
1.  Main Text
Inland waters play a crucial role in the global carbon cycle as they not only transport and process, but also 
bury large amounts of organic carbon (OC) (Battin et al., 2009; Tranvik et al., 2018). Burial in an inland 
water body is the net balance of carbon received from terrestrial ecosystems or autotrophic fixation, and lost 
in mineralization or downstream export. Compared to these inputs and outputs, the burial flux is usually 
small. However, it constitutes the only mechanism that actively removes carbon from atmospheric circula-
tion for longer timespans (Hanson et al., 2015). It is now clear that lacustrine sediments bury as much OC 
as the entire ocean floor over the same time, although inland waters occupy a much smaller fraction of the 
Earth's surface (∼1% vs. 71% for oceans) (Mendonça et al., 2017).

For OC to settle and be buried in the sediment it must be in the particulate form, for example, as part 
of dead algal biomass, plant detritus, eroded soil particles, microbial exopolymer or attached to mineral 
surfaces. Particulate OC (POC) is typically a small part of the standing stock of OC in inland waters. POC 
equals about 10% of the dissolved fraction (DOC) in lowland rivers but both forms can approach parity in 
highly erosive environments (Meybeck, 1982; Wetzel, 2001). Recent global estimates also confirm a high 
proportion (mean: 70%) of dissolved relative to total OC in lakes (Chen et al., 2015; Toming et al., 2020). 
DOC therefore dominates the flux of OC through the soil-to-ocean continuum, and affects light regime as 
well as aquatic ecosystem functions such as productivity, nutrient, and contaminant transport more directly 
than POC (Tranvik et al., 2018; Wetzel, 2001). In contrast, for a long time it seemed that DOC contributed 
relatively little to burial and the POC deposits that formed in inland waters.

Today, multiple lines of evidence suggest that DOC aggregation to POC is widespread in boreal and 
north-temperate aquatic networks, and contributes strongly to OC sedimentation (Hall et al., 2019; Von 
Wachenfeldt & Tranvik, 2008). It was recently shown that in some lakes more than half of buried OC bears 
the signature of terrestrial DOC (Gudasz et al., 2017; Guillemette et al., 2017). Despite this insight, little 
is known about the processes that act on DOC to form POC, or the functioning and fate of the resultant 
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Plain Language Summary  Lakes and rivers are influenced by their surrounding landscape: 
Dead biomass releases water-soluble, organic substances that can be washed into surface waters. There, 
the organic substances are either removed by microorganisms or sunlight, or transported to the oceans. 
Under some conditions, water-soluble substances stick together and form particles. Particles are no longer 
transported and sink to the bottom of lakes and rivers, where they can remain for a long time. Recent 
research, some of it featured in this issue of Journal of Geophysical Research: Biogeosciences, describes 
how the organic particles are formed. The involved mechanisms influence the important role of lakes and 
rivers in the global cycle of carbon.
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particles (Figure 1). In the present issue of Journal of Geophysical Research: Biogeosciences, Einarsdóttir 
et al. (2020) present DOC precipitation experiments and illuminate the specific compositional drifts in the 
resultant (dissolved and particulate) OC pools. The authors conducted their research in boreal Sweden at 
a mire-stream interface. There, a shift in redox condition triggers OC precipitation, either due to the for-
mation of solid iron (oxy-)hydroxides, or through coagulation and adsorption to purely organic particles. 
The authors suspected that the growth of the organic particles is supported by microbial exopolymers (EPS, 
Einarsdóttir et al., 2020). As the POC formation in their assays progresses over multiple days, it is likely that 
DOC removal in natural waters takes place well beyond the interface and continues during passage of the 
aquatic network.

Over the course of the experiment about 20% of DOC forms aggregates and is removed from solution, leav-
ing behind a DOC pool that is more hydrophobic (and thus aliphatic) in character. These observations tie 
in with other recent works that examine how DOC interacts with artificial iron (Fe) phases using high-res-
olution mass-spectrometry. These studies show that polyphenols and aromatics have a high affinity for 
Fe surface attachment, and DOC remaining in solution is enriched in aliphatics (Coward et al., 2019; Lv 
et  al.,  2016; Sowers et  al.,  2019). Additionally, the fate of nitrogen (N)-bearing DOC molecules was ex-
plored and the authors found that it depended on the precipitation mechanism: More N was recovered from 
organic than from mineral particles (Einarsdóttir et al., 2020), possibly because binding of N-containing 
compounds to Fe surfaces is unstable (Coward et al., 2019) and organic particles assembled from remaining 
compounds after Fe surfaces were covered. It is interesting to speculate if an otherwise reactive portion of 
the terrestrial DOC pool escapes decomposition by transferring to the particulate domain soon after enter-
ing the aquatic corridor.

