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Abstract
The local ensemble transform Kalman filter (LETKF) suggested by Hunt et al.,
2007 is a very popular method for ensemble data assimilation. It is the opera-
tional method for convective-scale data assimilation at Deutscher Wetterdienst
(DWD). At DWD, based on the LETKF, three-dimensional volume radar obser-
vations are assimilated operationally for the operational ICON-D2. However,
one major challenge for the LETKF is the situation where observations show
precipitation (reflectivity) whereas all ensemble members do not show such
reflectivity at a given point in space. In this case, there is no sensitivity of the
LETKF with respect to the observations, and the analysis increment based on the
observed reflectivity is zero. The goal of this work is to develop a targeted covari-
ance inflation (TCI) for the assimilation of 3D-volume radar data based on the
LETKF, adding artificial sensitivity and making the LETKF react properly to the
radar observations. The basic idea of the TCI is to employ an additive covariance
inflation as entrance point for the LETKF. Here, we construct perturbations to
the simulated observation which are used by the core LETKF assimilation step.
The perturbations are constructed such that they exhibit a correlation between
humidity and reflectivity. This leads to a change in humidity in such a way that
precipitation is more likely to occur. We describe and demonstrate the theoreti-
cal basis of the method. We then present a case study where targeted covariance
inflation leads to a clear improvement of the LETKF and precipitation forecast.
All examples are based on the German radar network and the ICON-D2 model
over Central Europe.
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1 INTRODUCTION

The initialization of dynamical models for forecasting
is carried out using data assimilation techniques (e.g.,
Lorenc et al., 2000; Kalnay, 2003; Evensen, 2009; Kleist

et al., 2009; Anderson and Moore, 2012; Nakamura and
Potthast, 2015; Reich and Cotter, 2015; van Leeuwen et al.,
2015; Houtekamer and Zhang, 2016; Bannister, 2017).
Modern ensemble data assimilation (Evensen, 1994; 2009;
Houtekamer and Mitchell, 1998; 2001; 2005; Evensen
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and van Leeuwen, 2000; Anderson, 2001; Whitaker and
Hamill, 2002; Snyder and Zhang, 2003; Houtekamer et al.,
2005) employs an ensemble of states to dynamically esti-
mate the covariances both between atmospheric vari-
ables of the model and between atmospheric variables
and observations. A very popular method for ensemble
data assimilation is the ensemble Kalman filter (Evensen,
2009), which has evolved into many versions and real-
izations, one of which is the local ensemble transform
Kalman filter (LETKF) of (Hunt et al., 2006).

In this work, we employ the kilometer-scale ensemble
data assimilation (KENDA) data assimilation framework
(Schraff et al., 2016), an implementation of the LETKF
following (Hunt et al., 2006), in combination with the
(icosahedral nonhydrostatic (ICON) model (Zängl et al.,
2015; Prill et al., 2020) in the limited area mode ICON-D2
covering Central Europe with 2 km horizontal resolution.
The 3D-Volume radar observations are obtained from
the C-band radar network of the German Weather Ser-
vice, complemented by the European radar composite.
Model equivalents are given through an application of
the Efficient Modular Volume scanning Radar Operator
(EMVORADO) forward operator (Zeng et al., 2016) and
are operationally assimilated by KENDA. The operational
KENDA system also includes latent heat nudging (LHN)
based on the radar composite of the precipitation scan
of the radar stations and used in addition to 3D-volume
radar data assimilation.

A strong challenge to the assimilation of radar reflec-
tivities within an ensemble data assimilation system is
the occasional presence of large discrepancies between
observed and simulated reflectivities in combination with
a vanishing background reflectivity spread, that is, where
the reflectivity of all ensemble members is vanishing. This
overconfidence in the background system state then leads
to a vanishing contribution of this specific observation to
the LETKF increment, thus the LETKF fails to synchro-
nize the model state with the “true” system state, that is,
nature, with respect to this particular observation.

