring transition in the 
whole middle atmosphere and include all spring transitions between 1980 and 2020. Additionally, this new 
spring transition classification already includes the timing and type of SSWs in the preceding winter, mak-
ing a prediction of the timing and type of the final wind reversal for some of the new classes probably more 
feasible. Note, that we will call the final zonal wind reversal covering all altitudes in the middle atmosphere 
spring transition in the following, to not confuse with the SFWs which focuses on the stratosphere only.

The study is structured as follows: Section 2 describes the data and methods. Section 3 first introduces the 
new classification using single years and global satellite observations from Aura Microwave Limb Sounder 
(MLS) and then examines their mean characteristic using global reanalysis data from Modern-Era Retro-
spective analysis for Research and Applications Version 2 (MERRA-2). The results are then compared to 
local mesospheric radar observations and discussed in Section 4. A summary and conclusion of the study 
is provided in Section 5.

2.  Data and Methods
Investigating the spring transition in the Arctic middle atmosphere requires data sets spanning the polar 
cap northward of 50°N. Therefore, we use global satellite observations from MLS and reanalysis data from 
MERRA-2. We also combine these with local radar measurements to cover the MLT region where the verti-
cal resolution of MLS is not sufficient and MERRA-2 gives no data at all.

2.1.  MLS Satellite Data

To show exemplarily the newly introduced classes of spring transitions from the lower stratosphere to the 
upper mesosphere, we use global geopotential height (GPH) data from the MLS on board the Aura satellite 
(Livesey et al., 2015; Waters et al., 2006). MLS has a global coverage from 82°S to 82°N on each orbit, and a 
usable height range from approximately 11 to 97 km (261–0.001 hPa) with a vertical resolution of ∼4 km in 
the stratosphere and ∼14 km at the mesopause. The temporal resolution is 1 day at each location, and data 
are available since August 2004 until today (Livesey et al., 2015). Version 4 MLS data were used and the most 
recent recommended quality screening procedures of Livesey et al. (2015) have been applied.

For our analyses the original orbital MLS data are accumulated in grid boxes with 10° grid spacing in longi-
tude and 5° in latitude. Afterward, they are averaged at every grid box and for every day, generally resulting 
in a global grid with values at every grid point. The geostrophic neutral zonal wind is then calculated as 
described in Matthias and Ern (2018).

2.2.  MERRA-2 Reanalysis Data

Average characteristics of the different classes are then investigated using global reanalysis data from the 
MERRA-2 (Bosilovich et al., 2015; Gelaro et al., 2017; Molod et al., 2015). Here we use daily means of the 
3-hourly instantaneous output on 42 constant pressure levels ranging from 1,000 to 0.1 hPa, that is, from 
the surface up to approximately 64 km. The horizontal resolution is 0.625° in longitude and 0.5° in latitude. 
For our analysis we use MERRA-2 reanalysis neutral wind data from winter 1980 to 2020, that is, 41 spring 
transitions in total. Note that MERRA-2 assimilates temperature and ozone profiles from MLS satellite in 
the upper stratosphere and mesosphere starting in August 2004 (Gelaro et al., 2017).

2.3.  Meteor Radar Winds Above Nordic Countries

Since the vertical resolution of MLS is low (∼14 km) in the MLT, we complement the global observations of 
MLS with local radar measurements by a merged data set from Esrange (68°N, 21°E) near Kiruna in Sweden 
and Sodankylä (67°N, 26° E) in Finland to discuss the impact of the newly defined spring transition classes 
on the MLT region in polar regions. The Esrange meteor radar is a SKiYMET (All-Sky Interferometric Me-
teor Radar) radar which is described in more detail by Mitchell et al. (2002) and details of the Sodankylä 
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meteor radar are presented in Lukianova et al. (2015); Lukianova et al. (2018). Background MLT neutral 
winds, where solar tides are subtracted, are obtained with a temporal resolution of 1 h and a vertical resolu-
tion of 2 km using the wind retrieval algorithm as described in Stober et al. (2020) and Baumgarten and Sto-
ber (2019), which is a further development of the wind analysis of Hocking et al. (2001). The merged data 
set contains continuous wind data since August 1999 resulting in 21 spring transitions and thus, it is now 
the longest available continuous wind meteor radar observation on the globe. For the composite analysis of 
MLT winds, daily mean values of the background winds are used that were smoothed by a 15-day running 
mean, similar to Merzlyakov et al. (2012) due to the high variability of this region.

2.4.  Methods

There are a lot of different definitions for the SFW onset day using the zonal wind (e.g., Butler et al., 2019; 
Hu, Ren, Yu, & Xu, 2014; Wei, 2007). They all have in common that they use the zonal mean zonal wind 
reversal somewhere in the core region of the stratospheric polar vortex. Here, we follow in general these 
definitions and use the reversal of zonal mean zonal wind averaged between 60° and 70°N but apply it to all 
pressure levels in the middle atmosphere resulting in different dates for different pressure levels. To inves-
tigate the latitudinal and vertical structure of the spring transition in the middle atmosphere, we also apply 
this definition to all latitudes northward of 50°N.

Because of the close relation between NAM and SSW, we additionally use the information on the duration 
and strength of the downward propagating NAM index to classify the spring transition. As a simple proxy 
for the NAM index we follow Karpechko et al. (2017) and calculate the normalized anomaly of the geopo-
tential height averaged over the polar cap (60°−90°N), which is tightly linked to the NAM index defined by 
the empirical orthogonal function (Baldwin & Thompson, 2009). Anomalies of the polar cap geopotential 
height are calculated with respect to the annual climatology for each calendar day at all pressure levels and 
then normalized by their standard deviations. The phase of the NAM is conventionally defined to be nega-
tive when polar cap geopotential height anomalies are positive, thus, we multiply our polar cap geopotential 
height anomalies by minus 1.

To investigate average characteristics of the newly defined spring transition classes, composite analyses 
are applied mostly with the reference day first of January but also centered around the day when the zonal 
mean zonal wind finally reverses at a certain altitude. We base our statistical analysis on the null hypothe-
sis that the spring transition class test statistic is exactly the same as the population value from which it is 
drawn. We apply a bootstrap method with replacements (Grotjahn & Faure, 2008) to determine the signifi-
cance of the composites of the different spring transition classes at each day and altitude. For that, the num-
ber of randomly selected years for the bootstrap is kept equal to the observed years in the corresponding 
spring transition class. A detailed description of the statistical considerations and the bootstrap algorithm 
can be found in Grotjahn and Faure (2008).

