
1.  Introduction
It has long been recognized that the grain-size distribution in mixed sand- and gravel-bed channels—and 
the deposits they form—encode end transport conditions (e.g., Allen et al., 2017; Armitage et al., 2011; D'Ar-
cy et al., 2017; Duller et al., 2010; Knighton, 1982). The initial sediment grain-size distribution is produced 
on hillslopes by myriad interacting processes including, but not limited to, landslides, chemical weathering, 
and biotic factors (e.g., Roda-Boluda et al., 2018; Sklar et al., 2017). This distribution is then modified during 
transport to and within the fluvial network, principally by some combination of abrasion and selective sort-
ing, to produce patterns of downstream fining (e.g., Chatanantavet et al., 2010; Gomez et al., 2001; Harries 
et al., 2018; Miller et al., 2014; Rice & Church, 1998).

The relative importance of both size-reduction processes are debated, and this process-scale question of 
downstream fining is most often studied in models (e.g., Gasparini et al., 1999; Sklar et al., 2006), labora-
tory flumes (e.g., Paola et al., 1992), or small, confined channel reaches in relatively simple catchments 
with abundant data coverage (e.g., Ferguson et al., 1996; Neely & DiBiase, 2020; Sklar et al., 2017, 2020). 
Downstream grain-size patterns also have implications for studying landscape denudation at large scales 

Abstract  Mixed sand- and gravel-bed rivers record erosion, transport, and fining signals in their 
bedload size distributions. Thus, grain-size data are imperative for studying these processes. However, 
collecting hundreds to thousands of pebble measurements in steep and dynamic high-mountain river 
settings remains challenging. Using the recently published digital grain-sizing algorithm PebbleCounts, we 
were able to survey seven large ( 1,000 2m ) channel cross-sections and measure thousands to tens-of-
thousands of grains per survey along a 100-km stretch of the trunk stream of the Toro Basin in Northwest 
Argentina. The study region traverses a steep topographic and environmental gradient on the eastern 
margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement 
errors and constrain percentile uncertainties using large sample sizes. In the coarse 2.5 cm fraction of 
bedload, only the uppermost size percentiles (95th) vary significantly downstream, whereas the 50th 
and 84th percentiles show less variability. We note a relation between increases in these upper percentiles 
and along-channel junctions with large, steep tributaries. This signal is strongly influenced by lithology 
and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, 
we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest 
parts of the landscape exert primary control on the upper grain-size percentiles. Thus, average or median 
metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain-size 
distributions in such settings.

Plain Language Summary  Rock fragments on hillsides are transported to rivers, eventually 
becoming pebbles, sand, and mud as they are carried downstream by flowing water. The initial size of the 
pebbles, the way the size changes downstream, and the overprinting of the sizes with new pebbles from 
other hills and tributaries all form a complex process that can be difficult to disentangle. Yet studying 
the size of the pebbles at a given stream location or in a sedimentary deposit can provide insights into 
the conditions of their transport in terms of local upstream patterns of erosion, tectonics, and climate. 
We show that just looking at the size of the large pebbles on a riverbed can be used to infer the sources 
of material, but, since there are fewer large pebbles, they require more measurements to quantify. This 
necessitates new methods for pebble measurement using modern image-processing tools.

PURINTON AND BOOKHAGEN

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Tracking Downstream Variability in Large Grain-Size 
Distributions in the South-Central Andes
Benjamin Purinton1  and Bodo Bookhagen1 

1Institute of Geosciences, University of Potsdam, Potsdam-Golm, Germany

Key Points:
•	 �Complex grain-size distributions 

in dynamic mountain rivers can 
be computed via thousands of 
measurements from PebbleCounts

•	 �Many measurements allow robust 
estimation of higher percentiles 
and we observe the most significant 
changes in the ≥95th percentile

•	 �Downstream grain-size variation is 
nonlinearly related to variations in 
topographic steepness and lithology

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
B. Purinton,
purinton@uni-potsdam.de

Citation:
Purinton, B., & Bookhagen, B. (2021). 
Tracking downstream variability 
in large grain-size distributions in 
the south-central Andes. Journal of 
Geophysical Research: Earth Surface, 
126, e2021JF006260. https://doi.
org/10.1029/2021JF006260

Received 14 MAY 2021
Accepted 28 JUL 2021

10.1029/2021JF006260
RESEARCH ARTICLE

1 of 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8504-8115
https://orcid.org/0000-0003-1323-6453
https://doi.org/10.1029/2021JF006260
https://doi.org/10.1029/2021JF006260
https://doi.org/10.1029/2021JF006260
https://doi.org/10.1029/2021JF006260
https://doi.org/10.1029/2021JF006260


Journal of Geophysical Research: Earth Surface

related to basin history, lithology, tectonics, and climate (e.g., Attal & Lavé, 2006; Attal et al., 2015; Dingle 
et al., 2017; Harries et al., 2021; Parida et al., 2019).

Gathering grain-size distributions in steep high-mountain sand- and gravel-bed rivers is challenging, par-
tially in terms of access to remote areas. Moreover, there is difficulty in collecting large sample sizes (typ-
ically via arduous manual labor) to robustly measure the full distribution in dynamic rivers where a wide 
range of material from fine gravels to large boulders can occur (e.g., Attal & Lavé, 2006; Bunte & Abt, 2001; 
Wolcott & Church, 1991). A number of algorithms have been developed for automated or semi-automated 
pebble counting via image segmentation on photos (Butler et al., 2001; Detert & Weitbrecht, 2012; Graham, 
Reid, & Rice, 2005; Graham, Rice, & Reid, 2005; Sime & Ferguson, 2003). These algorithms are accurate 
for interlocking, oblate grains with uniform inter-granular (interstice) shadows typical of many gravel-bed 
rivers (e.g., Graham et al., 2010). However, photos from dynamic rivers in high-mountain areas are typically 
more complex, showing overlapping grains, a large range of sizes including sand patches, irregularly shaped 
pebbles (non-ellipsoid), pebbles with intra-granular color variations or texture such as veins or fractures, 
and highly irregular inter- and intra-granular shadowing.

Building on others (e.g., Detert & Weitbrecht,  2012), the development of the open-source PebbleCounts 
digital grain-sizing algorithm (Purinton & Bookhagen, 2019a, 2019b) constitutes important progress in the 
accurate measurement of grain size in such challenging high-mountain settings. Using photos captured 
from handheld, mast-mounted, or UAV-mounted cameras, it is possible to quickly and efficiently survey 
large—spatially continuous, acre to hectare (4,000–10,000 2m )—channel areas at 1 mm/pixel resolution 
and later count tens-of-thousands of pebbles from the comfort of a computer screen.

Here, we continue on previous work to develop PebbleCounts by applying it at large scale to the well-studied 
Toro Basin in the south-central Andes (Figure 1). First, we thoroughly outline the procedure for processing 
and validating channel cross-section photo surveys using PebbleCounts. Second, we examine the utility of 
large sample sizes to reduce percentile uncertainties at the 95th percentiles using the methods of Eaton 
et al. (2019). Third, we use thousands of measurements to form robust percentile estimates to investigate 
the patterns of downstream changes in grain size. We emphasize a potentially strong nonlinear relation be-
tween geomorphic metrics and grain sizes in steep, high-mountain settings. This is reflected in a correlation 
between the upper percentiles of steepness indices (hillslope and channel) and downstream changes in the 
size of the coarsest bedload, and this signal is strongly influenced by lithology and geologic preconditioning.

2.  Study Area
The Toro Basin (Quebrada del Toro) in the south-central Andes is a large (4,500 2km ) high-mountain 
catchment (Figure  1). This basin drains from headwaters to the north and west abutting the internally 
drained Altiplano-Puna Plateau (elevation  3.5 km) toward the eastern foreland (elevation  1.5 km). The 
seven PebbleCounts survey sites used in the present study are located along the trunk stream, and are refer-
enced with respect to their downstream flow distance, such that the upstream-most site has a flow distance 
of 0 km (Figure 1b).

The trunk stream is the braided sand- and gravel-bed Río Toro, which has a drainage area of 4,500 2km  at 
our lowest survey site. A major tributary junction 15-km upstream of the mountain front—the Río Capil-
la—accounts for 1,000 2km  of this drainage area (Figure 1c). The Río Toro traverses a steep environmental 
and climatic gradient from arid, vegetation-free, low-slope upstream reaches, down through a steep bedrock 
gorge (cf. high relief along channel profile in Figure S1), and out to the humid (1 m/y rainfall), densely 
vegetated foreland. We note that vegetation within the active channel is low (Figure 2).

The Cenozoic and Quaternary basin history includes periods of connection and decoupling from the fore-
land sedimentary basins driven by tectonic and climatic factors (García et al., 2013; Hermanns et al., 2000; 
Hilley & Strecker,  2005; Marrett et  al.,  1994; Marrett & Strecker,  2000; Strecker et  al.,  2007; Tofelde 
et al., 2017). Cosmogenic radionuclide erosion rates from several tributaries show a general west to east 
(arid, high elevations to humid, low elevations) trend of increasing erosion (Bookhagen & Strecker, 2012; 
Tofelde et al., 2018). Contemporary hydro-meteorologic conditions are characterized by a wet and dry sea-
son (coinciding with the South American Summer Monsoon) with frequent, high-intensity rainfall events 
and recent trends of increasing rainfall and river discharge related to climate change (Castino et al., 2016a, 
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2016b, 2017, 2020). Finally, high rates of bedload transport have been observed along the Río Toro (Purinton 
& Bookhagen, 2018), and associated spaceborne radar measurements of this bedload material indicate the 
wide range and variability of grain size (Purinton & Bookhagen, 2020), along with the seasonal motion of 
this material (Olen & Bookhagen, 2020).
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Figure 1.  (a) Map of Toro Basin with the seven PebbleCounts survey sites, elevation, and major drainage network. (b) Slope map with flow distance location 
of surveys. Note, we set the upstream-most survey to 0 km and measure downstream flow distance from this site. (c) Longitudinal profile of Río Toro trunk 
stream with drainage area on the right axis. Locations of photos in Figure 2 are also shown. Vertical lines indicate major geomorphic transitions along the 
trunk stream, and are used in subsequent longitudinal profile plots. Elevation, slope, and drainage network are derived from the 12 m TanDEM-X DEM (Rizzoli 
et al., 2017).
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The primary lithology for 70% of the basin is the Proterozoic low-grade metamorphic flysch Puncovis-
cana basement unit, with additional units including Precambrian/Cambrian plutonic granites, Cambrian 
quartzites, Cretaceous sandstones, Miocene to Pliocene conglomeratic units, and Quaternary fills (Figure 3; 
García et al., 2013; Marrett et al., 1994; Omarini et al., 1999; Reyes & Salfity, 1973; Schwab & Schäfer, 1976). 
The Río Toro and its tributaries traverse these units and cross a number of faults, with a broad knickzone at 
the top of the steep bedrock gorge associated with the Quaternary-active Gólgota fault (Figure 1c; Hilley & 
Strecker, 2005; Marrett et al., 1994).

