
1.  Introduction
Hydrologic extremes such as droughts and floods can be spatially related, that is they can co-occur in mul-
tiple catchments simultaneously. Such co-occurrence increases management challenges and potential eco-
nomic and societal impacts because emergency measures need to be coordinated across catchments and 
damages may be widespread. A recent example of a drought event with widespread impacts is the 2018 
drought in Europe, which affected Central and Northern Europe (Bakke et al., 2020; Brunner et al., 2019) 
and a variety of sectors including forestry, agriculture and water supply (Stephan et al., 2021). An example 
for the other side of the extreme spectrum is the widespread 2019 Mississippi flood, which affected the Mis-
souri and Mississippi river basins and caused major damages to infrastructure (Pal et al., 2020). Despite the 
potential importance of spatial correlations with respect to impacts, we often overlook these relationships 
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and study extremes from a local univariate perspective, which can lead to a misestimation of hazard and 
impacts (Thieken et al., 2015).

A few studies have tried to consider the regional dimension of hydrologic extremes in hazard assess-
ments and to statistically model the spatial dependencies in flood and drought occurrence. For floods, 
spatial dependencies have been considered in modeling and hazard assessment efforts, for example by 
Keef et al. (2013) and Quinn et al. (2019) who have adopted the Heffernan and Tawn model (Heffernan 
& Tawn, 2004) to simulate widespread synthetic flood events and to calculate the economic loss of large 
flood events or by Brunner, Papalexiou, et al. (2020) who have used a spatio-temporal stochastic model to 
simulate spatially consistent flood events and quantify regional flood hazard over the United States. For 
droughts, the spatial dimension has mostly been considered in terms of drought extent (Brunner, Swain, 
et al., 2021; Rudd et al., 2019), by computing regional drought indices (Rossi et al., 1992), performing fre-
quency analysis using severity-area-frequency curves (Andreadis et al., 2005; Henriques & Santos, 1999; 
Hisdal & Tallaksen, 2003), and in stochastic modeling through the use of max-stable models (Oesting & 
Stein, 2018). While it is increasingly common to consider spatial dependencies in modeling efforts, less 
attention has been paid to understanding the variations and drivers of these spatial dependencies. Only 
recently, Brunner, Gilleland, et  al.  (2020) have shown that spatial flood dependencies vary in time and 
space and are substantially modulated not just by precipitation but also land-surface processes, particularly 
in mountainous regions where snow accumulation and melt modulates the timing of flood occurrence. 
The drivers of spatial drought extents but not spatial dependencies have been studied by Brunner, Swain, 
et al. (2021), who have shown that soil moisture and temperature are important drivers of drought extent 
from winter to spring and in summer, respectively.

While these previous studies suggest that the spatial dependencies of hydrologic extremes vary seasonally 
and are governed by a variety of factors, they focus on a single type of extreme. Hence, we lack an under-
standing of how the dependencies in high and low flows differ from each other and from dependencies in 
the ’normal’ state (daily streamflow). Here, we therefore compare the spatial dependencies of both types 
of hydrologic extremes and their potential hydro-meteorological drivers to each other and to spatial de-
pendencies in the ’normal’ state. Specifically, we ask: (a) How are hydrologic extremes (both high and low 
flows) spatially related across Central, Western, and Northern Europe and how do their correlations differ 
from general correlation patterns and vary per extreme type and season? (b) How are spatial correlations in 
hydrologic extremes related to correlations in potential hydro-meteorological drivers and how does driver 
importance vary by extreme type? (c) How has spatial connectedness in high and low flows (i.e., the num-
ber of catchments a catchment shows strong flow correlations with) changed over time and how do these 
changes differ for the two types of extremes?

To address these questions, we use complex network theory, which enables visualizing and describing struc-
tures and connections of large data sets (Kolaczyk & Csardi,  2020; Luke,  2015). Complex networks are 
networks that describe patterns of connections between their elements, in our case, between pairs of catch-
ments. Formally, they consist of a set of vertices or network nodes, and a set of edges or links connecting 
the nodes. In our context, nodes represent catchment outlets and edges indicate similarities in streamflow 
patterns between a pair of catchments. Using complex network theory will allow us to map pairs of catch-
ments with similar streamflow behavior according to a specific metric, which might not necessarily lie on 
the same river network.