3.  Results and Discussion
In the following we will first introduce the new spring transition classification by describing the different 
classification features of the different classes based on selected years using MLS satellite data. Afterwards, 
average characteristics of the different classes are investigated using MERRA-2 data.

3.1.  Introduction of the New Spring Transition Classes

Commonly, stratospheric final warmings are classified using the zonal mean zonal wind in the core re-
gion of the polar vortex, that is, the area of maximum wind values (e.g., Butler et al., 2019; Li et al., 2012; 
Wei, 2007). Here, we follow in general this notification by using the zonal mean zonal wind in the core 
region of the polar vortex but do not only use the onset of the wind reversal itself but the vertical-temporal 
evolution of the zonal mean zonal wind starting in January of the same year. This way, possibly occurring 
SSWs are already included in the classification. Note that we do not start in early winter because Thiélemont 
et al. (2019) and Hu, Ren, Yu, and Xu (2014) found that SSWs occurring in early winter do not have an im-
pact on the stratospheric final warming type and date due to the relatively long time lapse before the spring 
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transition that allows the recovery of a strong polar vortex. Additionally, to the zonal wind, we also use the 
NAM index to classify spring transitions in the middle atmosphere. The NAM index is important since SSWs 
accompanied by a strong downward propagating negative NAM and lasting for several weeks, as described 
in Baldwin and Dunkerton (2001), have a different impact on the final wind reversal type and timing than 
SSWs without a downward propagating NAM, as will be shown below. Because we classify the spring tran-
sitions with respect to the occurrence of SSW, we apply the spring transition class names “mid-winter SSW”, 
“late-winter SSW”, “early spring SSW”, “mid-spring SSW” and “No negative NAM”. These will be described 
in the following in detail.

As a start the different classes are exemplarily illustrated based on five selected springs. Figure 1 shows the 
temporal-vertical evolution of the zonal mean zonal wind averaged between 60° and 70°N (left) and the 
NAM index (right) from January to May for five different years. Shown are the spring transitions in 2013, 
2018, 2016, 2015, and 2020. The sorting of the different years is not chronological but sorted by the timing of 
occurrence of a major SSWs partly resulting in a final wind reversal (see Figures 1a–1d).

In 2013, a major SSW occurs in January reversing the zonal wind from westerly to easterly in the whole 
middle atmosphere (see Figure 1a), accompanied by a strong negative downward propagating NAM lasting 
until March in the lower stratosphere (see Figure 1f). After the SSW, a strong polar vortex forms in the mes-
osphere with wind values above 100 ms−1 and downward propagating into the lower stratosphere over the 
next hundred days. At the same time a strong positive and also downward propagating NAM signal occurs 
after the SSW. The spring transition itself starts in the upper mesosphere and propagates downward with 
time and reaches the 10 hPa level at the beginning of May. The transition from winter westerly to summer 
easterly winds is smooth in all altitudes. Thus, the main features of this class are a major SSW in January 
accompanied by a strong negative downward propagating NAM and followed by the recovery of a strong po-
lar vortex in the mesosphere. This results in a smooth and downward propagating spring transition, which 
occurs quite late. We call this class “mid-winter SSW”.

In 2018, a major SSW occurs in February and thus about 1 month later as in the first class, but again ac-
companied by a strong negative downward propagating NAM and a recovery of the polar vortex in the 
mesosphere although with a smaller magnitude compared to 2013 (see Figures 1b and 1g). Similar to 2013 
the strong westerly winds propagate downward with time but, in contrast to 2013, never reach the lower 
stratosphere. In the lower and middle stratosphere the zonal wind remains weak and even reverses again 
for a certain time before the final wind reversal occurs in mid-April. However, the final wind reversal in the 
mesosphere again propagates downward with time, whereas the latest wind reversal occurs at the beginning 
of May around the stratopause region and thus much later than in the stratosphere. The main features of 
this class are a major SSW in late-winter accompanied by a negative downward propagating NAM and fol-
lowed by a recovery of the polar vortex in the mesosphere. However, in this class, the temporal evolution of 
the spring transition differs in the stratosphere and the mesosphere. Similar to 2013 the mesospheric wind 
reversal propagates downward with time, while the stratospheric wind reversal occurs much earlier and 
simultaneously at all altitudes. We call this class “late-winter SSW.”

In 2016, a minor SSW occurred in February but without the characteristical downward propagating negative 
NAM (see Figures 1c and 1h). However, beginning of March a major SSW occurs accompanied by the down-
ward propagating negative NAM. This SSW leads to a final wind reversal to summerly easterly winds in the 
lower and middle stratosphere and in the upper mesosphere. However, between 40 and 80 km the winterly 
westerly winds recover for over a month resulting in winterly westerly winds in the upper stratosphere and 
mesosphere surrounded by summerly easterly winds. The latest wind reversal in the spring transition oc-
curs at the end of April near the stratopause region and thus over one month later than in the middle strat-
osphere. The main features of this spring transition class are a major SSW in early spring accompanied by a 
negative downward propagating NAM resulting in a final springtime wind reversal below 40 km and above 
80 km. In the area between 40 and 80 km winter conditions recover and the final wind reversal in that re-
gion takes place much later than in the lower and middle stratosphere. We call this class “early spring SSW”.

In 2015, a minor SSW occurs at the beginning of January but without the characteristical downward prop-
agating negative NAM (see Figures 1d and 1i). However, at the beginning of April a major SSW occurs, ac-
companied by a downward propagating negative NAM. This SSW acts as a spring transition finally reversing 
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Figure 1.  Left: Time-height cross-section of the zonal mean zonal geostrophic wind averaged between 60° and 
70°N (left) and NAM index (right). Data are derived from MLS GPH observations in both cases and shown for spring 
transitions in 2013, 2018, 2016, 2015, and 2020. GPH geopotential height; MLS, Microwave Limb Sounder; NAM, 
Northern Annular Mode.
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the wind at all altitudes almost simultaneously. Note, that this SSW is not a SSW in the traditional sense but 
is commonly classified as a final warming (Butler et al., 2017). The main features of this spring transition 
class are a major SSW in mid-spring accompanied by a negative downward propagating NAM and resulting 
in a final springtime wind reversal simultaneously at all altitudes. We call this class “mid-spring SSW”.

