
1. Introduction
The temporal and spatial appearances of flat subduction segments along the South American western mar-
gin have been extensively debated (e.g., Antonijevic et al., 2015; Gutscher et al., 2000; Marot et al., 2014; 
Ramos & Folguera,  2009). Two prominent flat subduction segments beneath the Andes are the Peruvi-
an and Pampean flat subduction zones, north and south of the conspicuous kink in the South American 
coastline, respectively. They have been documented based on seismology (e.g., Pesicek et al., 2012; Wagner 
et al., 2005), volcanism (e.g., Kay & Abbruzzi, 1996; Kay & Mpodozis, 2002), gravity modeling (e.g., Sánchez 
et al., 2019) and electrical conductivity measurements (e.g., Burd et al., 2013, 2014). In this study, we fo-
cus on the Pampean flat subduction and Payenia steep subduction to the south, from 𝐴𝐴 28◦ –𝐴𝐴 38◦ S (Figure 1). 
Here, the Nazca slab is subducting beneath central Chile and western Argentina with a convergence rate 
of 𝐴𝐴 ∼ 6.7 cm 𝐴𝐴 a−1 in the 𝐴𝐴 N78◦ E direction (Kendrick et al., 2003). In the Pampean flat subduction zone (Kay & 
Mpodozis, 2002; Ramos et al., 2002), the Nazca slab propagates horizontally for 200–300 km beneath the 
southern Central Andes (Figure 1a) whereas the Payenia segment was dominated by flat subduction period 
from 15 to 5 Ma but has been re-steepening since 4–5 Ma (Ramos & Folguera, 2009, 2011).

The current Pampean flat subduction zone is widely believed to be associated with the subduction of the 
Juan Fernandez seamount ridge (JFR, Figure 1; e.g., Gutscher et al., 2000; Kay & Mpodozis, 2002; Ramos 
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Plain Language Summary Taking advantage of the abundant information recorded in 
seismic waveforms, we imaged the seismic structure of the crust and upper mantle beneath central Chile 
and western Argentina, where the oceanic Nazca slab is subducting beneath the South American plate. 
The subducted Nazca slab is almost flat at a depth of 100–150 km in the north of the study area below 
the Pampean region, where the Juan Fernandez seamount ridge is subducting as part of the Nazca slab. 
The slab steepens again in the south in the Payenia region. Our model reveals pronounced low-velocity 
anomalies within the Pampean flat slab along the inland projection of the Juan Fernandez Ridge, 
indicating that the Pampean flat slab is thinned or even torn apart. A high-velocity anomaly is imaged 
beneath the flat slab, representing a former slab segment that was broken off during the slab flattening 
process and was overridden by the advancing young slab. Our model suggests a causal relationship 
between the oceanic ridge subduction and the flat slab formation. In the Payenia region, the slab re-
steepening resulted in the re-establishment of the mantle wedge and induced hot mantle flow below the 
slab, which are characterized by low-velocity anomalies in the model.
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et al., 2002). Plate reconstructions (Bello-González et al., 2018; Yáñez et al., 2001) indicate that the ridge 
has been moving southward along the western margin of South America. It was subducting beneath the 
Altiplano and Puna plateaus (𝐴𝐴 20◦ –𝐴𝐴 26◦ S) at 𝐴𝐴 ∼ 40–20 Ma, inducing temporary flat subduction and inland mi-
gration of volcanism and a temporary lull between 20 and 12 Ma (Beck et al., 2015; Kay & Coira, 2009; 
Yáñez et al., 2001). The JFR arrived at the current position beneath the Sierras Pampeanas around 12 Ma 
(Figure 1) and the related flat subduction of the Nazca slab has again triggered inland migration and cessa-
tion of the subduction-related volcanism (Kay & Mpodozis, 2002), uplift of the main Andes, thick-skinned 
deformation, crustal thickening and basement uplift over a broad zone in the overriding plate (Cristallini & 
Ramos, 2000; Ramos et al., 2002). However, the mechanisms and consequences of the flat subduction are 
still under debate (Hu & Liu, 2016; Liu & Currie, 2019; Manea et al., 2012). In contrast, the sudden re-steep-
ening of the Nazca plate beneath the Payenia segment is associated with the roll-back of the trench (Ramos 
et al., 2014); thus, the Payenia segment has undergone a complete cycle from crustal thickening, mountain 
uplift and inland migration of volcanism (Kay et al., 2005; Ramos & Folguera, 2009) during flat subduction 
to extensional collapse and trenchward migration of volcanism during the re-steepening period (5 Ma to 
now; Folguera et al., 2008; Ramos & Folguera, 2009; Ramos et al., 2014).