A significant portion of the bedload material in the Río Toro comes from gullying and associated debris 
flows, with additional delivery by scree production on steep hillslopes, and sparse and infrequent landslides 
(Tofelde et al., 2018). Upstream of the Gólgota fault is a low-slope region (Figure 1b) of large fluvial terraces, 
which experiences limited connectivity through the narrow entrance to the steep gorge. The upstream dis-
connectivity and transport-limited condition is highlighted by the lack of granite and quartzite clasts in the 
bedload material, despite large outcroppings of these resistant lithologies in the upstream basin (Figure 3). 
Marrett and Strecker  (2000) note the dominance of the Puncoviscana unit in the bedload, particularly 
downstream of the Gólgota fault. Locally, we find other lithologies downstream of tributary junctions with 
these outcrops (e.g., Cretaceous outcrops in downstream Río Capilla; cf. Figure 3), but the Puncoviscana 
meta-sediments remain the primary channel-bed lithology.

3.  Data and Methods
The data generated for this study are grain-size distributions containing thousands to tens-of-thousands of 
observations from the channel cross-section survey sites shown in Figure 1. The digital grain-sizing algo-
rithms (PebbleCounts) are described in detail in Purinton and Bookhagen (2019a), and are available from 
the following repository: https://github.com/UP-RS-ESP/PebbleCounts (Purinton & Bookhagen,  2019b). 
Scripts and data associated with the present work are here: https://github.com/UP-RS-ESP/Pebble-
Counts-Application (Purinton, 2021).

PebbleCounts consists of two separate algorithms: A k-means manual selection (KMS) tool, which we herein 
refer to as the manual KMS tool, and an automatic image filtering (AIF) tool, which we herein refer to as 
the automatic AIF tool. We note the redundancy in the naming scheme, but choose this terminology for 
consistency with previous work (Purinton & Bookhagen, 2019a) and to remind the reader of the manual 
versus automatic approaches.
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Figure 2.  (a) Field photo taken during PebbleCounts mast surveying (mast height 5 m) in the steep gorge. Note the 
low hillslope and channel vegetation and the large boulders in the active channel. (b) Field photo taken from a UAV 
downstream of the mountain front looking upstream. Note the higher vegetation on hillslopes and large quantity of 
gravel being transported out of the Toro Basin (cf. Figure 1c for photo locations).

https://github.com/UP%2DRS%2DESP/PebbleCounts
https://github.com/UP%2DRS%2DESP/PebbleCounts%2DApplication
https://github.com/UP%2DRS%2DESP/PebbleCounts%2DApplication
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The manual KMS tool provides higher accuracy measurements via manu-
al selection of correctly identified grains prior to ellipse fitting and meas-
urement, whereas the automatic AIF tool provides faster results with less 
manual input, and higher measurement errors. As opposed to previous 
algorithms (e.g., Basegrain; Detert & Weitbrecht, 2012), PebbleCounts is 
especially tailored to high-energy mountain river settings.

Throughout the manuscript we refer to false measurements (i.e., misi-
dentified or mismeasured grains) as measurement errors and the uncer-
tainties in calculated percentiles as percentile uncertainties. Because our 
automatic sampling approach (higher measurement error) guides manu-
al validation sampling (lower measurement error), we present the auto-
matic measurement first.

3.1.  Survey Pre-processing

PebbleCounts survey and processing statistics are summarized in Table 1. 
The surveys shown in Figure 1b were gathered via a mast-mounted cam-
era (Figure 2a) and processed into seamless, georeferenced ortho-images 
using structure-from-motion processing in Agisoft (Agisoft, 2018; Purin-
ton & Bookhagen, 2019a). Only the highest quality (lowest blur, sharpest 
image) parts of the survey were used by cropping the entire survey and 
buffering any holes (both by 1 m) caused by insufficient camera overlap. 
This resulted in measurable survey areas of 1,000–3,500 2m , with or-
tho-image resolutions of 0.9–1.1 mm/pixel. We refer to Figure S2 for an 
example survey.

As processing many 1,000 2m  survey sites with PebbleCounts requires 
significant effort (up to two weeks per site), we partially processed our 
surveys. We did so by first tiling the ortho-image into 2,000  2,000 pixel 
tiles ( 2 2    m). The value of 2,000 pixels was selected as an efficient 
number to reduce processing time in PebbleCounts (which grows expo-
nentially with the number of pixels in the image due to steps like non-lo-
cal means de-noising and ellipse filtering), while limiting the number of 
tiles that needed to be processed.

3.2.  Counting With PebbleCounts Automatic AIF Tool

Having prepared the survey for grain sizing (buffering and tiling), the 
tiles were fed into the automatic AIF tool in a checkerboard-like pattern, 

skipping every other row and every other column. This left us with four grids of tiles, and for each site we 
first processed one of these four grids (Figure S2). Prior to automatic processing, the tiles were pre-screened 
for quality assurance and skipped if there was excessive vegetation or woody debris, blurring, and/or strong 
shadowing obscuring grains.

Within PebbleCounts, the grains are segmented based on their color and interstices, and an ellipse is fit to 
this segmented area. The long and short axes of the ellipse are the apparent a- and b-axes of the pebble, 
respectively. Per the PebbleCounts lower-detection limit of b-axis length of 20 pixels, the minimum b-axis 
grain size that we truncated measurements to was 2.5 cm. This is greater than 20 pixels, which corresponds 
to 1.8–2.2 cm b-axis size given the imagery spatial resolutions. We chose 2.5 cm out of an abundance of 
caution. This conservative truncation allows us to make inter-site grain-size percentile comparisons, while 
reducing potential percentile uncertainties from under-counting the proportion of smaller grains (cf. Pu-
rinton & Bookhagen, 2019a). After counting using the default 20-pixel cutoff, any grains with a b-axis size 
2.5 cm were removed from further analysis.
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Figure 3.  Simplified geologic map of the Toro Basin modified after others 
(García et al., 2013; Marrett et al., 1994; Tofelde et al., 2017, 2018). Of the 
mapped faults, only the knickzone-generating Gólgota fault is indicated 
with a label (cf. Figure 1c).

Lithologic Legend

Cambrian 
quartzite

Cretaceous 
sandstone

Proterozoic 
Puncoviscana flysch

Precambrian/
Cambrian granite

Miocene/
Pliocene cgl.

Undiff. Tertiary 
magmatic

Undiff. Quaternary 
deposits

Survey sites (Fig. 1)

Gólgota Fault

R
ío Toro

Río Capilla



Journal of Geophysical Research: Earth Surface

We sought at least 50 grains identified in each percentile, including the 99th percentile. This set our count-
ing requirement to 5,000 grains per site. After running the first grid, if 5,000 grains were counted we pro-
cessed the next grid until reaching this quota. This was achieved after maximum two of the four grids of tiles 
for each site, and resulted in a number of sites with 10,000 measurements (Table 1). Between 1/4 and 1/2 
of the cross-section was processed and coverage was evenly spread over the survey areas (Figure S2), which 
had heterogeneous arrangements of grain-size facies typical of mountain rivers. The number of tiles run 
through the automatic AIF tool for each site ranged from 83 to 204, representing an areal range of 332–661 

2m  and 6,530–32,852 individual grain measurements (Table 1).

In total, the time from cropping images to completion of automatic processing by a trained expert was be-
tween 3 and 6 h per site, depending on the number of tiles. These steps include rapid quality checks on each 
tile, selection of a shadow threshold, and clicking of a color mask representing smooth sandy areas between 
the grains. The automatic AIF tool provides not only many thousand grain-size measurements per site, but 
also an approximate percentage of sand surfaces ranging from 2% to 82% (Table 1).

The measured grains covered only 3%–27% of the total tile area measured, with much of the tile area re-
maining unmeasured for each site (15%–71%; Table 1). This unmeasured percentage represents total area 
where neither sand nor grains were measured, since the PebbleCounts algorithms do not attempt to measure 
all parts of the image, but only those grains that can be identified with high confidence. This missing meas-
urement in each tile is made up for by counting many tiles over a large area.

3.3.  Validation With PebbleCounts Manual KMS Tool

To gather accurate manual KMS measurements for validation of the automatic AIF tool, we required a care-
ful tile-selection scheme to select a representative subset of the wide grain-size distribution. We began by 
considering the grain-size distribution provided by the automatically counted tiles. We first calculated the 
95th/50th percentile ratio for each tile in a given site, which allows us to stratify the tiles into coarser (great-
er ratio value) and finer (lower ratio value, approaching 1) bins. We then created five bins of 95th/50th ratio, 
where the size (counts) of the histogram bins were equal to the number of automatically counted tiles of a 
given range. From this, we sub-selected from each 95th/50th ratio bin a relative proportion of 1/4 to 1/8 of 
the stratified tiles, resulting in anywhere from 0 to 8 tiles per bin (0 tiles were allowed to occur in some bins 
when the 95th/50th range across tiles was very low, typically 0.5). The bin-wise proportion was iteratively 
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Survey flow 
distance 
(km)

Spatial 
resolution 

(mm/
pixel)

Measurable area 
(m2) (Tile count)

Automatic AIF tiles processed 
(Percent of total tiles)

Automatic 
AIF grains 
identified

Percentage 
grains/sand/
unmeasured 
in automatic 

AIFa

Manual 
KMS 

validation 
tiles 

processed
Manual KMS grains measured 

(Percent of automatic AIF)

0 1.1 3,470 (717) 178 (25%) 6,530 3/82/15 14 1,001 (15%)

25 1.0 944 (236) 120 (50%) 7,000 10/39/51 14 922 (13%)

41 0.9 1,331 (411) 204 (50%) 18,975 12/36/52 26 1,985 (10%)

50 1.0 1,344 (336) 83 (25%) 11,021 12/28/60 19 2,081 (19%)

52 0.9 1,225 (378) 186 (50%) 16,902 13/37/50 20 1,663 (10%)

64 1.0 1,476 (369) 93 (25%) 18,173 16/37/47 10 1,917 (11%)

95 1.0 1,488 (372) 93 (25%) 32,852 27/2/71 15 2,863 (9%)

Note. Survey flow distance in km refers to Figure 1b. The tiling procedure is described in Section 3.1. The manual KMS identified grains in the final column are 
the reliable manually selected validation measurements used to assess the performance of the automatic AIF grain identifications.
Abbreviations: AIF, automatic image filtering; KMS, k-means manual selection.
aPercentage of tile area with: grain size (2.5 cm) quantified, masked for smooth sand surfaces ( 2 mm  ), and unmeasured due to missed grains and/or 
vegetation and other debris.