In 2020, a minor warming occurs in mid-March having the potential to finally reverse the zonal wind (see 
Figures  1e and  1j). However, this minor SSW is not characterized by a downward propagating negative 
NAM and thus the zonal winds become westerly again although the magnitude is weaker after the minor 
SSW than before. The final wind reversal during the spring transition starts in the upper mesosphere in mid-
April and propagates downward with time, reaching the lower stratosphere beginning of May. Note, that 
this downward propagation is not such a smooth processes as it is in 2013. The main feature of this spring 
transition class are the absence of a negative downward propagating NAM and a smooth spring transition 
that propagates downward with time, occurring quite late. We call this class “no negative NAM”.

In the next section the average characteristics of these five spring transition classes are investigated more 
closely and possibilities for a prediction of the type and timing of the spring transition are discussed.

3.2.  Average Occurrence of the Five Spring Transition Classes

To classify the 41 spring transitions included in the MERRA-2 data set, the spring transition characteristics 
described in Section 3.1 are now generalized and thresholds are given which are not strictly defined but give 
an orientation. Note, that to use this kind of classification to improve the prediction of spring transitions, 
more strictly defined thresholds are needed which are beyond the scope of this study. For the classification, 
the zonal mean zonal wind (u) anomaly normalized by its standard deviation and the NAM index are used 
at 10 and 0.3 hPa. The average temporal development of these variables are shown for each spring transition 
class in Figure S1 in the supporting information.

Mid-winter SSW spring transitions are marked by an excess of u  and NAM of −1.0 std at 10 hPa sometime 
in January to early February for several days to weeks describing the major SSW in January. Note, that u  
and NAM are also negative in January at 0.3 hPa but for a much shorter time period than at 10 hPa. Later 
in February and March, u  and NAM exceed +1.0 std at 0.3 hPa for approximately 40 days after the ( )std u  
minimum at 10 hPa and again +1.0 std at 10 hPa in April characterizing the downward propagation of the 
strong westerly wind and NAM from the mesosphere into the stratosphere. Thus, after the major SSW in 
January the zonal mean zonal wind remains westerly in the whole middle atmosphere until the final wind 
reversal in May.

Late-winter SSW spring transitions are marked by an excess of u  and NAM of −0.75 std at 10 hPa sometime 
between mid-February and mid-March for several days describing the major SSW. Note, that u  and NAM 
are also negative in February at 0.3 hPa but again for a shorter time period than at 10 hPa. Similarly, but 
later and weaker compared to mid-winter SSW spring transitions, u  and NAM exceed +0.5 std at 0.3 hPa 
between mid-March and mid-April for approximately 40 days after the ( )std u  minimum at 10 hPa. In con-
trast to mid-winter SSW spring transitions, the zonal mean zonal wind is predominantly westerly but weak 
after the major SSW in February in the stratosphere and can be even easterly for several days before the final 
wind reversal occurs.

Early spring SSW spring transitions are marked by an excess of u  and NAM of −0.75 std at 10 and 0.3 hPa in 
March describing the major SSW or respectively final warming. This SSW is associated with a final wind re-
versal to easterly winds in the stratosphere but not in the mesosphere. Thus, after the SSW, westerly winds 
are observed in the mesosphere for at least one week. Again, during the SSW the time period where u  and 
NAM are negative is shorter in the mesosphere than in the stratosphere.

Mid-spring SSW spring transitions are characterized by an excess of u  and NAM of −1.0 std at 10 and 
0.3 hPa in April describing the final warming in the stratosphere and mesosphere. Thus, the final wind re-
versal to easterly winds occurs almost simultaneously at all levels in the stratosphere and mesosphere. This 
is also in contrast to the early spring SSW spring transitions where westerly winds occur again in the meso-
sphere after the final warming in the stratosphere. In contrast to the above described spring transitions, the 
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time period of negative u  and NAM is almost equally long in the strato-
sphere and mesosphere here. Note, that there can be minor warmings in 
the pre-winter in this spring transition class.

No negative NAM spring transitions exhibit a behavior similar to the aver-
age over all winter and springs months but also by a permanently positive 
NAM at 10 hPa. Thus, minor warmings can occur in the preceding winter 
or even major warmings with only a very weak easterly wind and a fast 
re-reversal to westerly winds in the stratosphere and mesosphere.

Summarizing, it is the date of occurrence of the SSW, the behavior of 
the stratosphere and mesosphere after the SSW and the structure of the 
final wind reversal in the middle atmosphere that are needed to uniquely 
classify a spring transition.

The MERRA-2 data set includes 41 springs whereby each is assigned to 
one of the five classes described above. Table 1 shows which spring tran-
sition is assigned to which class. Similar to Figure 1, the temporal-vertical 
evolution of the zonal mean zonal wind and NAM index for each of the 
41 years can be found in the supporting information sorted by the five 
spring transition classes. Note, that we tested the manually generated 

classification and sorting of the spring transitions using self-organizing maps (Cassano et al., 2007) and got 
similar results (not shown). Note also, that the number of spring transitions is similar in each class indicat-
ing an uniform distribution of the five spring transition classes.

In order to illustrate the differences between the different spring transition classes we will explain the clas-
sification by means of ambiguously seeming spring transition years. In 2010 a major SSW occurred in late 
January and early February (Dörnbracket al., 2012, see Figure S6 in the SI), making it a candidate for the 
mid-winter SSW spring transition. But, the weak and short negative NAM at 10 hPa as well as the weaker 
westerly zonal winds and positive NAM at 0.3 hPa ( ( ), 1std u NAM std) prevented this classification. The 
recovery of the polar vortex after the SSW resulted in over 40 ms−1 weaker winds in 2010 compared to 2013. 
Finally, there was no late SFW occurring first at 1 hPa. In addition, there was another major SSW in mid-
March, which had the potential to finally reverse the zonal wind in the stratosphere as in the early spring 
SSW spring transition class. However, compared to the early spring SSW spring transition, the negative 
NAM index associated with this SSW was too weak and not downward propagating.

In 2002 a major SSW occurred in February making it a candidate for the late-winter SSW spring transition 
(see Figure S6). However, this SSW barely reached 10 hPa and was thus much stronger in the mesosphere 
than in the stratosphere. Additionally, after the SSW ( )std u  and NAM exceeded +1.0 std for less than 20 days 
and thus much too short to be classified as late-winter SSW spring transition. Since no other SSW occurred 
after the major SSW in February 2002, this year was classified as No negative NAM spring transition.