The geological timing of the slab angle variations is constrained by the deformation (e.g., Ramos & Fol-
guera, 2009) and volcanism (e.g., Kay & Kay, 2002; Spagnuolo et al., 2012) history in both areas. However, 
existing seismic images still give an incomplete picture. Teleseismic tomography provides a good larger-scale 

Figure 1. Tectonic setting of the South Central Andes, with the Nazca plate subducting to the east beneath the South America plate. (a) Major morphotectonic 
provinces are modified from Tassara et al. (2006) and Piceda et al. (2020), including Fore-Arc (FA), Domeyko Cordillera (DC), Frontal Cordillera (FC), Puna 
(PN), Precordillera (PC), Subandean Ranges (SA), SierrasPampeanas (SP), Patagonian Cordillera (PGC), Principal Cordillera (PPC), Central Valley (CV), 
Neuquen Basin (NB), Neuquen System (NS), Payenia Craton (P), Payenia Volcanic Province (PVP), Incapillo Caldera and Dome Complex (ICDC), Famatina 
Mogotes Group (FMG), Gualcamayo Igneous Complex (GIC). The solid red line denotes the Payenia Volcanic Province (Ramos & Folguera, 2011). White saw-
tooth line denotes the trench. (b) Map showing focal mechanisms of the earthquakes used for FWI. Color-coded dots represent the seismicity (magnitude 𝐴𝐴 𝐴 Mw 
4.0) retrieved from the ISC-EHB catalog (Engdahl et al., 2020). Solid black lines are the Nazca slab contours from Slab 2.0 (Hayes et al., 2018). The thick dashed 
white line denotes the intraslab aseismic zone. Topography data is retrieved from ETOPO1 Global Relief Model (Amante & Eakins, 2009). Inset map marks the 
position of our study region.
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view of the upper mantle but has low vertical resolution, particularly at shallow depths, making it hard to 
distinguish velocity variations in the crust and uppermost mantle, while local travel time tomography stud-
ies can give insight into local structures and processes, for example, magma pathways feeding individual 
volcanic systems, but usually fail to image the full width of the subducting slab due to their small study 
scale; the small scale also hampers an understanding of the regional variations. Here, we employ seismic 
full waveform inversion (FWI) to better constrain the seismic structure in the crust and upper mantle be-
neath the south Central Andes, which would facilitate to further investigate the slab configuration and the 
crustal melt distributions in response to the subduction of the JFR in the Pampean and the mantle wedge 
evolution in response to the slab re-steepening in the Payenia

2. Data and Method
Following the same workflow as Gao et  al.  (2021), we collected 139 earthquakes from the Global Cen-
troid-Moment-Tensor (GCMT) catalog (Ekström et al., 2012), which were recorded by 19 seismic networks 
(Figure 1 and Figure S1 in Supporting Information S1) operating between 1996 and 2019 and magnitudes be-
tween ��  5.0 and 7.0. Detailed network information and raypath coverage are presented in Figures S1 - S2  
and Table S1 in Supporting Information S1. Our seismic velocity model is the result of the multi-scale FWI 
based on the adjoint methodology (e.g., Fichtner et al., 2010; Tape et al., 2010) and started from the initial 
3D �� and �� model SP12RTS (Koelemeijer et al., 2015). Solutions of the visco-elastic wave equation in a 
radially anisotropic Earth model are obtained from Salvus (Afanasiev et al., 2019). The inversion starts by 
inverting periods 60–120 s using a time-frequency phase shift misfit and proceeds progressively to shorter 
periods, with waveforms between 12 and 100 s being inverted for in the final iterations, using a cross-corre-
lation coefficient based misfit function. More information about the inversion workflow is provided in Text 
S1, Figure S4, and Table S2 in Supporting Information S1.