Table 1 
PebbleCounts Survey Statistics for Grains   2.5 cm in b-Axis Length
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selected to provide at least 10% of the individual automatic AIF grain measurements in the manual KMS 
validation tiles (except for the site at 95 km with 9%; Table 1).

We ran each of the 10–26 selected validation tiles through the manual KMS tool, resulting in 922–2,863 
grains measured per site (Table 1). This tool requires manual selection (by a single click within the segment-
ed grain boundary) of correctly identified grains on each tile, requiring up to 30 min per tile by a trained 
expert depending on the number of grains present.

This process ensured that the full range of grain sizes was proportionally sampled for validation and accura-
cy assessment. This validation scheme can be compared to grain-size stratified random sampling as opposed 
to random spatial sampling (Bunte & Abt, 2001), because the outlined steps are based on the expected range 
of grain sizes present, which may be heterogeneously arranged. The automatic AIF tool provides an initial 
assessment of the grain-size arrangement at a survey location, which is used to guide a manual KMS sam-
pling strategy.

3.4.  Percentile Measurements of the Coarse Fraction

We use our large sample sizes to produce robust percentiles, like the 50th or 84th percentiles (D50 and D84 
in hydraulics notation). Throughout this work we refer explicitly to the percentiles (e.g., 50th) of the coarse 
(2.5 cm) fraction of the grain-size distribution. We avoid the D-notation, since this implies a much finer 
cutoff in measured grains and usually refers to the full distribution of grain sizes identifiable by the naked 
eye. Calculations of dimensionless shear stress (Shields stress) and thresholds for erosion in fluvial incision 
laws are often based on specific D-values (e.g., D50 or D84), based on grain-size distributions with a lower 
truncation (e.g., particles in suspension vs. bedload) or no truncation. We stress that our percentiles will be 
different to D-values (e.g., D50 vs. our 50th percentile) due to our truncation at 2.5 cm.

Although we do acquire the areal percentage sand ( 2 mm) at each survey (cf. Table 1), it is difficult to 
justify inclusion of (e.g., through offsetting of the coarse distribution), since this is not an actual grain size, 
but rather a percentage of area based on color and smooth appearance (no grain edges) in the image. Studies 
that include the sand fraction do so through sieving in the same area as coarse clast counting (e.g., Attal 
et al., 2015). Including the sand fraction would still leave out the 2–2.5 cm fraction, thus creating a large 
gap in the measurements, which we are not confident in interpolating.

In our case, the truncated distribution represents the coarser gravel, cobble, and boulder fraction of pebbles 
present in the channel bed. Downstream percentile changes in the sand and silt fraction may be far different 
from the pebbles, and this finer material is transported during low-flow conditions, whereas the coarser 
pebble fraction is only transported during sufficiently high discharges. Thus, here we are only interested in 
the fraction of the bedload, which is moved by stochastic events exceeding the threshold of motion of the 
pebbles. In making comparisons, we note this distinction to studies using D-notation, but we also note that 
previous studies are based on small (100–500) clast counts, and are thus unable to accurately determine the 
uppermost ( 95th) percentiles of the bedload.

3.5.  Topographic and Lithologic Data

To draw connections between pebble size measured with PebbleCounts and drivers of downstream size 
changes, we analyzed upstream and local topographic steepness and lithology at each survey site.

3.5.1.  Channel Steepness

We first calculated the normalized channel steepness, given by:

ref
snk SA � (1)

where S is channel slope, A is drainage area, and ref  is a fixed reference channel concavity (e.g., Wobus 
et al., 2006). We used the snk  metric to relate with grain-size variability since bedrock fluvial channels in 
steep mountain environments are sensitive indicators of erosion (e.g., Hilley et al., 2019; Whipple, 2004), 
which may translate to channel bed grain size.
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All drainage network extraction steps and snk  calculations were done using the open-source LSDTopoTools 
package (Mudd et al., 2019). Specifically, we used the lsdtt-chi-mapping tool, which implements the proce-
dures outlined in Mudd et al. (2014), based on the integral approach to channel-steepness mapping of Per-
ron and Royden (2013). First, the drainage network was extracted using a minimum area of 0.1 2km . Then, 
the best fit ref  value for the entire basin was calculated using a combination of chi-disorder and slope-area 
metrics (Mudd et al., 2018). For the Toro Basin, this was found to be 0.4ref   and this was used for further 
calculation. The high-quality, state-of-the-art 12 m TanDEM-X DEM with acquired coverage over the Toro 
Basin was used for this analysis (Purinton & Bookhagen, 2017; Rizzoli et al., 2017). The snk  extraction ap-
plies smoothing steps to reduce topographic noise, resulting in a spatially averaged steepness along discrete 
(100–1,000+ m) channel reaches.

In analyzing the upstream snk  for each site, we reduced the spatial influence of distant snk  values on the 
site's grain-size distribution by limiting the maximum upstream flow distance of considered pixels. We 
made assumptions based on Sternberg's law (Sternberg, 1875) of abrasion to set the limiting distance. This 
law states:

0
LD D e � (2)

where D is the final size, 0D  is the initial size,   is the abrasion constant, and L is the travel distance. This 
relationship was developed to describe the rate of fining by wear alone, ignoring the potential influence of 
selective transport (e.g., Paola et al., 1992), but has also shown a consistent relationship in settings with sig-
nificant sediment sorting and supply changes (Hoey & Bluck, 1999). In the Río Toro, the dominant lithology 
of the channel bed is the Puncoviscana meta-sediments, and the largest b-axis measured was 50 cm. Attal 
and Lavé (2006) report abrasion rates in similarly weak meta-sedimentary lithologies (schists, including 
phyllites, sericites, and micaschists) in the Himalaya of 16%/km. Using this abrasion rate in Sternberg's law, 
a 50 cm boulder of Puncoviscana would pass below our 2.5 cm measurement limit after a travel distance of 
only 20 km.

Based on this assumption, we calculated the median and 95th to 100th percentile snk  of every tributary 
0.1 2km  that meets the trunk stream; only considering those pixels within 20-km flow distance of the trunk 
junction. We also tested doubling this limit, but found little difference in the downstream patterns.

3.5.2.  Hillslope Steepness

Since local hillslopes are known to significantly affect fluvial grain-size distributions (e.g., Neely et al., 2019; 
Neely & DiBiase, 2020), we also examined the relationship of grain-size variability to hillslope steepness 
adjacent to the surveyed trunk stream sites. We again used the 12 m TanDEM-X DEM to calculate slope in 
a 500-m buffered area on either side of the trunk stream. Prior to calculations, we applied a light Gaussian 
smoothing filter (standard deviation of 0.5) to reduce the influence of minor spaceborne DEM errors caus-
ing outliers in slope calculations (Purinton & Bookhagen, 2017). The 500-m buffer ensured that only the 
steepest slopes immediately adjacent to the channel were measured. To measure continuous downstream 
changes along the channel, we took 2-km flow-distance bins and calculated the median and upper-percen-
tile (95th to 100th) hillslope angle in each bin.

3.5.3.  Lithology

In conjunction with channel and hillslope steepness, the nearby upstream lithology also influences chan-
nel-bedload characteristics (e.g., Dingle et al., 2017; Mueller & Pitlick, 2013; Mueller et al., 2016). To assess 
this, we calculated the percentage of each lithologic unit exposed upstream (cf. Figure 3). Under the same 
assumptions made with Sternberg's law for channel steepness, we limited the upstream pixel distance to 
20-km upstream in each tributary. A clipping mask on the basin lithology was manually digitized using a 
drainage network of the  20-km (flow-distance to the trunk junction) channels, and hand-clicking the area 
including these channels and their hillslopes (up to the nearby ridge-crests).

In addition to this basin-wide lithology, we also calculated the approximate percentage of the dominant 
Puncoviscana meta-sediment lithology in each pebble survey. This lithology is relatively easy to identify 
from photos given its purple color, prominent quartz veins, and sub-angular to sub-rounded appearance. 
Lithology data were not collected in the field, since the goal was to measure very large areas and test new 

PURINTON AND BOOKHAGEN

10.1029/2021JF006260

8 of 29



Journal of Geophysical Research: Earth Surface

grain-sizing methods. Attempts were made at automatic lithology identification from the photos, but this 
requires further research and likely the use of multi- or hyperspectral information, since RGB color and 
segmented shape alone do not capture the variability in pebble lithology. We accomplished a simple lithol-
ogy count by randomly selecting three tiles run in the automatic AIF tool, with two from either end of the 
survey and one from the middle. From these tiles, the non-Puncoviscana pebbles were identified (more 
rounded red, yellow, and white pebbles typically making up  50% of the total), this number was subtracted 
from the total measurements in the tile, and a percentage of the Puncoviscana was calculated for each sur-
vey site. This percentage is taken from a total of at least 500 quickly viewed pebbles per site.

4.  Results
The results consist of six analyses in the following order: First, we show initial results of the downstream 
evolution of grain-size percentiles using the manual KMS measurements. Second, measurement errors in 
the automatic AIF tool are shown, and we demonstrate validation of these percentiles using the manual 
KMS control. (To reiterate, we refer to false measurements as measurement errors and the uncertainties in 
calculated percentiles as percentile uncertainties.) Third, we show the importance of large sample sizes in 
reducing percentile uncertainties at upper percentiles via binomial theory presented in Eaton et al. (2019). 
Fourth, we present an alternative approach for reaching these large sample sizes based on log-normal fitting 
and distribution simulation. Fifth, the downstream evolution of grain-size percentiles is presented taking 
into account percentile uncertainties. Sixth, we highlight the drivers of grain-size changes through reach-
scale analysis of topographic steepness and lithology.