The winter 2020 (see Figure 1) was characterized by an unusually strong and persistent stratospheric po-
lar vortex (Lawrence et  al.,  2020). Nevertheless, a quite strong minor warming occurred in mid-March, 
which would have had the potential to finally reverse the zonal wind and thus classifying it as late-spring 
SSW spring transition. However, due to the strong zonal winds in the stratosphere and the missing of a 
downward propagating NAM, this SSW had no significant impact on the final wind reversal in the middle 
stratosphere and thus it is finally classified as No negative NAM spring transition. In both 1994 and 1995 (see 
Figures S3 and S4 in the SI) the final wind reversal occurred around day 95 at 10 hPa. However, while 1994 
is classified as early spring SSW spring transition, 1995 is classified as mid-spring SSW spring transition. The 
difference is a 10 day long westerly wind bubble above 58 km between day 96 and 106 and the shorter time 
period of  ( ), 1std u NAM std at 0.3 hPa than at 10 hPa.

These examples show the importance of the downward propagating negative NAM index and the behavior 
of the stratosphere and mesosphere after SSWs in our definition of the spring transition classes.

To compare the new spring transition classes with other studies using other classifications, Figure 2 shows 
the temporal range of the days where the final zonal wind reversal of the different classes occurs in the 
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Mid-winter 
SSW

Late-winter 
SSW

Early spring 
SSW

Mid-spring 
SSW

No negative 
NAM

1987 1980 1985 1982 1990

2001 1981 1986 1991 1993

2004 1983 1992 1995 1997

2006 1984 1994 1996 1998

2009 1988 2000 2003 2002

2013 1989 2005 2011 2007

2019 1999 2014 2015 2010

2008 2016 2017 2012

2018 2020

Abbreviations: NAM, Northern Annular Mode; SSW, sudden stratospheric 
warming.

Table 1 
Classification of Spring Transitions
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41 available spring transitions. Thus, the beginning and end of the colored bars represent the earliest and 
latest final wind reversal observed in the corresponding spring transition class. This is shown for three 
different pressure levels (10, 0.7, and 0.1 hPa). The 10 hPa level was chosen to compare our results with 
other existing studies, the 0.7 hPa level was chosen because in some years it is the level where the wind 
reverses the latest, and 0.1 hPa was chosen to represent the mesospheric spring transition. Following the 
common early late classification, the dark gray line represents the average day of final wind reversal over 
all 41 spring transitions at each level while the white region represents the 1-sigma interval. Thus, the gray 
shaded area represents the days where one standard deviation from this average day of final wind reversal is 
exceeded. Therefore, spring transition classes, in which the colored bars reach into the gray area, are more 
likely included in the common early late classification especially when their average day of wind reversal 
(darker colored line within the bars) lies outside the one-standard deviation interval of the overall mean 
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Figure 2.  The colored bars represent the time period in which the respective spring transition class occurred between 
1980 and 2020 at the pressure levels (a) 0.1 hPa, (b) 0.7 hPa, and (c) 10 hPa. The small vertical line in each bar gives the 
mean day of onset of the respective class. The vertical gray line represents the climatological (all 41 years) onset of the 
spring transition and the gray background the time period where one standard deviation is exceeded for each pressure 
level separately.
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(white area) and thus within the gray shaded area. This enables us a better comparison between the new 
classification and the common early late classification.

On average (long vertical gray lines), the final wind reversal occurs simultaneously at 10 hPa and 0.1 hPa 
but the standard deviation is much smaller in the mesosphere than in the stratosphere. At 0.7 hPa the aver-
age spring transition occurs 11 days later than in the two pressure levels above and below and its standard 
deviation is smaller than in the stratosphere, but larger than in the mesosphere. Note, that the average 
spring transition day at 10 hPa and its standard deviation is in agreement with other studies (Ayarzagüena 
& Serrano, 2009; Black et al., 2006; Butler et al., 2019; Kelleher et al., 2020; Li et al., 2012; Wei, 2007).

On average (small vertical colored lines) mid-winter SSW spring transitions (dark blue) occur first in the 
mesosphere and propagate downward within 20 days to the middle stratosphere. While they occur almost 
at the climatological spring transition onset day in the mesosphere, they occur later in the levels below. At 
10 hPa they even exceed the standard deviation and thus contribute to the late SFW in other studies (Butler 
et al., 2019; Wei, 2007).

Late-winter SSW spring transitions (green) occur also first in the mesosphere, a few days later in the strat-
osphere and at last in the stratopause region. At all levels the spring transition takes place later than the 
overall average but does not exceed one standard deviation. Thus, most spring transitions of this class are 
not considered when the standard classification with early and late SFW is applied. However, the temporal 
range, in which the spring transitions occur, is much wider in the stratosphere (∼40 days) than in the other 
two upper levels (10–15 days).

The final wind reversal in the early spring SSW spring transitions (red) occurs on average first in the middle 
stratosphere, over 20 days later in the mesosphere and finally in the stratopause region. This class is the 
only class exceeding the minus one standard deviation with respect to the climatology at 10 hPa. Thus, this 
class is the only one contributing to the so called early SFW. The temporal range, in which these spring 
transitions occur, is quite large in the lower two levels (∼35 days) and extremely narrow in the mesosphere 
(∼9 days).

Mid-spring SSW spring transitions (light blue) occur first in the mesosphere and almost simultaneously in 
the middle and upper stratosphere. They occur at all levels before the corresponding climatological onset 
day but never exceed the standard deviation at 10 hPa. Additionally, the temporal range, in which these 
spring transitions occur, is with 15 days the narrowest at 10 hPa and thus do neither contribute to the early 
nor to the late SFWs.

No negative NAM spring transitions occur on average similar to the late-winter SSW spring transitions first 
in the mesosphere, then in the stratosphere and at last in the stratopause region but in general a little bit ear-
lier than late-winter SSW spring transitions. The average onset day of this spring transition class lies within 
the standard deviation and thus this class contributes only little to the late SFWs.