To analyze the resolution of the inversion and trade-offs between the parameters, we calculated the Hes-
sian-vector product H𝐴𝐴 𝐴𝐴 m as point-spread functions to assess possible smearing and distortion (Fichtner & 
Trampert, 2011; Tao et al., 2018). We find that the isotropic �� and �� models are robustly determined in 
the resolved region with a spatial resolution of 30–40 km in the upper mantle and 25–30 km in the crust, 
both horizontally and vertically. Detailed resolution tests are described in Text S2 and Figures S22–S32 in 
Supporting Information S1.

3. Results and Discussion
After 53 iterations of FWI, the crust and upper mantle structure beneath central Chile and western Argen-
tina has been clearly imaged. We display the isotropic �� model with some key depth and cross-sections. 
Further images and the isotropic �� model are shown in Figures S5–S20 in Supporting Information S1.

3.1. Multi-Stage Crustal Partial Melting and Mantle Wedge Evolution

In contrast to the vigorous partial melting represented by strong low-velocity anomalies in the middle-crust 
beneath the Altiplano-Puna Volcanic Complex and volcanic arc for the northern Chile steep subduction 
zone (Gao et al., 2021; Ward et al., 2014; Yuan et al., 2000), the middle crust in the Pampean flat subduction 
zone (𝐴𝐴 28◦ –𝐴𝐴 33◦ S) exhibits only moderately low to normal velocities along the volcanic arc (Figure 2a).

Low-velocity anomaly C1 (Figure  2a and Figure S21 in Supporting Information  S1) is located beneath 
the Frontal Cordillera (FC) and has been reported by several earlier studies (e.g., Gao et al., 2021; Ward 
et  al.,  2013,  2017). In agreement with these earlier studies, we interpret C1 to mark the waning partial 
melting (Gao et al., 2021; Ward et al., 2017) beneath the Incapillo Caldera and Dome Complex (ICDC, Fig-
ure 1a), which is the southernmost ignimbrite caldera of the Central Andes during the Pleistocene (Goss 
et al., 2009, 2011). Meanwhile, weak and isolated low-velocity anomalies (C2 and C3, Figure 2a) beneath the 
Sierras Pampeanas (SP) are accompanied by middle to late Miocene adakitic volcanoes including the Fam-
atina Mogotes Group (FMG, Kay & Mpodozis, 2002) and Gualcamayo Igneous Complex (GIC, D'Annunzio 
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Figure 2.
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et al., 2018), hinting at the relic and waning slab melting origin (Gutscher et al., 2000; Hu & Liu, 2016; Kay 
& Abbruzzi, 1996; Kay & Kay, 2002) during the flattening process around 6–3 Ma (Hu & Liu, 2016).

A striking low-velocity anomaly C5 (Figure  2b and Profile [a] in Figure  3) at approximate Moho depth 
(60 km) extends from the Frontal Cordillera to the Sierras Pampeanas (SP), forming a thin layer above the 
Pampean flat slab. As the mantle wedge must have been thinned to a sliver or completely closed during the 
flattening of the Nazca slab (Gutscher et al., 2000; Manea et al., 2017), this low-velocity anomaly could be at-
tributed to the hydrated continental lithosphere due to the accumulation of fluids released from the current 
flat slab (Hildreth & Moorbath, 1988). The flat slab has the potential to significantly modify the overriding 
lithosphere for a long distance from the trench due to the dehydration (Hiett et al., 2021; Li, 2020; Marot 
et al., 2014) or scraping-off of the base of the continental mantle lithosphere, as has been suggested for the 
Laramide orogeny (Axen et al., 2018) and the North China Craton (Li, 2020) from numerical modeling.

In contrast, south of 𝐴𝐴 33◦ S, C4 may mark the restoration of partial melt accumulation in the middle crust 
during the re-steepening process of the Nazca slab beneath the Payenia (Marot et al., 2014; Ramos & Fol-
guera, 2009). The late Miocene volcanic activity in the back-arc and Pleistocene-Holocene volcanic activity 
in the frontal arc (including large-scale Payenia Volcanic Province, Figure 1a) indicate a trench-ward mi-
gration of the volcanism. Following the re-steepening of the slab since 4–5 Ma, the mantle wedge has re-
opened, leading to the re-injection of hot asthenosphere and renewed melt formation in the wedge induced 
by slab-derived fluids dehydration, in turn inducing trench-ward migration of the volcanism (Gutscher 
et al., 2000; Kay & Mpodozis, 2002; Marot et al., 2014; Ramos & Folguera, 2009, 2011). The re-opened mantle 
wedge is clearly imaged in our model as low-velocity anomaly M3 and represents the present situation after 
the slab re-steepening (Figure 2c and profile [d] and [e] in Figure 3).