4.1.  Downstream Percentile Evolution From Manual KMS Tool

We begin by presenting the reliable manual KMS percentiles at our seven survey sites (Figure 4). This figure 
does not include uncertainties. Previous calibration efforts using 1,000 hand-clicked control grains show 
maximum percentile uncertainties of 10% from the KMS tool, though often 5% (Purinton & Bookha-
gen, 2019a). We note that the increasing uncertainty of higher percentiles (e.g., 95th) shown in Purinton 
and Bookhagen (2019a) can partially be attributed to the small sample size at these upper values, which 
we discuss in detail below. The observed grain-size variability between sites is larger than these reported 
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Figure 4.  Longitudinal evolution of a-axis percentiles downstream along the Río Toro. Measured a-axis percentiles are from the k-means manual selection 
(KMS) algorithm with 922–2,863 grains measured per site (Table 1). No percentile uncertainties are presented in this first assessment, but these are on the order 
of 5%–10% from previous calibration against hand-clicked control data (Purinton & Bookhagen, 2019a). Throughout the manuscript, the sites are connected 
with dashed lines to express possible between-site variability in the trend. Note the longitudinal river profile on the right axis and vertical lines of geomorphic 
transitions, included to maintain the spatial context of the sites (cf. Figure 1), and used in all subsequent longitudinal figures.
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uncertainties. From Figure 4, we note the high variability of the upper percentiles (95th and 99th), whereas 
the lower percentiles (50th and 84th) show less variability.

Error bars could be calculated for Figure 4 using a bootstrapping approach (e.g., D'Arcy et al., 2017), but this 
makes assumptions about the true grain size from the full population. We prefer to consider the uncertainty 
purely as a function of the sample number. Even 1,000 individual measurements constitute only 10 grains 
at the 99th percentile. This percentile is subject to considerable uncertainty from small sample sizes when a 
large range in grain size is present over a wide channel area.

4.2.  Larger Sample Sizes From Automatic AIF Tool

One way to achieve larger pebble sample sizes is using the automatic AIF measurements. However, this 
method has possible significant percentile uncertainties due to few control steps during image segmenta-
tion. Therefore, these measurements need to be validated against the manual results prior to use.

4.2.1.  Sources of Measurement Error

Poorer performance of PebbleCounts can be expected on lower quality imagery (less sharp, more blur). This 
can be mitigated by using high-quality camera lenses and quicker shutter speeds during photo capture. Ad-
ditionally, the more steady the mount (be it handheld, tripod, mast, or UAV), the higher quality the photo 
result. Aside from image quality that can be controlled for, segmentation algorithms like PebbleCounts for 
grain sizing are error prone in images that contain overlapping grains, a large size range (including sand 
patches), angular pebbles (non-ellipsoid), pebbles with intra-granular color variations (veins or fractures), 
and in which shadowing is irregular (both inter- and intra-granular). These factors are all present in many 
high-mountain study areas like ours.

When comparing automatic AIF counted tiles with manual KMS counted tiles during validation steps, we 
found distinct error patterns (Figure 5). Many tiles performed very well, with the grain-size distribution 
matching almost perfectly between the two methods (Figures  5a–5c). However, in other cases, the tiles 
suffered from one of two distinct types of error.

One error type was found on image tiles with little sand between the grains to use for initial segmentation, a 
more uniform grain size and color, and significant grain overlap. Here, we found a positive bias in the auto-
matic AIF grain-size distribution compared to the manual KMS validation result (Figures 5d–5f). We term 
this under-segmentation error, and it is caused when smaller grains are merged into larger grains, because 
the algorithm has trouble segmenting the similar colors with high overlap that do not always have distinct 
boundaries necessary for edge detection.

The other error type was found where the sand patches between grains were mottled in color—caused by 
a mixture of dry and wet sand patches with a gradation of tan to brown colors—making sand masking 
by color more difficult (i.e., some sand areas remained outside of the mask), and where the grains were 
more angular and contained quartz veins, both of which led to intra-granular edges. Here, we found a 
negative bias in the automatic AIF grain-size distribution compared to the manual KMS validation result 
(Figures 5g–5i). We term this over-segmentation error, and it is caused when larger grains are split into 
smaller grains (because of internal edges) and when many false finer grains are identified, which are actu-
ally remaining isolated sand patches.

Generating validation figures like those shown in Figure 5 for every tile run through the manual KMS and 
automatic AIF PebbleCounts tools demonstrated which tiles (and thus which sites) suffered from errors. 
The first type of error (under-segmentation, positive bias) was least prevalent along the Río Toro (e.g., Fig-
ure 5e), where there tended to be abundant sand patches and more angular grains. The second type of error 
(over-segmentation, negative bias), was somewhat more prevalent in some tiles (e.g., Figure 5h), caused by 
two factors: (a) the fracturing of the dominant Puncoviscana metamorphosed flysch, which tends to form 
angular fragments, as well as abundant quartz veins in these rocks, both leading to problematic internal 
edges; (b) partially dry sand patches mottled in color leading to difficulty forming a uniform-colored mask 
in the first stage of image segmentation.
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Figure 5.  Under- and over-segmentation errors in PebbleCounts shown with images and with grain-size distributions: (a–c) with minimal errors are from the 
64-km site; (d–f) with under-segmentation errors are from the 95-km site; and (g–i) with over-segmentation errors are from the 50-km site. K-means manual 
selection (KMS) refers to manual control data and automatic image filtering (AIF) refers to automatic data.
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4.2.2.  Validation of Automatic AIF Measurements

Although both types of error (under-/over-segmentation) can occur locally (between tiles) at a given site, 
we found that, these opposing errors either canceled out or were minimized compared to the correctly 
identified grains. This is demonstrated in the grain-size distributions and similarity of percentiles for the 
automatic AIF and manual KMS measurements from all validation tiles for a given site in Figure 6. We 
reiterate that PebbleCounts measures grain size via an ellipse-fitting approach (as shown in the examples in 
Figure 5), and thus provides both a- (long) and b- (intermediate) axes. The results for the b-axis percentiles 
are similar and shown in Figures S4 and S5.

Six of our seven survey sites (0, 25, 41, 50, 52, and 64 km; Figures 6a–6l) had excellent agreement between 
the automatic AIF and manual KMS validation percentiles, with 2r  values (indicating deviations from a 1:1 
relationship) of 0.99. Thus, the automatic AIF PebbleCounts tool performed very well when considering 
percentiles, despite containing many misidentified grains. Furthermore, it is shown in the Figure S3 that 
similar results are obtained when including all 6,530–18,975 automatic AIF measurements for these six 
sites, indicating that the carefully chosen stratified sub-sample of validation tiles (comprising 10%–20% of 
the total automatic AIF measurements; cf. Table 1) produces similar percentiles to the full automatic AIF 
distribution.

Only one survey site (95 km; Figures 6m and 6n) showed significant percentile deviations of the automatic 
AIF measurements. Here, the 2r  value was 0.87 and the  50th percentiles clearly deviate from the 1:1 rela-
tionship, showing greater values in the automatic AIF measurement. Upon visual inspection, we found the 
reason for the poorer AIF result at 95 km was due to similar colored grains with high overlap, which the 
automated segmentation and filtering struggled with, leading to under-segmentation.

We emphasize the importance of validation steps. At six sites we can confidently extract large sample sizes 
from the automatic AIF measurements, but at one site (95 km) we can only confidently use the manual 
KMS measurements ( 2,863n  ).

4.3.  Percentile Uncertainties From Binomial Theory

What is the utility of large sample sizes for studying grain-size variability in high-mountain settings? We 
answer this question by turning to recent work by Eaton et al.  (2019) to robustly estimate uncertainties 
in grain-size percentiles. Their method treats every percentile measurement as a collection of coin flips 
with an equal probability of heads or tails (true or false), modeling the result with a binomial distribution. 
Modeling pebble counting as a binomial experiment (where every grain selection is a coin flip) relies on 
the fact that the probability of sampling a given grain size is proportional to the relative bed area covered 
by that size. Using only the number of measurements and the percentile of interest, percentile confidence 
intervals at a given level (e.g., 95%) can be estimated and these intervals can be transferred to a grain-size 
range using the cumulative frequency distribution. For details and derivation, we refer to the study of Eaton 
et al. (2019). For convenience, we translated the published R code (Eaton & Moore, 2019) to Python, and 
made it available here: https://github.com/UP-RS-ESP/PebbleCounts-Application.

Using only the sample size and the cumulative distribution of grain sizes, we can plot the change in per-
centile uncertainty as a percentage versus increasing sample size using Equation 3 in Eaton et al. (2019):

0.5 u l
P

P

d d
d

 
  

 
� (3)

where P  is the percentile uncertainty as a percentage about the percentile of interest Pd , and ud  and ld  are 
the upper and lower confidence intervals, respectively, calculated from the binomial distribution. Plots us-
ing binomial confidence intervals and this equation for the manual KMS and automatic AIF measurements 
are presented in Figure 7 for the 41-km site (results were comparable for all sites). Here, we randomly sam-
pled the full distributions 100 times for each sample size and plotted each result.

In Figures 7a–7c, the decrease in percentile uncertainty for the 84th, 95th, and 99th percentiles are presented 
using 100–1,000 manual KMS measurements in 10 sample steps (i.e., 100, 110, …, 990, 1,000). Beyond 600 
samples the 84th percentile uncertainties are consistently below 10%. However, even with 1,000 samples, 
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Figure 6.  Grain-sizing validation results. Left column shows the binned distribution of a-axis grain size for the 
automatic image filtering (AIF) and k-means manual selection (KMS) tools over all the validation tiles for each site. 
The same log-spaced bins are used across all plots. Right column plots the 1st–99th percentiles against each other (gray 
points) for the two methods, highlighting the 50th, 84th, 95th, and 99th percentiles with different symbols and colors. A 
dashed line and the 2r  indicates the deviation from a perfect 1:1 relationship.
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the 95th and 99th percentile uncertainties remain high. The 99th percentile has percentile uncertainties of 
up to 30% over this entire range. In Figures 7d–7f, the decrease in percentile uncertainty for the 84th, 95th, 
and 99th percentiles are presented using 1,000–18,000 automatic AIF measurements in 100 sample steps. 
In this case, the upper percentiles (95th and 99th) approach or pass below 5% percentile uncertainty only 
after 10,000 samples.

This answers the posed question: The utility of large sample sizes for studying grain-size variability in 
high-mountain settings is to reduce percentile uncertainties and assess variability at the uppermost grain-
size percentiles (e.g., 95th). In the next section, we present an alternative method for artificially simulating 
larger sample sizes from the manual KMS distribution without using the automatic AIF results, which can 
have significant measurement errors.