Summarizing, only the early spring SSW spring transition class contributes to the early SFWs defined at 
10 hPa, while the mid-winter SSW spring transition class strongly and the classes late-winter SSW and no 
negative NAM partly contribute to the late SFW. Note, the mid-winter SSW spring transitions seem to have 
the largest impact since their average onset day exceeds the standard deviation. The mid-spring SSW spring 
transition class does not contribute to either of these SFW classes. Our results agree well with findings of 
Hu et al. (2015) that SFWs are delayed when a minor or major SSW occurs in the preceding winter which is 
fulfilled for the spring transition classes mid-winter SSW, late-winter SSW and no negative NAM.

Using the classification of 10 hPa-first and 1 hPa-first, the mid-winter SSW spring transition is the only one 
contributing on average to the 1 hPa-first class. The late-winter and early spring SSW as well as the no neg-
ative NAM spring transition contribute to the 10 hPa-first class. The mid-spring SSW spring transition class 
does not contribute to either of this vertically defined SFWs classes. These results agree well with findings 
of Thiélemont et al. (2019) that SSWs occurring in mid-winter favor a 1 hPa-first SFW while SSWs occurring 
in late winter favor a 10 hPa-first SFW. However, they also found that winters without a SSW are followed 
by 1 hPa-first SFW which we cannot confirm with our analysis. One possible explanation for this discrep-
ancy may be that Thiélemont et  al.  (2019) used model data (CESM/WACCM) that include significantly 
less 10 hPa-first SFW events compared to ERA-Interim. However, we also note, that for single cases the 
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10 hPa-first and 1 hPa-first classification might be different especially for the no negative NAM spring tran-
sition where the average onset days at 10 and 0.7 hPa are close together. This also shows the partly strong 
mixture of different spring transition types in the classes defined in previous studies.

3.3.  Average Characteristics of the Spring Transition Classes

Using composite analysis, the average characteristics of the five spring transition classes are investigated. 
Thus, time periods and regions can be identified that might enable a prediction of the spring transition type 
and onset day already in winter and thus contributing to the seasonal to subseasonal forecast.

Similar to Figure 1, Figure 3 now shows, the composite of the zonal mean zonal wind (left) and NAM index 
(right) for each spring transition class (rows). The stippling shows significant values obtained by a bootstrap 
method (p < 0.05, see Section 2.4). The spring transition class mid-winter SSW (Figures 3a and 3f) is on 
average characterized by a very weak and even reversed zonal wind in January and February whereby the 
weakening first occurs between 20 and 60 km and then propagates downward with time. Thus, this spring 
transition class is characterized by a major SSW starting sometime in January. The weak zonal wind is ac-
companied by a strong negative NAM index also propagating downward with time. After the SSW a strong 
polar vortex forms in the middle mesosphere, which propagates downward with time and is accompanied 
by a strong positive NAM index. All these characteristics are significant distinguishing this class from the 
other classes and thus enable a prediction of the spring transition onset day and type already in mid-winter. 
The final wind reversal starts in mid-April in the mesosphere, propagates downward to the stratopause 
region and happens then simultaneously at all stratospheric levels.

The vertical and temporal structure of the late-winter SSW spring transition (Figures 3b and 3g) is similar 
in zonal wind and NAM index behavior to mid-winter SSW spring transitions, but occurs approximately 
30 days later in the year and with a weaker magnitude. Note, that the downward propagating positive NAM 
is not as pronounced as for mid-winter SSW spring transitions. The final wind reversal of the late-winter 
SSW spring transitions is similar to the mid-winter SSW spring transitions in the mesosphere, but differs in 
the stratosphere. Here, the final wind reversal starts around 30 km and then propagates downward to the 
lower stratosphere and upward to the stratopause. Thus, the final wind reversal in the mesosphere is some-
what decoupled from that in the stratosphere.

The structure of the early spring SSW spring transition (Figures 3c and 3h) is again similar to mid-winter 
SSW spring transitions, but occurs now approximately 50 days later in the year and with an even weaker 
magnitude. However, even though the polar vortex forms in mesosphere again with an even weaker mag-
nitude compared to late-winter SSW spring transitions, the zonal wind remains easterly in the stratosphere 
resulting in a very early spring transition in that region. In the mesosphere, the final wind reversal occurs at 
least one month later than in the stratosphere and propagates downward with time indicating a dominance 
of radiative forcing for this spring transition class. Thus, the final wind reversal in the mesosphere is again 
somewhat decoupled from that in the stratosphere.

The spring transition class mid-spring SSW (Figures 3d and 3i) is on average characterized by a weakened 
zonal wind at the end of January/beginning of February indicative of a minor mid-winter SSW and accom-
panied by a negative NAM index which is not downward propagating. At the beginning of April, and thus 
70 days later as in the mid-winter SSW spring transition class, a major SSW occurs, traditionally classified 
as a final warming, finally reversing the zonal wind at all altitude almost simultaneously. This SSW is again 
accompanied by a downward propagating negative NAM. In the recovery phase of the SSW, the easterly 
winds weaken again but never reverse back to winter westerly winds at any altitude.

Thus, the above described four spring transition classes have in common that a major SSW occurs at any 
point in time which is accompanied by a negative downward propagating NAM.

The fifth class, no-negative NAM spring transition (Figures  3e and  3j), is on average characterized by a 
non-significant weakening of the zonal wind and NAM index at the end of February, indicative for a minor 
SSW in the upper stratosphere and mesosphere. Significant positive zonal wind and NAM values can only 
be found after February in the lower and middle stratosphere. The final wind reversal propagates irregu-
larly downward in the mesosphere and occurs first around 35 km in the stratosphere, while it is upward 
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Figure 3.  Time-height cross-sections of the composites of the zonal mean zonal wind averaged between 60° and 70°N (left) and NAM index (right) for the 
different spring transition classes (a–e) derived from MERRA-2 data. The stippling shows significant values (p < 0.05, see Section 2.4). NAM, Northern Annular 
Mode.
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propagating above and downward propagating below, each also irregular-
ly. Thus, the final wind reversal in the mesosphere is again somewhat de-
coupled from that in the stratosphere. Remarkable about this class is the 
missing of a major SSW accompanied by a downward propagating neg-
ative NAM. Note, that the stippling in the lower stratosphere in March 
and April mostly originates from the year 2020 where the polar vortex 
was the strongest and most persistently cold in over 40 years (Lawrence 
et al., 2020).