3.2. Slab Thinning and Tearing Along the Juan Fernandez Ridge

In the central part of the Pampean flat slab, two low-velocity anomalies (M1 and M2) span a slab window 
along the inland projection of the JFR (Figure 2c and Profile [b] in Figure 3) and are surrounded by two 
high-velocity limbs of the flat slab (H2). Though many prior works detected the Pampean flat slab with 
strong heterogeneities, most of seismological studies focused on the seismic structure south of 𝐴𝐴 29◦ S (e.g., 
Linkimer et al., 2020; Marot et al., 2014; Porter et al., 2012; Wagner et al., 2005), leaving an observational 
gap from 𝐴𝐴 27◦ –𝐴𝐴 29◦ S. In this study, events and stations north of 𝐴𝐴 27◦ S are included in the inversion, allowing 
us to resolve M1 and M2.

The inland projection of the JFR is not well constrained from previous plate reconstruction studies (Bel-
lo-González et  al.,  2018; Yáñez et  al.,  2001) due to its relatively long subduction and migration history 
(12 Ma) beneath the Pampean area. Hence, the extent of the region affected by the JFR is not known precise-
ly, nor are details of the seismic structure associated with the JFR (Gans et al., 2011; Gutscher et al., 2000; 
Haddon & Porter, 2018; Marot et al., 2014; Wagner et al., 2005). Following Kay and Mpodozis (2002), we 
assume the uncertainty width of the influence zone of the JFR within the oceanic lithosphere is 200 km, 
which also takes into account the region of underplating and possible hydration of the oceanic lithosphere 
(Kopp et al., 2004), which extends beyond the seamount chain itself. Thus, the low-velocity anomalies M1 
and M2 are located within the JFR influence range. Similar to predictions from numerical modeling (Hu & 
Liu, 2016), the slab thinning and tearing zone develops within the central part of the current flat slab. In Hu 
and Liu's model, slab thinning and tearing initiates from the inboard tip of the flat slab before re-steepening 
downdip and propagates trench-wards, parallel to the track of the JFR and consistent our direct observation. 
In addition to the enhanced buoyancy of the JFR, its hydration state and inherited normal faults (Kopp 
et al., 2004) might have caused zones of weakness along which the thinning and tearing could progress.

Figure 2. Horizontal depth slices for isotropic �� . The large and small magenta circles are seismicity from ISC-EHB catalog and the relocated catalog from 
Sippl et al. (2021), respectively, within 10 km of the nominal depth of the slice. The off-shore pink-shaded area indicates the position of the weakened oceanic 
lithosphere detected by Kopp et al. (2004) along the Juan Fernandez seamount ridge. The solid black lines denote the top interface of the slab according to 
Slab 2.0 (Hayes et al., 2018) at the depth of the slice. Thick dashed black line denotes the Payenia Volcanic Province. In panel (c) T (tension) axes from Global 
Centroid-Moment-Tensor focal mechanism solutions (Ekström et al., 2012) for earthquakes between 120 and 150 km depth with magnitude �� > 5.0 are 
indicated by magenta bars. Straight black lines in panel (d) denote the positions of the cross-sections in Figure 3.
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Conspicuously, the slab tearing zone (M1 and M2) is characterized by the absence of intra-slab seismicity, in 
contrast to the slab limbs to the north and south (Figure 2c). The focal mechanisms show a clear asymmet-
ric pattern across the JFR track: The north branch of H2 is characterized by predominantly NE-SW oriented 
T axes, which are subparallel to the track of the JFR, whereas the T axes for events in the southern branch 
of H2 are oriented mainly NW-SE, sub-normal to the JFR trend, implying a 𝐴𝐴 ∼ 90◦ rotation of T axes across 
the aseismic zone (Figure 2c) at 120–160 km at depth. The northeast extension in the northern slab limb 
parallel to the JFR is superimposed on dominant slab pull (downdip extension), which is also reflected in 
the velocity field (Hu & Liu, 2016) and azimuthal anisotropy (Hu et al., 2017; Lynner et al., 2017). The south 
branch is coincident with the track of the JFR and attributed to the reactivation of the preexisting normal 