A common method to assign edges to node pairs is to use a linear (Pearson) correlation coefficient exceed-
ing a specific threshold. Such a correlation-based approach has also been frequently used in the geo- and 
climate sciences for example to study climate networks using atmospheric variables such as temperature 
(Donges et  al.,  2009; Tsonis & Roebber,  2004; Yamasaki et  al.,  2008), the spatial connections in rainfall 
networks (Guo et al., 2017; Han et al., 2020; Jha & Sivakumar, 2017; Jha et al., 2015; Naufan et al., 2018; 
Scarsoglio et al., 2013; Sivakumar & Woldemeskel, 2015; Tiwari et al., 2020), or the properties of stream-
flow networks. Such streamflow networks have been analyzed by mapping connections of annual (Han 
et al., 2018) or monthly streamflow (Sivakumar & Woldemeskel, 2014) and by identifying structures of sim-
ilar catchments (Fang et al., 2017; Halverson & Fleming, 2015) or critical nodes in a measurement network 
(Sarker et al., 2019).
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Much less attention than to studying the overall correlation behavior has been devoted to studying networks 
of extreme events. In the context of extremes, event synchronization has been proposed as a measure to 
define network edges. This measure counts the number of temporally coinciding events in two time series 
by considering potential time lags between events at two locations (Malik et al., 2012) and has been applied 
to study networks of extreme precipitation (Boers et al., 2014; Ozturk et al., 2018) and drought (Konapala 
& Mishra, 2017). While the event synchronization measure focuses on the number of co-occurring events, 
it does not quantify how strongly the co-occurring events are related, highlighting the need for additional 
suitable measures to study networks of extremes. In addition, the focus of past climate network studies has 
mainly been on mapping networks or identifying network communities and less on explaining network 
structure. One of the few studies also investigating potential drivers of relationships is the study by Jha 
et al.  (2015) who tried to explain spatial correlations across a raingauge network with both topographic 
characteristics and rainfall properties.

Here, we expand complex network analysis in hydrology beyond studying overall correlation or temporal 
co-occurrence by proposing a measure of upper and lower tail correlation to define networks of hydro-
logical extremes. Using complex networks as a graphical tool will allow us to identify spatial connections 
indicated through strong flow dependencies going beyond river network boundaries and using network 
descriptors will enable comparisons between networks of different types. In addition, we go beyond analyz-
ing network structure by studying the potential drivers of correlation strength in such extreme networks. 
We map spatial high- and low-flow connections (i.e., connect pairs of catchments with strong flow corre-
lations) in Central Europe using a tail dependence measure considering the temporal order of events and 
use multiple linear models to link spatial dependencies in hydrologic extremes to spatial dependencies in 
potential hydro-meteorological drivers including precipitation, evapotranspiration, and snowmelt. A better 
understanding of similarities and differences in networks of droughts and floods and their drivers will 
potentially help us to better understand potential future changes in spatial dependencies of extremes and 
related regional drought and flood risk.

2.  Methods and Materials
Our analysis consists of three main steps: (a) mapping and comparing complex networks describing nor-
mal, high- and low-flow conditions in Central Europe, (b) explaining the different complex network pat-
terns by dependencies in potential hydro-meteorological drivers, and (c) assessing past changes in complex 
network properties.

2.1.  Data

For our analysis of complex networks under normal and extreme flow conditions, we use a large-sample 
data set of 937 catchments in Central Europe, which are partly nested (Figure 1), available through the 
Global Runoff Data Centre (GRDC; The Global Runoff Data Centre 56068 Koblenz Germany, 2019). These 
catchments have daily streamflow observations from 1969 through 2011, enabling the temporal analysis in 
Step 3, and are part of the global streamflow indices and metadata archive (GSIM; Do et al., 2018a), which 
provides the catchment boundaries needed to compute hydro-meteorological drivers at the catchment scale 
for the driver analysis in Step 2.