3.4.  Average Latitude-Altitude Structure of the Spring Transition 
Onset Day

Our definition of the spring transition, which is in accordance with other 
studies (Butler et  al.,  2019; Hu, Ren, Yu, & Xu,  2014; Wei,  2007), uses 
the zonal mean zonal wind averaged between 60° and 70°N. However, 
we are also interested in the average latitudinal-altitudinal structure of 
the different spring transitions in the middle atmosphere. Therefore, Fig-
ure 4 shows the latitude-altitude cross-section of the mean day when the 
zonal mean zonal wind finally reverses, calculated at each location sep-
arately. One feature that occurs in all spring transitions, is a tongue of 
relatively late wind reversal approximately at 40–50 km and between 50° 
and 70°N. Apart from this tongue, the mid-winter SSW spring transitions 
(Figure 4a) are solely downward propagating, whereby it is faster in the 
stratosphere than in the mesosphere. For late-winter SSW spring transi-
tions (Figure 4b) the earliest wind reversal occurs poleward of 60°N in 
the middle stratosphere with its center between 70° and 75°N at 32 km. 
The mesospheric wind reversal is in general downward propagating but 
occurs earlier poleward of 70°N due to the more pronounced tongue of 
later wind reversal in the upper stratosphere/lower mesosphere. For ear-
ly spring SSW spring transitions (Figure  4c), the earliest wind reversal 
occurs poleward of 50°N in the middle and upper stratosphere with its 
center between 57° and 67°N around 37 km. There is a second area with 
early wind reversal poleward of 70°N above the stratopause. Mid-spring 
SSW spring transitions (Figure 4d) occur almost simultaneously at all al-
titudes poleward of 65°N. Southward of that, the tongue of later wind 
reversal prevents an earlier onset of the spring transition. Nevertheless, 
the onset days within this tongue are the earliest compared to the other 
spring transition classes. The final wind reversal in the no-negative NAM 
spring transitions (Figure 4e) occurs first in the mesosphere northward 
of 70°N and propagates downward with time. There is a second area with 
early wind reversal in the middle and upper stratosphere poleward of 
65°N from where the spring transition propagates downward and espe-
cially equatorward. The tongue of later wind reversal is also quite pro-
nounced, but less than for late-winter SSW spring transitions.

Thus, there are sometimes latitudinal differences in the spring transitions 
in the stratosphere and mesosphere indicating that latitudinally differen-
tiating studies might be worth to be carried out, but are beyond the scope 
of this study. However, our choice of averaging between 60° and 70°N 
covers the main features of each class.

3.5.  Main Forcing of the Spring Transition Classes

The timing and dynamical evolution of a spring transition is influenced 
by a combination of radiative forcing and planetary wave forcing effects. 
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Figure 4.  Latitude-height cross-sections of the average spring transition 
onset day for each spring transition class (a–e) derived from MERRA-2 
data. The stippling shows significant values (p < 0.05).
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In the next paragraph we want to investigate to what extent PWs have an impact on the stratospheric and 
mesospheric final wind reversal for the different spring transition classes. Therefore, Figure 5 shows the 
average temporal evolution of the zonal wind in the stratosphere and mesosphere and meridional heat 
flux (v′T′, a measure of wave activity) in the middle and upper stratosphere. The different spring transition 
classes are represented by the colored lines whereby dots denote significant values.

In general, the zonal winds as well as the meridional heat fluxes decrease from mid-winter to late spring in 
the stratosphere and mesosphere (Figure 5 gray line). The SSWs, the occurrence time of which defines the 
different spring transition classes, are all characterized by significantly strong heat fluxes (around DoY: 18, 
42, 65, 85, –) followed by significantly weak zonal winds (around DoY: 22, 55, 75, 95, –) in the stratosphere 
and mesosphere (Figures 5c and 5d).

Mid-winter SSW spring transitions (blue line) are characterized by a significantly weak heat flux into the 
mesosphere around day 30 after the major SSW in January, leading to unusually strong winds (DoY 30–90) 
in that region. These stronger zonal winds propagate downward with time reaching the stratosphere shortly 
before the final wind reversal (DoY 75–110) accompanied with a weakly increased, but not significant, heat 
flux (at DoY 112). Thus, the final wind reversal of the mid-winter SSW spring transitions is primarily driven 
by radiative processes in both the stratosphere and mesosphere.

Late-winter SSW spring transitions (orange line) are characterized by a significantly weak heat flux into the 
mesosphere around day 80 after the major SSW in February, leading to significantly stronger winds in the 
mesosphere (DoY 80–130) shortly before the final wind reversal. At the same time the stratospheric zonal 
wind is weak (DoY 90–110; although not significant) so that the weak heat flux (DoY 80–100) can easily 
reverse the zonal wind at any time. Thus, the final wind reversal of late-winter SSW spring transitions is 
primarily driven by radiative processes in the mesosphere, while radiative and dynamical processes seem to 
equally influence the final wind reversal in the stratosphere.

Early spring SSW spring transitions (green line) are characterized by significantly strong heat fluxes into the 
stratosphere and mesosphere around day 65 before the SSW in March and thus also before the final wind 
reversal in the stratosphere. However, the mesospheric wind recovers (DoY 90–110) due to significantly 
weak heat fluxes (DoY 80–100) into the mesosphere resulting in a dominance of radiative processes which 
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Figure 5.  Average temporal evolution of the zonal mean zonal wind averaged between 60° and 70°N at (a) 0.3 hPa and (b) 10 hPa and of the meridional heat 
flux averaged between 40° and 75°N at (c) 1 hPa and (d) 100 hPa for the different spring transition classes (colored lines). Colored dots represent significant 
values (p < 0.05) for the respective class. The gray line represents the climatology (all 41 years) and its standard deviation (gray shading).
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are still in winter mode due to the seasonal changes in the solar radiation. 
Thus, the final wind reversal of the early spring SSW spring transitions is 
primarily driven by dynamical processes in the stratosphere while radia-
tive processes dominate in the mesosphere.

Mid-spring SSW spring transitions (red line) are characterized by signif-
icantly strong heat fluxes into the stratosphere and mesosphere (DoY 
70–100) leading to a final wind reversal in both regions a few days later 
(DoY 85–95). Thus, this spring transition class is primarily dynamically 
driven in the stratosphere and mesosphere.

No-negative NAM spring transitions (purple line) mostly follow the cli-
matology in the stratosphere and mesosphere so there are no significant 
values. Thus, the final wind reversal of this spring transition class is driv-
en by a mixture of radiative and dynamical processes in the stratosphere 
and mesosphere. However, dynamical processes might dominate slightly 
given by the irregular structure of the zero wind line in Figure 3e) but this 
can differ from year to year.