4.4.  Simulating Larger Samples Using Log-Normal Fitting

A common, verified assumption is that fluvial grain-size distributions follow a log-normal analytical shape 
(e.g., Allen et al., 2017; Bunte & Abt, 2001; Sklar et al., 2006). Therefore, we propose an additional method 
for achieving larger sample sizes and thus reducing percentile uncertainties at the upper percentiles: an-
alytical distribution fitting to the empirical PebbleCounts measurements and simulation of larger samples 
from these smoothed fits.

The two parameter log-normal probability distribution function is defined as:

2

2
1 (ln )( , , ) exp

22
xf x

x
 

 
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with the shape of the distribution   and the scale .
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Figure 7.  Decreasing percentile uncertainty at the 84th, 95th, and 99th percentiles with increasing sample size calculated for 100–1,000 k-means manual 
selection (KMS) measurements (a–c) and 1,000–18,000 automatic image filtering (AIF) measurements (d–f) at the 41-km survey site. Note the change in y-limit 
from 0–50 to 0–20 and the change in x-scale from linear to logarithmic from the first to the second row.
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Assuming that measurement errors are negligible on the manual KMS 
grain-size distribution, we fit a log-normal distribution to each survey 
site with 922–2,863 measurements (cf. Table 1). This provides us with 
estimates for the shape and scale parameters. The goodness-of-fit is 
assessed by low (5%) standard errors about the fit parameters, and 
the one sample Kolmogorov-Smirnov test (KS-test) is used to check 
the null hypothesis that the empirical measurements are drawn from 
the fitted analytical distribution. For the KS-test, p-values 0.05 indi-
cate that we cannot reject the null hypothesis at the 95% confidence 
interval, with p-values approaching 1 indicating excellent agreement 
between the empirical and analytical distribution. After fitting, we ran-
domly sample the analytical distribution to 50,000 samples (a number 
chosen to reduce all percentile uncertainties to well-below 5%; cf. Fig-
ure 7), from which we calculate percentiles of interest.

We could extract exact percentiles from the analytical distribution, but 
our usage is more nuanced. We seek to re-create the random sampling 
of a log-normal grain-size distribution akin to fieldwork on a real river, 
but with a very large sample size (50,000). This then allows us to apply 
the sample-size based percentile uncertainties, which exact analytical 
percentiles would not.

This fitting and simulation procedure is then repeated independently 
on the empirical AIF measurements, with the knowledge that misi-
dentification errors may be present. Despite this, the validation results 

(Figure 6) indicate that the empirical KMS and AIF distributions correspond very well, aside from the 95-
km site. Therefore, we only carried out the log-normal fitting to the empirical automatic AIF measurements 
for the first six survey sites with 6,530–18,975 measurements (cf. Table 1).

In Table 2 we list important fit statistics, and in Figure S6 we plot the results of this exercise for each site. 
Only the shape parameter   is shown in Table 2, since this determines the stretching of the distribution 
toward higher magnitude upper percentiles (Table S1 includes the scale parameter ). For all seven sites, 
the KS-test p-value was  0.64 for both the manual KMS and automatic AIF fits, and the standard errors 
about the fit parameters were below 5% (Table 2 and Table S1). In Figure S6, we show the correspondence 
between the empirical and analytical percentiles using a percentile-percentile plot of the 90th–99th percen-
tiles, similar to the second column of Figure 6. For all fits (KMS and AIF) the 2r  of a 1:1 fit between simu-
lated and empirical percentiles was  0.95. Furthermore, using the two different sets of fit parameters (AIF 
and KMS) to form random samples for each site, the results of a two-sample KS-test is consistently  0.05. 
Therefore, the fit parameters for both sets of empirical results produce statistically similar distributions; but 
because they were created from different empirical data sources they are treated separately.

Notably, the b-axis results (Figure S7) demonstrated poorer log-normal fits compared with the a-axis. This 
is expected, since the grains were truncated by their b-axis measurements, which modifies the b-axis distri-
bution and removes the log-normal shape via a sharp 2.5 cm cutoff, whereas the a-axes of these grains have 
a smoothly decreasing, log-normal tail. Therefore, the presented method for simulating larger sample sizes 
to reduce percentile uncertainties at higher percentiles is only valid on a-axis distributions, assuming that 
these pebbles were sharply truncated by their b-axis lengths.

4.5.  Downstream Percentile Evolution of Grain Size

Having both explored the measurement errors of grain sizing via PebbleCounts and highlighted the impor-
tance of large sample sizes in reducing percentile uncertainties in the uppermost percentiles, we now return 
to assessing the variability in downstream grain-size changes (or downstream evolution).

Figure 8 demonstrates the options for 99th percentile measurement: (a) the empirical manual KMS meas-
urements with only high quality grains manually selected leading to sample sizes of 922–2,863; (b) the 
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Survey 
flow 
distance 
(km)

Log-normal fit 
to KMS shape 
parameter σ ± 
standard error

Log-normal 
fit to KMS 

KS-test 
p-value

Log-normal fit 
to AIF shape 

parameter σ ± 
standard error

Log-normal 
fit to AIF 
KS-test 
p-value

0 0.6368 ± 0.0029 0.96 0.6667 ± 0.0004 0.90

25 0.7764 ± 0.0022 >0.99 0.7550 ± 0.0004 0.85

41 0.8146 ± 0.0010 >0.99 0.8488 ± 0.0003 0.64

50 0.6789 ± 0.0016 0.79 0.7712 ± 0.0002 0.90

52 0.8095 ± 0.0011 >0.99 0.8566 ± 0.0002 0.85

64 0.7711 ± 0.0011 >0.99 0.7262 ± 0.0001 0.99

95 0.6840 ± 0.0009 0.97 n/a n/a

Note. The analytical log-normal scale parameter µ is included in Table S1. 
For the automatic AIF results, we exclude the 95-km survey site with 
greater measurement error. A p-value closer to one indicates high similarity 
between the empirical data and fitted distribution. Note that 95% confidence 
intervals for the parameters can be approximated as two times the standard 
error.
Abbreviations: AIF, automatic image filtering; KMS, k-means manual 
selection.

Table 2 
Fit Statistics of the Log-Normal Distributions Shown in Figure S6
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empirical automatic AIF measurements, including a number of misidentified grains, validated against the 
manual KMS measurements leading to sample sizes of 6,530–18,975; and (c) 50,000 simulated log-normal 
samples for each survey based on an analytical fit to the manual KMS measurements. In this figure, we do 
not include the fourth option: 50,000 simulated log-normal samples based on the automatic AIF fit for the 
sites excluding 95 km. As expected from validation (Figure 6) and log-normal fitting results (Figure S6 and 
Table 2), when simulating the larger sample sizes and plotting percentiles downstream, the automatic AIF 
and manual KMS log-normal fits provide similar, overlapping patterns (cf. Figure S9). We note that at 52, 64, 
and 95 km there appears to be a small over-estimation discrepancy at the 99th percentile with the log-nor-
mal approach. However, this is minor (often with overlapping error bars to the other methods) and the fit 
is expected to be slightly worse at the tails of the distribution, where the least number of measurements are 
found.

Although the overall downstream grain-size patterns are similar between the methods, there are clear dif-
ferences in the percentile uncertainties, which depend on sample size (Figure 7). In order of decreasing per-
centile uncertainty (worst to best) are the manual KMS measurements, then the automatic AIF measure-
ments, and finally the 50,000 log-normal simulated samples. The confidence intervals for the manual KMS 
measurements cover a range of 3–8 cm (8%–20%), whereas the larger sample methods have a maximum 
range of 3 cm (4%–8%). As opposed to the uncertainty-free manual results presented in Figure 4, it is clear 
the inclusion of percentile uncertainties warrants caution in interpreting the downstream signals from the 
manual KMS data. On the other hand, the larger sample size methods allow confident deciphering of upper 
percentile variability well outside the range of percentile uncertainty.

We continue using the automatic AIF measurements, except at the 95-km site, where we use the smaller 
manual KMS samples. This choice of the automatic AIF measurements versus the log-normal simulated 
is based on our confidence in the validation shown in Figure 6 and our goal to work with empirical data. 
Using the 50,000 simulated log-normal samples would not change the patterns or discussion of the results 
(cf. Figures S8 and S9).

Figure 9 shows representative percentiles (50th, 84th, 95th, and 99th) for the automatic AIF a-axes. This 
is similar to our initial results in Figure 4, but in Figure 9 we use percentile uncertainties and the larger 
automatic AIF measurements (except at 95 km). The increasing range of values at increasing percentiles is 
clear. The downstream range of 50th percentile values vary by 1 cm (20%), the 84th percentile by 5 cm 
(50%), the 95th percentile by 9 cm (70%), and the 99th percentile by 16 cm (100%). The b-axis results 
differ only in magnitude and not in downstream pattern (Figure S10).
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Figure 8.  Longitudinal evolution of a-axis 99th percentile downstream along the Río Toro using the k-means manual selection (KMS) measurements, 
automatic image filtering (AIF) measurements (except at the 95-km site, where these measurements did not pass validation), and 50,000 log-normal simulated 
samples from the manual KMS fit. For visibility the 2–3 points at each site are offset by 0.5 km upstream and downstream. Percentile uncertainty error bars 
represent the 95% confidence intervals from binomial theory (cf. Section 4.3).
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The increased variability toward higher percentiles is highlighted by the ratio plots in Figure 10. Here, every 
tenth percentile (from 5 to 95), plus the 99th percentile, is normalized to the median (50th percentile). The 
b-axis results are similar and presented in Figure S11. Notably, the normalized lines show an identical range 
between the a- and b-axes (e.g., 3–5 range of upper line in Figures 10 and S11), indicating that the pebble 
shape does not change downstream (the a- and b-axis ratios remain approximately constant with respect to 
one another).

The relative difference in percentiles as their distance from the median is referred to herein as stretching 
or compression of the grain-size distribution. Values closer to one indicate compression and farther from 
one indicate stretching. Consider the 95th/50th or 99th/50th ratio lines (Figure 10). These show stretching 
factors of 2–3 and 3–5, respectively, meaning the upper-percentile is 2–3 or 3–5 times larger than the medi-
an. These descriptive terms are preferred, since the term sorting in fluvial geomorphology more often ref-
erences statistics around the central distribution (e.g., D75/D25) in which finer material (1 cm) has been 
measured and the lower and upper quartiles of the distribution are considered.
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Figure 9.  Longitudinal evolution of a-axis percentiles downstream along the Río Toro. Measured a-axis percentiles are from the automatic image filtering 
(AIF) algorithm with 95% confidence intervals from binomial theory (cf. Section 4.3).