For each of the 937 catchments, we determine the membership to one of the large European river basins, for 
example the Rhine or Loire, and derive time series of hydro-meteorological variables at the catchment scale 
including mean temperature (2 m), precipitation, evapotranspiration, snow-water equivalent (SWE), and 
snowmelt, from the gridded ERA5-Land data set (ECMWF, 2019; Muñoz-Sabater et al., 2021). ERA5-Land 
relies on atmospheric forcing from the ERA5 reanalysis (Hersbach et al.,  2020) and provides additional 
land-influenced reanalysis variables at a spatial resolution of 9 km for the period 1981 to present. We use the 
period 1981–2011 overlapping with the streamflow data set to compute time series of hydro-meteorological 
variables for the driver analysis.
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2.2.  Networks

We map complex discharge networks, for normal and extreme conditions using Pearson's linear correlation 
coefficient over the whole distribution and in the upper and lower tail, respectively. Such complex discharge 
networks will highlight pairs of catchments with strong spatial dependencies in terms of daily flow or ex-
tremes, which do not necessarily need to correspond to pairs of catchments that are physically connected 
through the river network. Pearson's correlation quantifies the linear association between two variables. 
Alternatively, one could work with a nonlinear measure of dependence such as Kendall's tau, which does, 
however, not substantially change network structures (Figure A1 in Supporting Information S1). Upper tail 
correlation is computed for events jointly exceeding a quantile threshold at a pair of stations as
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where E  is the set of points { ( ), ( )}E x q x y q y    with ( )E q x  the E  quantile of 1, , nE x x  and similarly for E y. 
The averages E x and E y are similarly calculated over the set E .

Lower tail correlation is computed in the same way but using a time series of negative values x and y. 
That is, we take the negative daily streamflow time series, extract events where a threshold is jointly exceed-
ed at a pair of stations, and compute the correlation of the threshold exceedances. When computing lower 
tail correlation, we excluded zeros for quantile computation but included them in correlation computations. 
We use this measure of upper and lower tail correlation as a measure for extremal dependence instead of 
classical tail dependence coefficients (Coles, 2001). This new measure allows us to consider the temporal 
order of events, which are jointly extreme at a pair of sites. This is not the case for classical tail dependence 
coefficients where events are rearranged according to magnitude (i.e., the largest event in catchment A is 
matched with the largest event in catchment B, etc.).

Figure 1.  Map of 937 study catchments in Europe: catchment areas (gray) and gauge locations (black).
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Upper and lower tail correlation are computed for different exceedance 
thresholds of 0.8, 0.9, 0.95, and 0.99 to assess the sensitivity of network 
structure to threshold choice (Figure A2 in Supporting Information S1). 
A threshold of 0.9 is chosen for the final analysis to focus on extreme 
events but still guarantee a large enough sample size for reliable corre-
lation computation. The median sample size of the joint upper tail of 
two catchments is 252 event pairs over all seasons, 62 in winter, 59 in 
spring, 62 in summer, and 66 in fall. The median sample size of the joint 
lower tail is 301 event pairs over all seasons, 63 in winter, 68 in spring, 86 
in summer, and 63 in fall. To consider travel times, that is the phenom-
enon that event occurrence might be slightly time shifted in upstream 
and downstream locations, we consider a potential temporal lag of up to 
2 days to compute both overall and tail correlation. We do so by comput-
ing overall and tail correlation for each pair of stations for lags of +/‒ 0 to 
+/‒ 2 days and choosing the maximum correlation within this window. 
We tested windows of 0, 2, and 5 days, and found that correlations/tail 
dependencies are slightly stronger for a lag of 2 instead of 0 days but do 
not substantially increase when moving to a window of 5 days (Figure 
A3 in Supporting Information S1). We therefore focus our analyses on a 
potential lag of 2 days.