Figure 3. Cross-sections of isotropic �� perturbations relative to the reference 1D �� defined in Figure S3 in Supporting Information S1. (see Figure 2d for 
profile locations). The thick solid gray lines denote the continental Moho (Rivadeneyra-Vera et al., 2019) and thin solid black lines denote the slab contour 
from Slab 2.0 (Hayes et al., 2018). The thick dashed dark-gray line in panel (b) denotes the oceanic LAB from receiver function (Heit et al., 2008). Magenta dots 
in panels (b)–(d) denote the seismicity relocated by Sippl et al. (2021) and in other profiles are retrieved from ISC-EHB catalog. All the labeled tomographic 
anomalies can be found in the main text. See Figure S14 in Supporting Information S1 for a version of this figure without labels and seismicity.
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faults, causing vigorous intra-slab seismicity (Ammirati et al., 2015; Anderson et al., 2007; Gans et al., 2011; 
Ranero et al., 2005; Wagner et al., 2020).

Along 𝐴𝐴 30◦ S, Heit et al. (2008) detected a strong oceanic LAB signal west of 𝐴𝐴 69◦ W that suddenly disappears 
and even changes polarity further east below the slab tearing zone (Figure 3b). Recent magnetic and gravity 
modeling work (Sánchez et al., 2019) also inferred hot asthenospheric flow beneath the flat slab and local 
slab thinning. These observations support our interpretation of M1 and M2 as evidence for thinning and 
tearing of the slab (Figure 4).

M1 and M2 are spatially associated with weak crustal low-velocity anomalies C3 and C2 below the late Mi-
ocene adakitic volcanism including the GIC (D'Annunzio et al., 2018) and FMG (Kay & Mpodozis, 2002), 
respectively (Figure  2a). As adakitic volcanism is attributed to melting of the oceanic slab (Gutscher 

Figure 4. (a) Schematic representation of the current Nazca slab configuration west of 𝐴𝐴 66◦ W. Gray zone with short 
bars indicates the inland projection of the Juan Fernandez Ridge. South of 𝐴𝐴 33◦ S the Nazca plate subducts steeply in the 
Payenia segment. (b) Proposed sequence of the steep to flat slab subduction evolution along 𝐴𝐴 29◦ S since 12 Ma, which 
can explain the observed pattern of Pampean sub-slab anomalies.
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et al., 2000; Hu & Liu, 2016; Kay & Mpodozis, 2002), which would be expected at the onset of thinning 
and tearing when the flat slab was being heated up. This indicates a slab tearing at this position might have 
initiated in the late Miocene during the flattening process and since then started propagating trench-wards 
(Hu & Liu, 2016) until now, as new slab material is brought into the tearing zone by the ongoing subduction 
(Figure 4a).

The Pampean flat slab, after having developed in the Middle to Late Miocene, suffered from numerous in-
stabilities, such as internal stresses induced by the increased buoyancy of the JFR relative to its two flanks, 
changes in hydration state, reactivation of inherited normal faults, and basal heating by asthenosphere flow 
(Rodríguez-González et al., 2014). These factors have induced weakening, thinning and finally tearing of 
the oceanic slab, accompanied by melting of the oceanic crust as predicted by the geodynamic model (Hu 
& Liu, 2016). The basalt input from the melted oceanic crust leads to the adakitic volcanism (Gutscher 
et al., 2000) during the late Miocene (Figure 4a). However, as Hu and Liu (2016) pointed out, the cessation 
of adakitic eruption possibly correlated with the waning asthenosphere upwelling after thermal equilibra-
tion has been achieved following upward flow of hot asthenospheric material through the gap and cool-
ing-down and even complete closure of the mantle wedge due to the further flattening process after late 
Miocene (5–3 Ma; Figure 4).