Figure 10.  Longitudinal evolution of a-axis percentile ratios downstream along the Río Toro. Ratios are median normalized with the 95% confidence intervals 
from binomial theory (cf. Section 4.3 and Figure 9). Values closer to one indicate compression and farther from one indicate stretching.
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Some downstream patterns are apparent when considering Figure 10. Note that the sites are connected 
with dashed lines to highlight the fact that between-site variability may differ from the observed trend at 
the endpoints of each reach. Between the 0- and 41-km sites (toward the steep gorge), there is an increase 
in percentile stretching. Within the steep bedrock gorge between the Gólgota fault and Río Capilla junction 
(cf. Figure 1), the stretching is high, but fluctuates to a somewhat lower value at the 50-km site. Toward the 
mountain front, the percentiles show rapid compression at the 64-km site. This pattern of compression is 
continued toward the 95-km site, but is lower in magnitude.

4.6.  Reach-Scale Characteristics Driving Grain-Size Variability

To explore the landscape drivers of stretching and compression, we continue plotting only the 99th/50th 
ratio, since this has the largest variability. Figure 11 shows the geomorphic setting that generates the pattern 
of the 99th percentile grain-size variability. Although there is local fluctuation, the trunk stream has high snk  
values above 100  0.8m , and is thus able to transport coarse material. Local hillslope angles also increase into 
the gorge downstream of the Gólgota fault, which generates a broad channel knickzone, then remain high 
to the mountain front, with a consistent median of 40; the angles show some variability at the 95–100th 
percentile, but this largely mirrors the median trend.

For survey sites with increased stretching of the grain-size distribution to higher percentiles, we observe 
upstream tributaries with drainage areas 50 2km  and high 95–100th percentile snk  values within 20-km flow 
distance of their junction with the trunk stream. In the upstream Toro Basin, diverse lithologies outcrop and 
hillslope angles and snk  (trunk and tributary; Figures 11a and 11b) increase toward the gorge. We observe 
percentile stretching from the 0- to the 25-km site, and this trend continues downstream to the 41-km site, 
where a large upstream tributary (junction at 35 km) with snk  values over 400  0.8m  brings Cambrian quartz-
ites and large Puncoviscana boulders into the Río Toro (Figures 11b and 11d).

At the 50-km site the a-axis ratio sharply compresses. Upstream of 50 km no large tributaries with high snk  
values join the trunk and the percentage of Puncoviscana in the lithologic pie chart increases (Figure 11d). 
The Cambrian unit and steep upstream tributary at 35 km may still somewhat contribute to the grain-size 
distribution at 50 km, but this junction is 15-km upstream and the Cambrian outcrops are even farther up-
stream of the junction. At 50 km, we posit that the delivery of finer material in landslide and scree deposits 
compresses the 99th percentile in the absence of greater sediment supply from large and steep tributaries. 
This compression can also be related to the supply of initially finer grained Puncoviscana meta-sediments 
from steep hillslopes with many 50–60 slopes upstream. In the gorge, cataclastic zones of heavily fractured 
Puncoviscana are generated by tectonic processes (cf. cross-cutting and parallel faults to gorge in Figure 3), 
and this material thus has a finer grain size to start out with.

The sudden increase in a-axis ratio (stretching of the distribution) at the 52-km site after crossing the Río 
Capilla junction (1 km upstream of this site) is expected given its similar characteristics to the 41-km site. 
At 52 km, the Río Capilla has high upstream snk  (95th–100th percentile values of 150–200  0.8m ), and intro-
duces Cretaceous sandstones to the Río Toro (yellow Kb sliver in the lithology pie chart in Figure 11d). 12-
km downstream of this site at the mountain front (64-km site), percentile compression occurs, akin to the 
41- to 50-km site transition. At 64 km, this coincides with no large and steep upstream tributary junctions 
(Figure 11b), increases in the upstream Puncoviscana (Figure 11d) on steep hillslopes (Figure 11c), and 
fining of the coarse Cretaceous sandstone brought in by the Río Capilla.

Despite large tributaries and Cretaceous sandstone and Miocene/Pliocene conglomeratic supply from 64 
to 95 km, we observe continued percentile compression at the 95-km site. This can be explained by the low 
hillslope angles in the Lerma Valley downstream of the mountain front, as well as the fact that the large 
tributary supplying these units meets the trunk stream over 15-km upstream of the survey, thus abrading 
and/or selectively sorting these units significantly (cf. 500 2km  drainage area increase in Figure 11d at  
77-km distance).

The pie charts in Figure 11d only contain the lithology from trunk-stream adjacent hillslopes and tributary 
hillslopes within a flow distance of 20-km from their trunk junction. Thus, this is the lithology likely mak-
ing up the coarse fraction of the bedload ( 2.5 cm) that we are able to measure. Additional material from 
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bedrock at greater flow distances is still a large fraction of the bedload at these survey sites, but this material 
is likely mostly below the measurement limit and is otherwise masked by the abundant coarse material in-
troduced nearer to the survey sites. The approximate proportion of Puncoviscana in the  2.5 cm bedload at 
each survey indicated by the green boxes in Figure 11d is taken from photo counting on three tiles randomly 
selected from each location, as described in the methods. The relative trends in these values track with the 
relative trends of Puncoviscana in the pie charts for upstream lithology, aside from the 95-km site, where 
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Figure 11.  (a) 99th/50th percentile ratio for a-axis surveys with Río Toro trunk stream snk  ( ref  = 0.4) plotted on right axis. The a-axis ratio is plotted on each 
sub-plot on the left axis, with dashed lines connecting the surveys. (b) Median snk  of every tributary with drainage area (DA) 0.1 2km  meeting the trunk 
stream with symbols sized by DA and vertical bars above each symbol showing the 95th to 100th (maximum) percentile of snk . These are only the snk  values 
within a  20-km flow distance of the trunk junction. (c) Hillslope angle in a 500-m buffer on either side of the trunk stream, with 2-km flow distance bins at 
the median and the 95th to 100th percentile values shown by gray envelope. (d) Drainage area along the trunk stream. Lithologic pie charts show the exposed 
bedrock within 20-km flow distance. Green boxes pointing to each survey site indicate percentage Puncoviscana from photo counting on three image tiles per 
site. Colors correspond to Figure 3 geologic map with symbols: Q–undifferentiated Quaternary; Tv–undifferentiated Tertiary magmatics; Tsi–Miocene/Pliocene 
conglomerates; Kb–Cretaceous sandstone; Cme–Cambrian quartzite; pCq–Precambrian/Cambrian granite; pCp–Proterozoic Puncoviscana flysch.
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the Quaternary alluvium in the intermontane basin of the Lerma Valley (Hain et al., 2011) includes a large 
proportion of reworked Puncoviscana material.

5.  Discussion
Accurate grain-size distributions from dynamic high-mountain rivers are challenging to acquire. This is 
largely related to the issue of gaining representative sample sizes to capture the tails of the distribution. Our 
method allows many measurements on complex gravel arrangements, and our steep and dynamic sand- and 
gravel-bed river in the south-central Andes provides an ideal environment to test the method, with implica-
tions for downstream fining in similar environments.

Our results demonstrate the measurement errors in PebbleCounts and how the automatic image filtering 
(automatic AIF) data can be validated with k-means manual selection (manual KMS) control data. Large 
sample sizes from empirical or log-normal simulated data reduce uncertainties at the uppermost percen-
tiles and allow observations of between-site variability well outside of uncertainty bounds. When plotted 
downstream, the grain-size distributions exhibit the most significant changes at the highest percentiles. 
Topographic steepness, local lithology, and sediment supply can explain the observed patterns.

This discussion focuses on the limits and caveats of the proposed methods, including consideration of addi-
tional uncertainties. Following this, the landscape drivers of grain-size variability are further justified, and 
the results are placed into context of other studies on downstream grain-size evolution in high-mountain 
settings.

5.1.  Benefits, Caveats, and Limits of PebbleCounts

Challenges in measuring grain size in dynamic mountain rivers are due to difficulties attaining sufficient 
sample sizes that represent the site-specific grain-size range. The suggested number varies in the range of 
100–500 individual clasts (e.g., Bunte & Abt, 2001; Eaton et al., 2019; Rice & Church, 1996, 1998; Wolcott 
& Church, 1991). Added to this manual effort is the selection of a sampling strategy covering a wide area 
of the channel bed and sampling all represented facies (Wolcott & Church, 1991). This is often done with 
Wolman-style gridded random sampling (Wolman, 1954), along a line orthogonal to flow direction (e.g., 
Wohl et al., 1996), or using all grains in many small 1 2m  areas (e.g., Bunte & Abt, 2001). Even with careful 
planning and collection of hundreds of measurements, the uncertainties at upper percentiles can remain 
significant (Figure 7).

The primary benefit of PebbleCounts surveying and counting, is to gain large sample sizes of thousands to 
tens-of-thousands of grain-size measurements over an entire channel cross-section (Figure S2). Increasing 
sample sizes via analytical log-normal fitting and simulation provides an alternative, smoothed method, 
but this assumes a model for the data rather than relying on the empirical results. Both methods lead to 
narrow confidence intervals using binomial theory (Eaton et al., 2019), and, when viewing the downstream 
evolution of percentiles, significant differences are clear (Figure 9). The percentiles of these large sample 
sizes better represent the true percentiles at a given survey location. The 99th percentile only contains 1–5 
measurements for manual counting of 100–500 pebbles, whereas here they contain 29–190 measurements 
(from 2,863 total manual KMS measurements used at the 95-km site to 18,975 total automatic AIF measure-
ments used at the 41-km site; cf. Figure 8).

Digital grain sizing is minimally invasive, requiring only photos, and pebble counting can be done later 
from indoors. Even if validation reveals low quality of the automatic AIF measurements (e.g., for the 95-km 
site in Figures 6m and 6n), the automatic AIF grain-sizing approach provides a first pass at the grain sizes 
in the area. This can be used to guide a sampling strategy for higher quality manual KMS grain-sizing (cf. 
Section 3.3 and Figure S2) without the need for field decisions about representative facies (e.g., Bunte & 
Abt, 2001; Wolcott & Church, 1991). Instead, we sample all facies through a spatially continuous survey. 
Additionally, as opposed to traditional field recording, digital grain sizing is repeatable and reproducible 
using the photographs collected.