Using the three dependence measures overall, upper tail and lower tail correlation, we map and compare 
complex networks of normal, high- and low-flows using the R-package igraph (Csárdi, 2020). A network 
graph ( , )E G V E  is a mathematical structure consisting of a set E V  of vertices (also called nodes) and a set E E 
of edges (also called links) (Figure 2). The number of vertices and the number of edges are called the order 
and size of a network graph, respectively (Kolaczyk & Csardi, 2020). More specifically, we construct weight-
ed and undirected networks. Undirected networks are networks where there is no ordering in the vertices 
defining an edge and weighted networks are networks where edges are attributed different weights with 
heavier weights indicating stronger connections. Here, we focus on undirected networks because we are in-
terested in identifying pairs of catchments where daily, high- or low-flows are strongly related independent 
of whether they are located on the same river network or not. We also focus on weighted networks instead 
of unweighted networks because we are interested in identifying pairs of catchments that are strongly relat-
ed in terms of daily, high- or low-flows.

The weighted networks are constructed using different types of dependence measures as edge weights, 
which will inform us about how strongly pairs of catchments are related in terms of the different flow met-
rics considered. Edges representing correlations below a certain threshold are removed. We tested thresh-
olds of 0.5, 0.6, 0.7, and 0.8 (Figure A4 in Supporting Information S1) and decided to use a threshold of 0.6 
for all dependence measures to only include substantial correlations without excluding too many potential 
relationships. We perform the analysis for the whole year and for each season individually (winter: Decem-
ber–February, spring: March–May, summer: June–August, and fall: September–November) to map seasonal 
differences in network properties. To compare the network properties of the three different network types 
and the seasonal networks, we compute a measure of connectedness and a measure of connectedness 
length for each of the catchments. Connectedness is described by the network degree (also called centrality 
degree), which defines the number of edges incident on a certain node, that is how many catchments a 
certain catchment is correlated with. Connectedness length is defined for each existing edge as the Euclid-
ean distance (Martinez & Chavez, 2019) between catchment outlets of flow-dependent but not necessarily 
physically connected catchments. We compare overall network degree and connectedness length for dif-
ferent network types by comparing their degree and connectedness length distributions and the medians 
of these distributions. Furthermore, we determine seasonal differences in dependence networks for high 
and low flows by comparing median degrees and connectedness lengths of networks representing different 
seasons.

Figure 2.  Illustration of simple network graph including vertices and 
edges.
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2.3.  Driver Analysis

Next, we want to understand whether spatial dependence in streamflow can be explained by spatial depend-
ence in potential hydro-meteorological drivers. To do so, we look at networks of potential hydro-meteoro-
logical drivers including temperature (T), evapotranspiration (ET), precipitation (P), SWE, and snowmelt 
(SMELT). For each of these potential drivers, we also compute overall, lower- and upper-tail correlation but 
without considering a temporal lag as travel times do not apply. As for the streamflow networks, we only 
included connections that exceeded a dependence threshold of 0.6 in network construction. The different 
network types for the different variables are summarized together with the lag used to compute dependence 
measures in Table 1.

To identify potential links between driver and flow correlations, we fit multiple linear regression models to 
the three flow correlation networks and their corresponding driver correlation networks. These models are 
of the following form:

0 1 1 2 2 ,i i i p ipy x x x         � (1)

where the index i refers to the different pairs of catchments, iE y  represents the dependent variable, that is 
the streamflow dependence measure, iE x  represents the explanatory variables, that is the dependencies in 
the hydro-meteorological drivers, 0E   represents the intercept, pE   the slope coefficients for each explanatory 
variable, and E   the model's error term. For example, we model the upper-tail flow correlation network iE y  
as a function of the upper-tail correlation networks of the five hydro-meteorological drivers considered 

1 5, ,i iE x x .

We compute the variable inflation factor (VIF) to identify potentially redundant predictors. Including all 
five explanatory variables leads to relatively high VIF values (E 10 in the case of the lower tail correlation 
model) with particularly high values for T and SWE (Table A1 in Supporting Information S1). This result 
indicates that T and SWE contain somewhat redundant information, which is already included in the oth-
er three variables P, ET, and SMELT. We therefore exclude T and SWE from the modeling efforts and fit a 
multiple regression model with only three explanatory variables, that is P, ET, and SMELT. The significant 
regression coefficients of this multiple regression model provide some insight on which drivers may be 
important for explaining spatial flow dependence patterns. We repeat the model fitting for each season to 
identify seasonally relevant explanatory variables for the three dependence measures.