Thus, early stratospheric final warmings, which are mostly driven by dy-
namical processes (Wei, 2007; Hu, Ren, Yu, & Xu, 2014), are here repre-
sented by early spring SSW spring transitions (cf. Figure 2). Late SFWs, 
which are mostly driven by radiative processes (Wei, 2007; Li et al., 2012; 
Hu, Ren, Yu, & Xu, 2014), are here mainly but not exclusively represented 
by mid-winter SSW spring transitions (cf. Figure 2). One hPa-first SFWs, 
which are mostly driven by radiative processes (Hardiman et al., 2011; 
Thiélemont et al., 2019), are here mainly but not exclusively represented 

by mid-winter SSW spring transitions (cf. Figure 2). And 10 hPa-first SFWs, which are mostly driven by 
dynamical processes (Hardiman et al., 2011; Thiélemont et al., 2019), are here represented especially by 
early spring SSW spring transitions but also by late-winter SSW spring transition and some of the no nega-
tive NAM spring transitions. Thus, our results regarding the dominance of radiative or dynamical processes 
leading to the final wind reversal in the stratosphere and mesosphere in the different spring transition class-
es agree well with previous studies. Note, that on average mid-spring SSW spring transitions are mostly not 
considered by these two standard classifications since its average occurrence time period does not exceed 
the standard deviation in the stratosphere (cf. Figure 2c) and it occurs almost simultaneously at all altitudes. 
Thus, our new classification and results give a more detailed view on the processes leading to the different 
types of spring transitions in the stratosphere and mesosphere possibly enabling a better prediction of when 
and how a spring transition takes place.

Another indicator, if a spring transition is driven by dynamical or radiative processes, is the speed of the 
transition from westerly to easterly winds. Slow transitions with less than 2 ms−1 per day are mostly driven 
by radiative processes, while fast transition with more than 3 ms−1 per day are mostly dynamically driven 
(Butler et  al.,  2019; Wei,  2007). Figure  6 shows the average temporal evolution of the velocity of wind 
change per day for the different spring transition classes, this time centered around the final wind reversal 
day in the stratosphere and mesosphere. In the stratosphere (see Figure 6b) the zonal wind decreases with 
up to 4 ms−1 per day in the week before the final wind reversal at day 0 for early spring SSW (green line) and 
mid-spring SSW spring transitions (red line). Thus, there is a fast transition for these two spring transition 
classes. The zonal wind decrease in the other three classes does not exceed the 2 ms−1 per day and thus, it is 
slow. These results agree well with findings of Wei (2007) and Butler et al. (2019) that early SFWs are fast, 
here represented by early spring SSW spring transitions, and that late SFW are slow, here represented mostly 
by mid-winter SSW spring transitions.

In the lower mesosphere (see Figure 6a) the only class, where the zonal wind decrease exceeds the threshold 
of 2 ms−1 per day, is the mid-spring SSW spring transition. The other four classes are characterized by a slow 
transition from westerly to easterly winds indicating a dominance of radiative processes in the mesosphere 
and agreeing to the results of Figure 5.
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Figure 6.  Average temporal evolution of the velocity of wind change per 
day centered around the spring transition onset day at (a) 0.3 hPa and (b) 
10 hPa for the different spring transition classes (colored lines). Colored 
dots represent significant values (p < 0.05) for the respective class.
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Concluding, we introduced five new spring transition classes which al-
ready include the occurrence, timing and strength, which is given by the 
NAM index, of a major SSW in winter and spring. This improves our un-
derstanding of spring transition processes and thus might improve the 
prediction of stratospheric final warmings. Especially the mid-winter 
SSW spring transition class is a good candidate to be predicted already in 
January when one also takes the zonal wind in the mesosphere into ac-
count (see Figure 5a). These results show the importance of global mes-
ospheric observations as for example given by MLS and reanalysis data 
like MERRA-2 that are available beyond the stratopause as also shown by 
McCormack et al. (2017).

4.  Spring Transition in the MLT
In this section average characteristics of the different spring transition 
classes in the MLT are discussed as well as their impact on the variability 
of the upper MLT and ionosphere.

In the MLT the wind reversal from westerly to easterly wind at the end 
of the winter represents the beginning of spring, while the renewed 
wind reversal from easterly to westerly wind approximately 60 days later 
represents the beginning of summer (Hoffmann et al., 2010; Merzlyak-
ov et al., 2012). Figure 7 shows the composites of the zonal wind in the 
MLT for the merged Esrange (68°N, 21°E) and Sodankylä (67°N, 26°E) 
data set for all available years (a) as well as for the different spring tran-
sition classes (b–f). On average, the zonal wind reverses between day 78 
at 90 km and 83 at 80 km in the MLT in spring (see Figure 7a), which is 
in agreement with Merzlyakov et al. (2012). There is a slightly downward 
propagation of the wind reversal between 100 and 80 km within 5 days 
indicating that radiative as well as dynamical processes play a role.

Note, that due to the shorter observation periods of the radar compared 
to MERRA-2 data, the following statements can only be treated as in-
dications. Nevertheless, tendencies of how the MLT behaves during the 
different spring transition classes can be seen.

The zonal wind in the MLT in the mid-winter SSW spring transition (Fig-
ure 7b) is characterized by strong zonal winds below 90 km after the SSW, 
which is in agreement with our composite results obtained from MER-
RA-2 in Figure 3. The wind reversal occurs later than in the climatolo-
gy probably induced by the strong winds after the SSW, which prohibits 
planetary wave propagation from below (Charney & Drazin, 1961). Thus, 
the spring transition seems to be more radiatively driven but the impact 
of dynamical processes cannot be ruled out as the reversal happens si-
multaneously at all altitudes.