It is established that DOC has a high affinity for freshly oxidized iron (Kaiser & Guggenberger, 2000) and that 
their joint aggregation can act as a vector of OC to sediments (Riedel et al., 2013). Much less clear, however, 
is under what conditions this process may be reversed. A growing body of work suggests significant amounts 
of DOC are being mobilized from northern lake sediments (Dadi et al., 2016; Peter et al., 2016, 2017). Be-
cause high DOC and Fe fluxes co-occur, it is suggested that the release is driven by reductive dissolution 
of Fe3+ in the sediment (Peter et al., 2016). Accordingly, some DOC is shifting between the dissolved and 
particulate domain in association with Fe. The prevalence of such a DOC removal-and-release cycle across 
various ecosystem types is unknown, because it is currently not integrated into the conceptualization of 
landscape-scale carbon dynamics. An assessment of sediment burial efficiency can determine if settled 
OC is in fact buried (Hanson et al., 2015; Mendonça et al., 2017; Sobek et al., 2009), but for its calculation, 
the OC that sediments lose as DOC to overlying waters is either lumped with mineralization (when de-
rived using sedimentation), or ignored altogether (when derived using mineralization). Where Fe and DOC 
precipitate together, it is likely that removal-and-release cause hysteresis in the chemical composition of 
the DOC pool, as DOC modification is not only observed during aggregation but also again during release 
(Herzsprung et al., 2017). In the case of Einarsdóttir et al. (2020), this may affect the fate of the large amount 
of Fe3+ that is dissolved or colloidal after oxidation (50% of mire-emitted Fe), and left to travel further with 
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Figure 1.  Organic carbon (dissolved or particulate, DOC or POC) derived from terrestrial environments is transferred to and through the interconnected 
aquatic corridor. OC awaits different fates (arrows) in the dissolved or particulate domain (Hanson et al., 2015; Tranvik et al., 2018). Various mineralization 
mechanisms oxidize fresh and reactive portions of the OC pool to CO2. A suite of processes links the dissolved and particulate domain through aggregation 
and disaggregation (white circles). POC from aquatic biomass (macrophytes, zooplankton, and algae) is considered fresh and is efficiently mineralized 
during sediment diagenesis. It is currently unclear if diagenesis of purely organic aggregates affects all POC precursors similarly and can release OC from the 
sediments (Wotton, 2007).
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the remaining DOC. Both DOC and Fe are known to influence each other's properties, as Fe intensifies the 
color of DOC (Xiao et al., 2013), and DOC affects Fe solubility and redox properties (Daugherty et al., 2017). 
Therefore, DOC is likely to experience removal-release cycles, thereby changing not only the magnitude and 
composition of the carbon flux through the aquatic corridor, but also various critical ecosystem properties 
such as light regime and thermal structure (Bartosiewicz et al., 2019).

Einarsdóttir et al. (2020) expand their results beyond particle formation by also looking at the mechanisms 
by which particle presence enables further modification of the remaining DOC. Even if mineralization is 
moderate in the presented setup, it is clear that the presence of organic particles promotes the mineraliza-
tion of the surrounding DOC. Particles act as “hubs” of microbial activity because they constitute shelters 
or sheaths of microorganisms, often created by themselves using exopolymers (Wotton, 2007). Throughout 
their relatively short lifetime (days to weeks in boreal rivers), the active particles stay in a dynamic equi-
librium with the dissolved phase, from which they continuously take up DOC as substrate (Attermeyer 
et al., 2018). Microbial respiration in large rivers measured without such particles can be dramatically un-
derestimated (Ward et al., 2018). Because many mechanistic studies rely on lab-scale assays of respiration, 
it will be necessary to find approaches to routinely include both dissolved and particulate OC in future 
experimental setups.

To summarize, a contemporary perspective of carbon in inland waters needs to acknowledge that a suite 
of mechanisms can aggregate and remove DOC from solution (He et al., 2016), and that this fate may be 
of equal importance as the more classically considered transport, assimilation, and degradation processes 
(Vachon et al., 2020). DOC-derived particles are widespread in the interconnected aquatic network, yet it 
is currently unclear if they withstand diagenesis, or if the protective mechanisms invoked for soil OC are 
active (Hemingway et al., 2019). While small water bodies (ponds) are known to efficiently store C from 
the surrounding land (Downing et  al.,  2008), the strong signature of terrestrial DOC recently found in 
sediments of northern lakes is surprising and suggests a tighter link between the dissolved and particulate 
OC pools (Guillemette et al., 2017; Hall et al., 2019; Von Wachenfeldt & Tranvik, 2008). The paper by Ein-
arsdóttir et al. (2020) should inspire new work to better understand the routes of formation and chemical 
composition of particles derived from DOC, ideally by combining the most advanced analytical approaches 
for DOC and POC (McCallister et al., 2018). It is time for a deeper integration of the dissolved and particu-
late domain of OC.

Data Availability Statement
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