2.4.  Change Analysis

To assess temporal changes in complex discharge networks, we construct networks for two periods, an 
‘early’ period from 1969–1990 and a ‘late’ period from 1991 to 2011, for the three dependence measures 
overall, upper- and lower-tail correlation. We determine connectedness for each catchment in the data set 
by determining its vertex degree for the networks of both periods. Then, we compute relative changes in 
vertex degrees per catchment to assess changes in spatial flow connectedness as: ( ) /d d d

l e e
 , where eE d  and 

lE d  refer to a catchment's vertex degree in the early and late period, respectively.

Variable

Complex network type Discharge T ET P SWE SMELT

Lag

Daily flow 2 0 0 0 0 0

Upper tail 2 0 0 0 0 0

Lower tail 2 0 0 0 0 0

Note. For each driver and network type, the temporal lag considered to compute the dependence measures is indicated.

Table 1 
Networks Constructed for the Analysis of Streamflow Dependence Drivers
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3.  Results
3.1.  Networks of Overall and Tail Correlation

The spatial connections among pairs of stations showing flow correlations 0 6.  are particularly evident in 
Central and Western Europe (Germany and France) (Figure 3) and weaker in Great Britain and Scandina-
via. Connections are not limited to connections over land but also comprise connections between France 
and Great Britain or Central Europe and Scandinavia. Complex networks change as we turn to high and low 
flows (Figure 4). Overall, high-flow connections are less abundant than connections in daily streamflow, 
that is vertex degrees are generally lower in the high-than in the daily network. However, there are some 
long connections between Central Europe and Western and Northern Europe. Low-flow connections are 
particularly pronounced in Scandinavia, Great Britain, and the Alps where we see higher vertex degrees 
and seem to span long spatial scales with links reaching from Scandinavia and Iceland to Central Europe.

These visual differences in network properties are confirmed when we compare the normal, high-, and 
low-flow networks in terms of the distribution of vertex degree as a measure of connectedness and the 
distribution of edge length as a measure of connectedness length (Figure 5). Among the three flow types, 
daily flows are most strongly connected as indicated by the wide distribution and the high degree median 
(Figure 5a). That is, individual catchments show high streamflow correlations with many other catchments, 
while these connections are shortest as indicated by the low median connectedness length (Figure 5b), that 
is the dependent catchments are located close to each other. High flows are comparably weakly connected 
but over slightly longer distances while low flows are slightly more strongly connected and over the longest 
distances.

Connectedness (vertex degrees) and connectedness lengths (edge lengths) not only differ by flow type but 
also by season (Figure 6). Connectedness is strongest in spring and weakest in summer for both high and 

Figure 3.  Correlation network of daily streamflow in Central Europe. Connections (edges) are plotted between pairs of 
catchments with dependence E 0.6 and vertices are scaled by vertex degree and colored by basin membership.
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low flows. In spring, low flows in a particular catchment are, on average, related to low flows in roughly 80 
other catchments while they are only related to roughly 40 catchments in summer. In contrast, high flows in 
a particular catchment are, on average, related to 40 catchments in spring and 20 in summer. Connectedness 
length is longest for low flows in winter with, on average, 1,000 km between correlated catchments, and for 
high flows in summer with, on average, 800 km between correlated catchments.