The zonal wind in the MLT in the late-winter SSW spring transition (Fig-
ure 7c) is characterized by strong zonal winds above 90 km before the 
SSW. The spring time wind reversal above 85  km occurs much earlier 
(up to 40  days) than in the climatology, probably induced by the SSW 
or at least by dynamical processes, while the wind reversal below 85 km 
continuously propagates downward indicating a dominance of radiative 
processes. Note, that these observations should be treated with caution 
since only two events are included in this composite.
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Figure 7.  Composites of zonal wind of all available years (a) and for the 
different spring transition classes (b–f) derived from merged meteor radar 
data at Esrange (68°N, 21°E) and Sodankylä (67°N, 26°E). The numbers in 
the lower left corners represent the number of spring transitions included 
in the respective composite.
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The zonal wind in the MLT in the early spring SSW spring transition (Figure 7d) is characterized by strong 
zonal winds in January. The spring time wind reversal occurs on average earlier than in the climatology 
and the downward propagation is slower. However, in 2016 the SSW occurred extremely early in spring 
(Manney & Lawrence, 2016) finally reversing the zonal wind simultaneously at all altitudes in the MLT (cf. 
Figure 1c). Thus, on average this MLT spring transition is radiatively driven at all altitudes but exceptions 
with a dominating dynamical process can occur.

On average the mid-spring SSW spring transition (Figure 7e) wind reversal occurs slightly earlier than in the 
climatology and almost simultaneously at all levels in the MLT. However, individual events show that the 
vertical structure of the wind reversal depends on the timing of the mid-spring SSW. If the SSW occurs early 
within the mid-spring SSW spring transition time range (see Figure 2) then the wind reversal is dynamically 
driven and occurs simultaneously at all MLT levels, but if the SSW occurs later, the wind reverses already 
in the MLT region driven by radiative processes and the easterly wind just strengthens for the duration of 
the SSW (not shown).

The wind reversal in the no negative NAM spring transition (Figure 7f) occurs especially above 90 km up to 
20 days later than in the climatology. For individual events a wave-like structure occurs before the spring 
time wind reversal postponing the final wind reversal. This indicates a mixture of radiative and dynamical 
processes leading to the spring transition in the MLT.

Summarizing, the wind reversal in the MLT occurs between end of March and beginning of April and 
shows distinctively less variability between the spring transition classes compared to the stratosphere and 
lower mesosphere, which agrees well with findings of Merzlyakov et al. (2012). In general, the wind reversal 
propagates downward indicating that the main drivers are radiative processes, but since the speed of the 
downward propagation varies between the spring transition classes also dynamical processes seem to play a 
role (Aushev et al., 2006; Merzlyakov et al., 2012).

Yamazaki and Matthias (2019) found in some years a strong 10-day wave during spring in the MLT gener-
ated by instabilities in the stratosphere. Comparing their results with ours it can be seen that this strong 
10-day wave occurs only in the spring transition classes early spring SSW and mid-spring SSW. However, 
such waves occur rather rarely in association with mid-winter SSWs and if so with a weaker magnitude 
(Yamazaki & Matthias, 2019). Thus, it seems that a SSW occurring in the already weakened winter circula-
tion (due to the changes in the solar zenith angle) is necessary to induce baroclinic instabilities leading to 
the long period planetary waves observed in the MLT. When these waves modulate the amplitude or phase 
of the solar tides in the MLT (Yiğit & Medvedev, 2015), planetary wave-like oscillations can migrate even 
into the F-region (Borries & Hoffmann, 2010; Gordienko et al., 2007) disturbing the ionosphere there. This 
can in turn affect radio communication and GPS signals. Thus, with the new and more detailed definition 
of the spring transition classes, that already includes the mid-winter conditions, a better prediction of the 
MLT and ionosphere variability might be possible in spring.

5.  Summary and Conclusion
This study introduces a new classification of the spring transition in the middle atmosphere based on the 
vertical-temporal development of the zonal mean zonal wind and NAM index in the core region of the 
polar vortex beginning already in January. There are five new classes defined by the occurrence and timing 
of a SSW in association with a negative downward propagating NAM index lasting for several weeks as 
described in Baldwin and Dunkerton (2001). The average characteristics of the five classes were investigat-
ed using MERRA-2 reanalysis data showing that the timing of the SSW has an impact on the timing and 
vertical structure of the final wind reversal, not only in the stratosphere but also in the mesosphere. The 
characteristics of the five new spring transition classes and their affiliation to commonly used classifications 
are summarized in Table 2. The new knowledge enables us to improve our understanding of the spring 
transition processes and shows us the importance of mesospheric observations. Two of the classes (early- 
and mid-spring SSW spring transitions) have a direct impact on the variability of the MLT (Yamazaki & 
Matthias, 2019) and thus maybe also on the ionospheric variability.
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This study is the first which systematically investigates the spring transition in the whole middle atmos-
phere and thus connecting the final wind reversal in the stratosphere and mesosphere. The expansion into 
the mesosphere not only improves our understanding but also might enable a better prediction of the spring 
transition. Additionally, the division into five classes spanning the middle atmosphere allows a more de-
tailed characterization of the final wind reversal than earlier studies, which also improves our understand-
ing of the spring transition. These results show the importance of global mesospheric observations.

For the prediction of the spring transition, exact thresholds are needed for the zonal wind and NAM index 
in winter in the stratosphere and mesosphere. Further studies are needed to investigate the latitudinal 
differences of the five classes, the prediction of the timing and type of the spring transition and the impact 
of the five different classes on our tropospheric weather as well as on the variability of the MLT region and 
ionosphere.

Data Availability Statement
The meteor radar data are available at https://www.sgo.fi/pub/JGR_SpringTrans_2020/.
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Mid-winter SSW Late-winter SSW Early spring SSW
Mid-spring 

SSW No negative NAM

Major SSW January February March April –

Negative NAM ✓ ✓ ✓ ✓ –

Onset day at 10 hPa 123 113 87 98 113

Onset day at 1 hPa 121 124 112 97 118

Final wind reversal 
Stratosphere

simultaneously up- and downward 
propagating from 10 hPa

simultaneously simultaneously up- and downward 
propagating from 6 hPa

Final wind reversal 
Mesosphere

downward propagating downward propagating downward propagating simultaneously downward propagating

Main forcing 
Stratosphere

radiative radiative + dynamical dynamical dynamical radiative +dynamical

Main forcing Mesosphere radiative radiative radiative dynamical radiative +dynamical

Early/late late (late) early – (late)

10 hPa/1 hPa-first (1 hPa-first) 10 hPa-first 10 hPa-first – 10 hPa-first

Abbreviations: NAM, Northern Annular Mode; SSW, sudden stratospheric warming.

Table 2 
Summary of the Average Characteristics of the New Spring Transition Classes and Their Affiliation to Commonly Used Classifications
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