Other recent efforts use lidar or structure-from-motion point clouds and/or imagery to measure grains (e.g., 
Carbonneau et al., 2018; Chardon et al., 2020; Lang et al., 2020; Woodget et al., 2018). These are useful, 
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but they still rely on texture-based rather than segmentation-based approaches to grain sizing (Purinton & 
Bookhagen, 2019a). As opposed to the PebbleCounts method of segmenting grains in an image of known 
resolution (scale) and providing the full grain-size distribution, texture-based methods require site-specific 
manual calibration, only provide a few percentiles of interest rather than the full grain-size distribution, 
and are subject to greater percentile uncertainties compared to individual grain measurements. Ultimately, 
texture-based methods provide a spatially integrated measurement of grain size with limited use, whereas 
segmenting images provides much more detail of grain-size variability. We note that the results from Peb-
bleCounts could be used to better calibrate texture-based methods to explore a given percentile over a larger 
area (e.g., Detert et al., 2018).

Measurement errors (misidentifications) do occur with the automatic AIF tool, particularly in more com-
plex channel areas (Figures 5d–5i). However, these errors can be tracked back to obvious conditions where 
segmentation algorithms have trouble, leading to either over- or under-segmentation. In the majority of 
sites surveyed, validation showed close agreement between percentiles of the manual KMS control meas-
urements and the larger sample size automatic AIF measurements (Figures 6 and S3–S5).

PebbleCounts requires large sample areas since it misses many grains in favor of only measuring high-con-
fidence segmented grains. Our study took place over a 100-km flow distance on a channel bed that is, 
frequently 100 m wide, with maximum b-axis grain sizes of 50 cm. This allowed us to survey large areas  
(1,000 2m ) without concern for overlap with other grain-size populations at different survey sites several 
km away. In shorter and/or narrower channel reaches, survey areas must necessarily be smaller so as not 
to overlap and blur the signal between sites. Also, in short and narrow headwaters, the pebble size and 
upper-percentiles of the grain-size distribution can be in excess of several m. Thus, the user is restricted to 
smaller areas (shorter and narrower channel reaches), while also requiring more grains covered, since not 
all will be counted by PebbleCounts and many counts are needed to form a robust percentile measurement 
at the coarser grain sizes. As one approaches the headwaters where streams narrow and grain sizes increase, 
the use of the PebbleCounts method may be precluded, and other methods (e.g., Wolman-style counts) may 
be required.

Another limit of PebbleCounts is the lower truncation on grain sizing of 20 pixels in b-axis size (Purinton & 
Bookhagen, 2019a). Yet, a lower truncation must always be made. Manual counting on photos or in the field 
may allow very small grains down to 0.8 cm to be counted (Graham et al., 2010; Rice & Church, 1998). On 
the other hand, digital grain sizing is limited by the imagery resolution (1 mm/pixel in the present study, 
cf. Table 1). If all sites are truncated to the same lower limit (here  2.5 cm), then we create a new distribu-
tion of only the coarse bedload fraction. From this new distribution, inter-site comparisons can be made to 
assess the relative downstream changes in a subset of the coarse bedload. To reiterate: we avoid the D-nota-
tion (e.g., D50), since this implies that much finer material has been measured, which is not the case here.

Measuring the coarsest grains in a river reach has garnered great interest in recent years given the suggested 
importance of these outliers in controlling channel roughness, critical stresses, and long-term reach-scale 
morphology (e.g., MacKenzie et al., 2018; Williams et al., 2019). In this work, we lay out a fundamental new 
method to explore the coarsest fraction of the bedload distribution in large, high-mountain rivers. Higher 
resolution imagery could be acquired to measure finer grain sizes with PebbleCounts, and a possible synergy 
could be achieved between manual sieving of the finer material (which requires smaller sampling areas 
given its more homogeneous mixing) and photo surveying of the coarse fraction over a larger survey area. 
However, this is beyond the scope of the current study.

5.2.  Assessment of Additional Errors and Uncertainties

In addition to the proposed limits and caveats of the outlined methods, two other considerations should be 
made: The inherent measurement error in photo-sieving using PebbleCounts, and the possible uncertainties 
from sampling location.

5.2.1.  Measurement Errors in PebbleCounts

Digital grain sizing has inherent differences to traditional manual counting. Since grains are not physi-
cally handled and only viewed top-down, tilting, different axes exposed, difficult lighting, partial burial, 
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and/or imbrication can all cause discrepancies in manual versus digital results, potentially propagating 
into percentile uncertainties. These effects have been recognized and examined extensively since the first 
photo-sieving attempts (e.g., Ibbeken & Schleyer, 1986; Kellerhals & Bray, 1971).

Graham et  al.  (2010) provide detailed analysis of this and find that manual digital grain sizing (i.e., 
hand-clicking) tends to slightly over-estimate the percentiles of interest. This is caused by a combination 
of: (a) manual sampling over-counting finer grains compared to digital methods under-counting these finer 
grains; and (b) selective structural effects of imbrication, burial, tilting, etc. on the finer grain sizes, thus 
skewing the digital results to coarser percentiles. Despite this, Graham et al. (2010) found that semiauto-
matic digital grain sizing via segmentation (similar to PebbleCounts) had very low biases and high preci-
sion, similar to manual field measurement. Given the high quality of results, many researchers continue 
to use photo-sieving to gather grain-size distributions (e.g., Attal et al., 2015; D'Arcy et al., 2017; Harries 
et al., 2018; Neely & DiBiase, 2020).

In Purinton and Bookhagen (2019a), we used over 1,000 hand-clicked and manual KMS results to compare 
the automatic AIF tool in test patches. We found that at most 70% of the grains identified with the automatic 
AIF tool had matching grains in the validation data set, and typically nearer to 50%. This does not, however, 
imply that 50% of the AIF measurements are false, since the matching method required that the centroids 
of the automatic AIF and validation grain be within five pixels (6 mm) of one another. Manual KMS image 
segmentation or hand-clicked vector differences versus the automatic AIF tool can lead to larger offsets 
than five pixels, but still capture the same grain and same approximate axis dimensions. Both PebbleCounts 
tools have some error when measuring each grain via an ellipse fit to the segmented area; however, we 
found that these errors are generally low on length measurements (1–5 pixels or 1–5 mm given 1 mm/
pixel resolution; cf. Figure 9 in Purinton & Bookhagen, 2019a).

As with similar digital grain sizing methods (e.g., Graham, Reid, & Rice, 2005; Graham, Rice, & Reid, 2005; 
Graham et al., 2010), despite missing measurements and some small errors on individual grains, percentiles 
can be accurately retrieved from PebbleCounts (Purinton & Bookhagen, 2019a). Importantly, binomial per-
centile uncertainty estimation assumes that each individual grain is measured without error; thus, includ-
ing measurement errors would require an extension of the method or alternative approaches.

To summarize: inaccuracies (measurement errors) exist in the form of slight (1–5 pixel) length errors and 
in misidentified grains. The first measurement error is minimal and likely comparable or better than manu-
al grain-sizing errors in the field. The second measurement error (misidentification) is only an issue for the 
automatically counted grain-size distribution, which is why the automatic AIF results must be treated with 
caution and validated using manual KMS control data. In any case, inclusion of mm-scale grain-by-grain 
measurement errors present in PebbleCounts would not affect the observed downstream patterns, which 
vary over several cm in the 99th percentile.

5.2.2.  Uncertainties Related to Survey Location

Sampling gravel-bed mountain rivers to study downstream trends is complicated by the local heterogene-
ity of pebbles. Some studies at similar scales ( 100 km) take denser sampling to smooth the downstream 
variability that occurs from this local heterogeneity (e.g., Attal & Lavé, 2006; Gomez et al., 2001), as well as 
from the smaller sample sizes taken via traditional grain-size measurement. These surveys rely on operator 
expertize in selecting areas representative of the long-term, baseline bedload transport, and not stochastic 
flood or landslide deposits. We followed these strategies in the field and carefully selected the surveys to be 
far from hillslopes and near the active channel, excluding any direct sampling of landslide or scree deposits, 
or excessively large boulder bars associated with flood deposits. An example survey and PebbleCounts sam-
pling strategy can be found in the Figure S2. Rather than sampling a discrete patch or a single line across the 
channel, our approach covers a much wider area, and is thus more representative of the channel character-
istics at a given site. The grain-size trends that we show (e.g., Figure 10) likely contain additional variability 
between the survey sites (locally discrete fining and coarsening trends), and this is why we connect the 
surveys with dashed lines. Despite this, our carefully chosen sites and large survey areas, as well as our local 
topographic and lithologic analyses, connect the observed grain-size changes with clear drivers upstream of 
each site, and we restrict our interpretations to the local site characteristics.
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5.3.  Upper Percentile Variability and Landscape Drivers

The 50th and 84th percentiles are commonly used to characterize grain size (e.g., Attal & Lavé, 2006; Attal 
et al., 2015), assess hydraulic conditions (e.g., Lague, 2014; Pfeiffer et al., 2017), and determine tectono-cli-
matic conditions during transport and deposition (e.g., Armitage et al., 2011; Duller et al., 2010). Higher 
percentiles like the 90th and 95th are less commonly used in studying grain-size patterns in mountain rivers 
(e.g., Litty et al., 2017; Parida et al., 2019; Rice & Church, 1998), likely because the number of grains de-
scribing these percentiles is very low. We again note that the referenced studies all measure a finer grain size 
(based on a physical cutoff in suspension vs. bedload) to acquire the true D50 and D84. Here, we are only 
measuring the coarsest pebbles, and thus refer explicitly to percentiles (not D-notation) in this distribution 
of the subset of bedload. Our data show that in at least some mountain settings in highly erosive catchments 
like the Toro Basin, the uppermost percentiles (e.g., 95th and 99th) of the coarse bedload (here 2.5 cm) are 
more sensitive to downstream changes in material delivered to and moved by the trunk stream.

Despite our limited number of sample sites, the general trend of coarsening from a plateau into a steep 
bedrock gorge and then fining further downstream is in agreement with other observations in similar set-
tings (e.g., Attal & Lavé, 2006; Attal et al., 2015; Whittaker et al., 2010). Here, we note the local landscape 
controls that modify these general trends, especially with regard to the connectivity of steep tributaries and 
steep, adjacent hillslopes that deliver diverse lithologies to the channel bed. In detailed studies, Mueller 
and Pitlick (2013) and Mueller et al. (2016) also found close ties between bedload sediment and catchment 
lithology and drainage area. Our results agree with these controls, and we also point out the importance 
of oversteepened tributary segments and heavily fractured hillslope lithology (Neely et al., 2019; Neely & 
DiBiase, 2020).