3.2.  Driver Importance

Pairwise flow dependencies for the three flow characteristics (daily, high, 
and low flow) can be explained by dependencies in hydro-meteorological 
drivers (Figure 7) to a substantial degree (adjusted 2RE  of fitted seasonal 
regression models ranges from 0.4 to 0.8). The importance of the different 
potential drivers P, ET, and SMELT varies by dependence type and sea-
son. Predictive power is generally highest for low-flow dependencies and 
lowest for overall dependencies. Daily streamflow correlations are best 
explained by precipitation correlations in most seasons except in spring 
and fall where snowmelt and ET correlations also play an important role, 
respectively (Figure 7a). That is, streamflow correlations between pairs 
of stations are highest for pairs where precipitation is either jointly high 
or jointly low, in spring for pairs with correlated snowmelt patterns, and 
in fall for pairs with correlated ET patterns. High-flow dependencies are 
also strongly related to precipitation and ET dependencies (Figure 7b). 
That is, high-flows tend to co-occur in pairs of catchments that show 
strong precipitation correlations and/or high ET correlations. High-flow 
dependencies are particularly positively related to precipitation in winter 
and to ET in summer and fall. That is, in winter, catchments with either 
jointly low precipitation or jointly high precipitation show either jointly 
low high-flows or jointly high high-flows, respectively. Similarly, in sum-
mer, jointly dry soils because of high ET or jointly wet soils because of 
low ET lead to high high-flow or low high-flow connectedness. In ad-
dition, snowmelt plays a supporting role from winter to summer, that is 
high flows tend to be spatially dependent if a pair of stations shows a 
strong relationship in snowmelt. Low-flow dependencies show different 

Figure 4.  Comparison of dependence networks in Central Europe for (a) high flows (upper tail correlation) and (b) low flows (lower tail correlation). 
Connections (edges) are drawn between pairs of catchments with dependence E 0.6 and vertices are scaled by vertex degree and colored by basin membership.

Figure 5.  Comparison of dependence networks with respect to the 
distribution of (a) connectedness (degree) and (b) connectedness length 
(Euclidean distance between related catchment outlets) across catchments 
displayed by boxplots for different phenomena: daily streamflow 
(correlation), high flows (upper tail correlation), and low flows (lower tail 
correlation). Vertical lines indicate the medians over all catchments. 1° 
corresponds to roughly 111 km.
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driver dependence relationships than daily and high flows (Figure 7c). ET dependencies are relatively im-
portant to explain low-flow dependencies in spring and summer while snowmelt dependencies are relative-
ly important to explain low-flow dependencies in summer and fall. That is, if a pair of stations shows jointly 
high/low ET values or jointly high/low snowmelt contributions, it is also likely that they jointly experience 
high/low low flows. Precipitation dependencies are comparably less relevant and mostly important in fall.

3.3.  Connectedness Changes

Connectedness in terms of vertex degree has changed over time when comparing a past time period (1969–
1990) to a more recent period (1991–2011) for daily, high, and low flows (Figure 8). Daily connectedness 
changes show spatial patterns with increases in Great Britain and along the North Sea coast and decreases 
in the greater Alpine region and northern Scandinavia (8a). Relative changes in high and low flow connect-
edness (i.e., vertex degrees of different catchments) are stronger than changes in daily flow connectedness 
but show less clear spatial patterns. High-flow connection strength has increased for most catchments with 
exceptions in southern Great Britain and southern Scandinavia. In contrast, low-flow connectedness has 
decreased in Great Britain, the northern part of Central Europe and southern Scandinavia but increased in 
the Alps and parts of Scandinavia.

4.  Discussion
Our results highlight that overall and extreme complex discharge networks have different properties. Dai-
ly flows seem to be particularly related within regions with similar flow seasonality, which explains the 
abundant but rather short connections. For example, flows within Scandinavia are related because of rela-
tively homogeneous snow-dominated regimes but relatively few connections exist to Central Europe where 
regimes are more rainfall dominated (Brunner & Tallaksen, 2019). In contrast, connections become less 
abundant but longer as we move to networks of extremes. Connections span from Scandinavia and Great 
Britain to Central Europe for high and particularly low flows. These connections are likely rather related to 
particular synoptic weather patterns than overall flow seasonality. For example, a frontal storm may lead to 
widespread precipitation which in combination with large-scale wet soil conditions may lead to widespread 
flooding. Similarly, a stable high-pressure system over Scandinavia and Central Europe (as e.g., observed 
during the 2018 drought; Bakke et al., 2020) can lead to synchronized soil drying and lack of precipitation. 
The drought connections tend to be longer than flood connections because the drought-triggering weather 

Figure 6.  Comparison of seasonal dependence networks for high and low flows with respect to median (a) strength 
of connectedness (degree) and (b) length of connectedness (distance, 1° corresponds to roughly 111 km) across 
catchments.
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conditions are active at larger spatial scales than flood-triggering condi-
tions. How exactly dominant spatial connections are linked to weather 
patterns remains to be investigated.