3.3. Slab Break-Off: Transition From Steep to Flat Subduction?

A prominent high-velocity anomaly (H3) is found just below the flat Nazca slab (H2), extending from 𝐴𝐴 28◦ 
to 𝐴𝐴 30◦ (Figure 2d). At depth, H3 is dipping steeply to the east from 200 down to 350 km depth (Profile [a], 
Figure 3). This anomaly was also visible in previous global or teleseismic tomography studies, but was so far 
not interpreted (e.g., Li et al., 2008; Mohammadzaheri et al., 2021; Portner et al., 2020). Recent S-wave tele-
seismic work (Rodríguez et al., 2021) captured a similar but larger-scale high-velocity anomaly extending 
from 200 km down to the lower mantle and attributed it to a part of relic Phoenix/Aluk plate, which was 
completely subducted by the late Cretaceous (Gianni et al., 2018; Horton, 2018). However, the resolution 
of the aforementioned models is limited in the upper mantle due to vertical smearing. We prefer to relate 
this anomaly to the more recent Nazca plate subduction as it seems unlikely that a part of the Phoenix slab 
could remain in the upper mantle for more than 100 million years without sinking into the lower mantle or 
thermally equilibrating with the surrounding mantle (Bello-González et al., 2018; Chen et al., 2019; Ramos 
& Folguera, 2009). Thus, we propose this anomaly to be a fossil fragment of the Nazca slab that was sub-
ducting steeply prior to the onset of flattening, indicating break-off from the leading edge of the current 
Nazca slab (Liu & Currie,  2016). Slab break-off during the slab flattening process is common in geody-
namic models (e.g., Dai et al., 2020; Haschke et al., 2002; Liu & Currie, 2016, 2019). The conditions for slab 
break-off during the slab flattening process include fast trenchward migration of the overriding plate (high 
convergence rate) and a strong buoyancy contrast between either an oceanic plateau or aseismic ridge crust 
(here the JFR) and the normal thickness oceanic crust of an old slab (Haschke et al., 2002; Li et al., 2011; Liu 
& Currie, 2016, 2019). The removal of the leading dense portion would allow the positive buoyancy of the 
trailing edge to quickly flatten out the slab (Figure 4b). In many global tomography models, the Nazca slab 
extends to much shallower depth in the south than the north, where it is visible down to 1,000 km depth 
(Li et al., 2008; Obayashi et al., 2013). Several teleseismic tomography models (Portner et al., 2017, 2020; 
Rodríguez et al., 2021) for South America seem to indicate a slab hole at 200–300 km depth around 𝐴𝐴 32◦ S 
in the re-steepened portion within the upper mantle. Thus the relic slab break-off or detachment from the 
head of the young and buoyant Nazca slab seems a viable option.

Taking account of the initial time of the transition from the steep to the flat subduction around 12 Ma coeval 
with the subduction of the JFR (Kay & Mpodozis, 2002; Ramos & Folguera, 2009; Yáñez et al., 2001), this 
would also be the time for the high density portion ahead of the JFR to break off from the leading edge of 
the young Nazca slab (Figure 4b). Furthermore, partial eclogitization of the oceanic crust before the onset 
of the flat subduction may play an important role in controlling the breaking-off time (Liu & Currie, 2019) 
and sinking depth in the upper mantle. Thus, the tail of the broken portion would sink slowly in the upper 
mantle due to its relatively young age, while the head would have already sunk into the mantle transition 
zone or deeper, below the resolution limit of our model. After break-off, the young and buoyant Nazca slab 
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with the JFR could lift to extend horizontally eastwards for nearly 300 km before re-steepening with a steep 
angle to a relatively shallower depth compared to the dip subduction zone north of 𝐴𝐴 28◦ S (Figure 4b).

We note that the position of the relic slab is further westward than we expected from the geodynamic model 
of Liu and Currie (2019). While we cannot offer a fully satisfactory explanation for this, we speculate that 
westward directed asthenospheric flow could potentially account for this discrepancy. In order to solve this 
puzzle, 3D geodynamic models and future imaging extending high resolution imaging throughout the tran-
sition zone and into the uppermost part of the lower mantle will likely be required.