From Figure 11, we contend that large and steep tributaries delivering clasts of variable lithology to the 
trunk stream drive large-scale patterns in 99th percentile variability, and the influence of steeper hillslopes 
in the fractured Puncoviscanca meta-sediments adjacent to the trunk stream provides additional, local 
modification. The dependence of the bedload grain size on the supply of Cambrian quartite and Creta-
ceous sandstone lithologies (making up  30% of bedrock geology; Figure 3) from these large tributaries 
is clear in Figure 11d. Where steep and large tributaries do not continue this supply, local Puncoviscana 
supply dominates the bedload. The general patterns in site-wise Puncoviscana proportion (percentage of 
Puncoviscana at each site in Figure 11d) follow the patterns in nearby upstream basin lithology, supporting 
this argument. We note that the photo counting for the percentage Puncoviscana at each survey site (cf. 
Section 3.5.3) is an approximation, and more detailed data require new methods, possibly utilizing mul-
tispectral UAV-borne instruments. The results in Figure 11 can be reinforced by inspection of representative 
tiles from the surveys.

In Figure 12, we observe that the Puncoviscana meta-sediments dominate the bedload (purple color). At 25, 
41, and 52 km, there are also a number of lighter red, white, and yellow colored pebbles sourced from the 
Miocene/Oligocene conglomerates, Cambrian quartzites, and Cretaceous sandstone units, which outcrop 
in steep tributaries just upstream of these sites (Figure 11d). On the other hand, at 50, 64, and 95 km, we see 
more uniform Puncoviscana lithology (the photo-counted lithology is  97% Puncoviscana at these sites; cf. 
Figure 11d). In particular, we note that at 50 km the clasts are sub-angular to sub-rounded, indicating short 
transport distances in the fluvial network and the impact of steep nearby hillslopes delivering this material, 
whereas at for example, 52 km the clasts are rounded to well-rounded with few angular corners, indicating 
transport from the steep Río Capilla tributary. Angularity, like lithology, is not captured by PebbleCounts, 
and this would require further research using dense point clouds (Purinton & Bookhagen, 2019a).

We observe additional anecdotal evidence of fluvial transport of larger boulders from an upstream source 
as opposed to a nearby hillslope in Figure 2a. This photo shows the location of the 41-km survey site in 
the Puncoviscana-dominated bedrock gorge. The boulders are significantly rounded, and a few are of the 
Cambrian quartzite lithology, which only outcrops in the upstream tributary at 35 km (Figure 3). Thus, it 
is likely that these boulders originate from this 6-km upstream tributary (relative to the 41-km survey site) 
with snk  values in excess of 400  0.8m  (Figure 11b).
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Differences in connectivity, lithology, and channel steepness as drivers of downstream grain-size changes 
are supported by others (Attal & Lavé, 2006; Attal et al., 2015; Harries et al., 2021; Mueller & Pitlick, 2005), 
and these relationships are complex, leading to local coarsening and fining trends. For instance, as opposed 
to this study, Attal et al. (2015) found that the 50th percentile (D50 in their study) in the Feather River basin 
increased faster with increasing stream power compared with the maximum grain size (D100). This result 
highlights the variability we may expect in channel-bed grain-size responses in different settings.

Notably, Hilley et al. (2019) proposed a snk  value of 200  0.8m  (also using 0.4ref  ) as setting the global relief 
limit of Earth's topography. In Figure 11b, we note that the observed zones of percentile stretching appear 
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Figure 12.  Representative 2,0002,000 pixel ortho-image tiles (about 22 m) from each survey site, excluding 
the upstream-most survey at 0 km. Purple pebbles with quartz veins that make up most of the material are the 
Puncoviscana meta-sediments. Lighter colored pebbles (white, yellow, red) include the Miocene/Oligocene 
conglomerates, Cambrian quartzites, and Cretaceous sandstone units.
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to roughly coincide with large tributaries with snk  values approaching or above this suggested relief limit. 
This lends credence to the notion that the uppermost percentiles of the coarse grain-size fraction are more 
sensitive and heavier influenced by the upper percentiles of channel steepness. That said, the influence of 
steep hillslopes and bedrock structure (fracturing) on channel-bed grain size—as is shown by recent work 
(Neely et al., 2019; Neely & DiBiase, 2020; Sklar et al., 2017, 2020)—certainly sets some local patterns in the 
Toro Basin. However, we note that these studies in bedrock channels assumed that there was no selective 
transport, and abrasion alone created the patterns of fining. In the Río Toro, many tributaries show bed-
rock-exposed channels, however the large quantity of material delivered to the trunk stream leads to an 
alluvial channel where a mix of abrasion and selective sorting likely operates. Furthermore, these studies 
have all been carried out in much smaller catchments ( 10 2km ), whereas here we are examining patterns 
over a 100-km flow distance in a 4,500 2km  catchment.

Previous important studies and concepts have pointed out the balances and feedbacks between grain size, 
channel steepness and other controlling factors (e.g., Lane, 1955). In this study, we support this, but also 
demonstrate the changing spatial scales of the involved parameters. We suggest that changes in grain siz-
es, especially at the upper percentiles, may respond to impacts several kilometers upstream and may thus 
dilute the conceptual relations in sediment transport. Furthermore, while large grains can impact local 
channel gradients, the large-scale gradient of the Río Toro is controlled by tectonic uplift and Quaternary 
faulting (e.g., García et al., 2013; Hilley & Strecker, 2005), and, at shorter time scales, by Pleistocene pluvial 
periods and associated landslide dams (e.g., Trauth et al., 2003). We do not anticipate that grain-size varia-
tions significantly impact channel steepness at these large scales in our study area.

In Figure 13, we compare the grain-size stretching with cosmogenic radionuclide erosion rates from the 
study area (Bookhagen & Strecker, 2012; Tofelde et al., 2018), which are commonly associated with topo-
graphic steepness (e.g., Granger et al., 1996; Ouimet et al., 2009). We limited comparisons to only 10 trib-
utary samples within 1.5  km of the trunk stream and two trunk-stream samples. The general trend we 
observe is that the two orders of magnitude increase in erosion rate downstream (from 0.02  mm/y to  
1 mm/y) is met with an 3 to 5 times 99th/50th percentile grain-size stretching difference. Significant 
differences do exist in the trends, and important caveats include the fact that cosmogenic radionuclide 
samples are taken from sands, whereas the grain-size measurements are in the  2.5 cm pebbles, and the 
cosmogenic and PebbleCounts sites are neither spatially nor temporally coincident. Nevertheless, overall 
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Figure 13.  Downstream grain-size percentile stretching, shown with the 99th/50th percentile a-axis line on the left axis, compared with trunk (blue) and 
tributary (orange; sampled within 1.5 km of the trunk) cosmogenic radionuclide (CRN) erosion rates (right axis). Note the logarithmic CRN scaling and two 
order of magnitude range in values. Erosion rates are from Tofelde et al. (2018), with some recalculated values from Bookhagen and Strecker (2012). The CRN 
values are connected with a dotted line only to visually aid the downstream order of the values where samples are closely located around 5 and 50 km.
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trend similarities indicate the possible importance of more erosive parts of the catchment in influencing 
upper percentile grain-size variability.

In conjunction with these conditional erosion-rate data, the spatial coincidence of the increases in grain-
size percentile stretching with the steepest ( 95th percentile) parts of the catchment (Figure 11) suggest a 
possible nonlinear relationship between geomorphic metrics and grain size. The steepest areas likely exert 
disproportionate control on increases in the coarsest bedload fraction, leading to distribution stretching. 
This signal is heavily influenced by lithology, which cannot be ignored. In any case, average values that do 
not weight steeper topography may not explain grain-size patterns in similar high-mountain settings. As 
we move downstream of junctions with large, steep tributaries in the Río Toro, the largest grains are both 
abraded and selectively sorted leading to compression of the grain-size distribution. This pattern is then 
overprinted and further modified by the delivery of finer, fractured material of tectonically ground bedrock 
on steep adjacent hillslopes.

6.  Conclusions
Efficient methods of gathering large sample sizes—both in terms of counts and areal coverage—and mak-
ing accurate measurements to form robust grain-size distributions are vital road blocks to understanding 
sediment transport and erosion processes in steep, complex, and remote high-mountain settings. Using 
field-based photo surveying and the application of the recently published pebble counting algorithm Pebble-
Counts, we have demonstrated that seven channel cross-sections with 3,000–20,000 pebble measurements 
in the size fraction  2.5 cm can be used to draw catchment-scale conclusions about spatial patterns of 
sediment transport.

In a first result, we have shown that  1,000 manual grain-size measurements follow an analytical log-nor-
mal distribution, which allows better statistical analysis of grain-size percentiles via larger simulated sample 
sizes. Larger sample sizes can also be achieved by careful validation of automatic empirical measurements, 
without the need for a log-normal model. Nevertheless, the manual, automatic, and log-normal results all 
demonstrate similar downstream patterns in grain-size variability.

Second, we showed the most abundant grain-size changes are recorded at the higher percentiles ( 95th). 
The 50th and 84th a-axis grain-size percentiles vary by 20% and 50%, respectively, over a 100-km flow dis-
tance, whereas the 95th and 99th percentiles vary by 70% and 100%, respectively. A large sample size, like 
those achieved with PebbleCounts, is required to reduce percentile uncertainties and meaningfully assess 
higher percentiles in dynamic mountain rivers.

Finally, we found that the observed grain-size changes can be related with upper percentiles of topographic 
steepness, in conjunction with consideration of upstream lithology. The correlation between upper percen-
tiles suggests a highly nonlinear relationship between steep parts of the landscape and channel grain-size 
changes. While sediment-transport processes are complex and more work is necessary, we argue that up-
permost grain-size percentiles are most sensitive to the oversteepened upstream catchment, convolved with 
a strong lithologic signal.

Data Availability Statement
The PebbleCounts tools are available at https://github.com/UP-RS-ESP/PebbleCounts (Purinton & Bookha-
gen,  2019b). Some scripts associated with the analysis are available at: https://github.com/UP-RS-ESP/
PebbleCounts-Application, and are also included in the online data (grain size, snk , and hillslope angle) 
repository: https://zenodo.org/record/5089789 (Purinton, 2021).
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