Our findings show that normal, high- and low-flow networks not only 
differ in their characteristics but also their hydro-meteorological drivers. 
While precipitation seems to be the most relevant driver for normal flow 
networks, ET and SMELT have important roles in governing high- and 
low-flow networks. This result corroborates findings by Brunner, Gille-
land, et al. (2020), who have shown that spatial flood dependencies are, 
besides precipitation, substantially modulated by land-surface processes 
such as soil moisture and snowmelt, and by Brunner, Swain, et al. (2021), 
who highlighted the importance of temperature-related factors such as 
soil moisture and snowmelt in determining drought extents. In the case 
of high flows, ET is important in summer and fall because widespread 
dry soils might prevent widespread flood occurrence even in the case of 
widespread precipitation because a lot of water will be able to infiltrate 
instead of building direct runoff. Similarly, widespread wet soils might 
also lead to joint high flows in multiple catchments. In addition, spatial-
ly extensive snowmelt contributions may synchronize scattered extreme 
precipitation events, which otherwise might have led to localized flood-
ing. In the case of low flows, spatial ET dependencies are also strongly 
related to flow dependencies because high ET rates can lead to dry soils 
and therefore reduced recharge at large spatial scales. In addition, miss-
ing snowmelt contributions in summer can lead to jointly dry conditions 
in several catchments at once.

In addition to network properties and drivers, different flow types differ 
in their network changes. These changes are strongest for high and low 
flow networks which mostly show increases and decreases in connect-
edness (vertex degrees), respectively. These changes are likely related to 
changes in the connectedness in individual hydro-meteorological drivers 
and their interplay. It remains to be investigated how future changes in 
driver connectedness as a potential result of climate change might trans-
late into future changes in high- and low-flow connectedness and related 
to these to changes in flood and drought risk. Such an assessment re-
quires setting up or using a chain of climate and hydrological models. 
However, uncertainties in the representation of spatial dependencies can 
be introduced at several points along this modeling chain.

The complex network construction depends on a few methodologi-
cal choices including the tail threshold, time lag or network threshold, 
which affect network properties such as degree or length. For example, 
the choice of the tail threshold, that is the threshold above which flows 
are considered extreme, affects the number of edges (connections) drawn 
and therefore the node degrees and the weights of the edges (Figure A2 in 
Supporting Information S1). Similarly, correlation strength is influenced 
by the maximum time lag chosen to determine correlation (Figure A3 in 
Supporting Information S1) and the number of edges drawn by the cutoff 
threshold used to define when an edge is drawn or not drawn between 
a pair of catchments (Figure A4 in Supporting Information S1). While 

these methodological choices change the strength of the connection pattern, they do not change the overall 
spatial pattern indicating which regions are connected to which other regions. In addition to these methods 
choices, network properties may to some degree also depend on the spatial distribution of the catchments 
in the data set and on the strength of nestedness. Streamflow gauging stations are distributed irregularly 

Figure 7.  Predictor importance (regression coefficient) of precipitation 
(P), evapotranspiration (ET), and snowmelt (SMELT) dependencies 
in predicting positive daily streamflow dependence in the (a) whole 
distribution, (b) upper tail, and (c) lower tail. Non significant predictors (at 

0.05E   ) are displayed in gray. The sample size E n for each of the models is 
given on the right.
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in space, which cannot be avoided. Catchments with denser neighborhoods of catchments may have larg-
er node degrees than those in less densely gauged regions. However, the observation that the catchments 
in Germany, where station density is highest, is not necessarily the region with the highest node degrees 
(see e.g., Figure 4) does not support this hypothesis. Instead, this observation suggests that other factors 
than spatial proximity are important to explain connectedness. Furthermore, catchments which are nested 
within a larger catchment may show larger node degrees than nonnested catchments as flow connections 
of pairs of catchments that are part of the same river network might be stronger than connections of pairs 
of catchments that are not connected through their river network. One potential way around the problem 
of varying station density would be to use a gridded data set of streamflow simulations. However, such a 
grid-based approach would require the use of a distributed hydrological model, which comes at the cost of 
introducing a few sources of uncertainty along the modeling chain (Clark et al., 2016). Such uncertainties 
have been shown to be particularly pronounced for high and low flows (Kempen et  al.,  2021; Pokorny 
et al.,  2021). In addition, it has been shown that modeling spatial dependencies in hydrologic extremes 
is very challenging and often unsatisfactory using commonly used model calibration strategies (Brunner, 
Melsen, et al., 2021; Prudhomme et al., 2011). Therefore, regularly spaced simulated data might not be more 
suitable to study spatial flow connections than the irregularly spaced observations used in this study.