3.4. Subslab Asthenospheric Flow Induced by Sudden Re-Steepening of the Nazca Slab Beneath 
the Payenia?

Another striking feature in our model is the low-velocity anomaly M4 extending from 𝐴𝐴 32◦ –𝐴𝐴 36◦ S below the 
steep Nazca slab in Payenia subduction zone and from slab depths to 250–300 km depth (Figures 2c and 3, 
Profile [e]–[h]). This low-velocity anomaly has also been observed by some earlier tomography studies (Celli 
et al., 2020; Feng et al., 2007; Portner et al., 2017, 2020; Rodríguez et al., 2021). Portner et al. (2017) attrib-
uted it to the asthenosphere entrainment by the JFR with the subducting Nazca slab due to the coupling 
between the asthenosphere and overlying oceanic lithosphere (Liu & Zhou, 2015). However, due to its large 
size and location, it may more likely be caused by hot asthenospheric flow induced by the sudden re-steep-
ening of the Nazca slab and trench retreat (Hu et al., 2017; Lin, 2014; Mohammadzaheri et al., 2021; Ramos 
& Folguera, 2009) since 4 Ma beneath the Payenia subduction zone (Figure 4a).

4. Conclusions
Through multi-scale full seismic waveform inversion, we identify low velocity zones within the Pampean 
flat slab parallel to the inland projection of the Juan Fernandez Ridge, which we interpret as a tearing zone 
within the flat slab. It may be induced by the buoyancy contrast between the Pampean flat slab with Juan 
Fernandez Ridge attached and its surrounding steep slab portions to the north and south. Meanwhile, the 
buoyancy contrast between the young Nazca slab and the preceding steep Nazca slab appears to have trig-
gered the slab break-off from the leading edge of current Nazca slab. The resulting buoyancy increase could 
possibly sustain the long-distance flat subduction. Flat subduction also expelled the mantle wedge and shut 
off partial melting, resulting in much reduced volcanic activity and presence of partial melt in the crust. 
Re-steepening of the Nazca slab beneath the Payenia subduction zone seems to have significantly perturbed 
the sub-slab asthenospheric flow and introduced large-scale mantle flow, as visible in large low-velocity 
zone both below and above the slab. Re-opening of the mantle wedge and injection of the asthenosphere 
induced by the re-steepening of the Nazca slab may have caused the re-accumulation of partial melts within 
the middle crust and volcanic arc trench-ward migration and reactivation in the Payenia segment.

Data Availability Statement
Waveform data and station meta data were downloaded using the ObsPy (Krischer et al., 2015) module 
through the International Federation of Digital Seismograph Networks (FDSN) webservices from GEOFON 
Data Management Center (https://geofon.gfz-potsdam.de/waveform/archive/) and Incorporated Re-
search Institutions for Seismology Data Management Center (IRIS-DMC, http://www.iris.edu/ds/nodes/
dmc/). Raw data of the temporary and permanent networks used in this study with FDSN codes includ-
ing C (https://www.fdsn.org/networks/detail/C/); C1 (https://doi.org/10.7914/SN/C1); CX (https://doi.
org/10.14470/PK615318); IU (https://doi.org/10.7914/SN/IU); WA (https://www.fdsn.org/networks/detail/
WA/); 2B (https://doi.org/10.14470/7O092361); 3A (https://www.fdsn.org/networks/detail/3A_2010/); 
3H (https://doi.org/10.14470/8U7569253520); G (https://doi.org/10.18715/GEOSCOPE.G); X6 (https://
doi.org/10.7914/SN/X6_2007); XH (https://doi.org/10.7914/SN/XH_2008); XS (https://doi.org/10.15778/
RESIF.XS2010); XY (https://doi.org/10.7914/SN/XY_2010); YC (https://doi.org/10.7914/SN/YC_2000); 
YM (https://doi.org/10.7914/SN/YM_2010); ZA (https://doi.org/10.14470/MN7557778612); ZB (https://
doi.org/10.14470/MO6442843258); ZE (https://geofon.gfz-potsdam.de/waveform/archive/network.php?n-
code=ZE&year=2010); ZL (https://doi.org/10.7914/SN/ZL_2007); ZP (https://geofon.gfz-potsdam.de/
waveform/archive/network.php?ncode=ZP&year=1999); ZQ (https://geofon.gfz-potsdam.de/waveform/
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archive/network.php?ncode=ZQ&year=2004); ZR (https://doi.org/10.7914/SN/ZR_2015); ZW (https://doi.
org/10.14470/MJ7559637482). The final velocity model could be accessed through https://doi.org/10.5880/
GFZ.2.4.2021.008 (Gao & Tilmann, 2021).
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