This work mainly focused on understanding the properties of complex discharge networks and their hy-
dro-meteorological drivers. Future work could try to establish a relationship between large scale spatial 
coherence and synoptic weather patterns or climate oscillation indices, such as the Atlantic Multidecadal 
Oscillation or the Mediterranean Oscillation Index, among others (Han et al., 2020). The existence of such 
relationships may help to improve the prediction of spatial extreme events such as widespread floods and 
drought and to project how flow connectedness may change in future.

The network approach based on upper and lower tail correlation can be generalized to other variables and 
regions. It could for example be applied to visualize spatial connections of heatwaves or to map spatial 
dependencies in groundwater levels. Applied to a larger region, it could also be used to detect potential 
teleconnection signals.

5.  Conclusions
We propose upper- and lower-tail correlation as a measure for extremal dependence to map complex net-
works of high- and low-flows and assess their differences, potential drivers, and past changes. Our analyses 
show that complex networks of hydrologic extremes substantially differ from complex networks of daily 
streamflow, low flows are connected (in terms of correlations exceeding 0.6) more strongly and over longer 
distances than high flows, and connections are strongest in spring and weakest in summer for both high 
and low flows. In addition, we show that hydro-meteorological driver importance varies by dependence 
type and season. Evapotranspiration dependence plays a larger role overall in explaining high-flow depend-
ence than precipitation dependence except for winter where precipitation is the main driver. Snowmelt 

Figure 8.  Relative changes (−) in connectedness (vertex degrees) from an early (1969–1990) to a late period (1991–2011) for (a) daily streamflow, (b) high 
flows, and (c) low flows. Purple and brown colors indicate increases and decreases in connectedness, respectively. The darker the color, the stronger is the 
change in connectedness.
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dependence plays a supporting role in explaining high-flow dependence from winter through summer. 
Low-flow dependence is partly governed by snowmelt in all seasons, by ET in spring and summer, and by 
precipitation in fall. Our change assessment shows that changes in high- and low-flow connectedness (i.e., 
the number of catchments a catchment shows high correlations with) are stronger than for daily flow in 
general and that the direction of change varies spatially. High-flow connectedness generally increased while 
low-flow connectedness decreased in the North Sea region but increased in the Alps and parts of Scandina-
via. We conclude that spatial flow dependencies are considerable for both high and particularly low flows 
as a result of a combination of spatially correlated hydro-meteorological drivers whose importance varies 
by extreme type, season, and in time. These temporal changes suggest that (climate) change assessments 
should in addition to looking at changes in extreme flows in individual catchments also look at changes 
in the spatial dependence of extreme flows and their drivers. Such consideration will enable more reliable 
regional drought and flood risk assessments as the impacts of extreme events affecting multiple locations at 
once likely exceed impacts of local events.

Data Availability Statement
The raw data used for the analysis are available through the Global Runoff Data Center (streamflow, The 
Global Runoff Data Centre 56068 Koblenz Germany, 2019), the global streamflow indices and metadata 
archive (catchment boundaries, Do et al., 2018b), and the Copernicus climate data store (ERA5-land hy-
dro-climatic variables, ECMWF (2019)). The processed data set including a shapefile of the 937 catchments, 
their streamflow time series from 1969-2011 and the corresponding time series of the hydro-meteorological 
variables temperature, evapotranspiration, precipitation, SWE, and snowmelt can be downloaded from the 
HydroShare repository: https://www.hydroshare.org/resource/7392b4c3471a4f5e81da099aed230b80/.
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