To make the LETKF more sensitive to observa-
tions in such cases, we implement a (formally) additive
covariance approach that employs correlations with model
variables related to the specific humidity. Based on these
correlations, a certain contribution is added to the simu-
lated reflectivity for each ensemble member and, there-
fore, the spread is increased. As the added piece is not static
but highly dynamic and relies on correlations with model
variables, we refer to our approach as targeted covari-
ance inflation (TCI). Note that, while these inflated sim-
ulated reflectivities are, strictly speaking, artificial, they
are not random as there are physical processes involved
that manifest themselves in correlations on which the TCI
is then based on. Regarding the issue of zero spread of

reflectivity, Yokota et al. (Yokota et al., 2018) and Dowell
and Wicker (Dowell and Wicker, 2009) have also sug-
gested approaches to resolve this issue. The approach sug-
gested by Yokota et al. and our TCI approach are based
on the same basic idea of adding reflectivity correlated
to model variables. However, there are some important
differences. Firstly, we use a quite different algorithm to
calculate the inflated reflectivities for each ensemble mem-
ber, in our case based on empirically derived correlations
between reflectivities and model quantities. The algorithm
for inflating the spread used by Yokota et al. (Yokota et al.,
2018) is based on a total differential of a parametrization
of the reflectivity, where the parametrization depends on
model variables. Secondly, our case study is performed for
a different meteorological situation (a tornadic supercell
in their case versus a convective event in ours). Thirdly,
we employ a different numerical model, the ICON model
of DWD. This is widely used within the Consortium for
Small-scale Modeling (COSMO), and to study the effect
in this framework is of interest by itself. Lastly, we use a
different setup, viz. an hourly assimilation cycle. Mean-
while, the work of Dowell and Wicker (Dowell and Wicker,
2009) is based on an additive noise inflation method that
adds random perturbations to the ensemble members for
maintaining spread. Furthermore, we formulate the TCI
concept to be applied only if certain conditions are ful-
filled (zero spread and discrepancy between observations
and simulations).

Section 2 describes the parts of our systems and algo-
rithms under consideration, in particular the assimilation
framework KENDA, the ICON model, and the radar for-
ward operator EMVORADO. Section 3 covers the theory
and implementation of the TCI approach. In Section 4, the
TCI is applied within the context of a single-observation
experiment, and using a case study we investigate its
impact on the assimilation and how convective structures
inserted by the data assimilation step are maintained by
a subsequent model run. Section 5 provides a short sum-
mary and an outlook.

2 THE KENDA SYSTEM, ICON,
AND THE EMVORADO RADAR
OPERATOR

Here, we describe the system components used for imple-
menting and studying the TCI. Section 2.1 introduces the
KENDA data assimilation system. Section 2.1.1 introduces
the notation and algorithmic steps of the LETKF used
for the formulation and implementation of the TCI. The
convective-scale ICON system is described in Section 2.2.
For assimilating volume radar observations, we employ
the EMVORADO operator described in Section 2.3.
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2.1 Kilometer-scale ensemble data
assimilation with KENDA

The framework of our investigation of targeted covariance
inflation is the KENDA system (Schraff et al., 2016) of
the COSMO consortium.1 It is an implementation of the
ensemble Kalman filter on the convective scale and is used
operationally at Deutscher Wetterdienst (DWD) as well as
further members and users of the COSMO Consortium.
Today, KENDA is operationally employed for the ICON-D2
model at DWD.

The KENDA system consists of several parts, which are
important for the context of our investigation. It realizes a
LETKF following (Hunt et al., 2006), where a determinis-
tic analysis is based on the Kalman gain for the analysis
ensemble mean.

KENDA includes several tools for adaptive localiza-
tion, multiplicative covariance inflation, relaxation to
prior perturbations (RTPP) and prior spread (RTPS), adap-
tive observation error, and latent heat nudging (LHN)
using radar-derived precipitation rates. For more details
on KENDA and its components, we refer to (Schraff et al.,
2016).

2.1.1 The LETKF

Here, we employ the LETKF as described by (Hunt et al.,
2007). Each analysis cycle starts with an ensemble of L
members {

xa,𝓁
k−1 ∶ 𝓁 = 1, 2, … ,L

}
(1)

at time tk−1 with time index k, where each member repre-
sents an n-dimensional model state vector. The ensemble
members are then propagated by the forecast model, and
an ensemble of background model state vectors at time tk
is obtained {xb,𝓁

k ∶ 𝓁 = 1, 2, … ,L}.
The mean and covariance of this background ensem-

ble at time tk are given through the sample mean and
covariance of the background ensemble

xb = L−1
L∑

𝓁=1
xb,𝓁 , (2)

Pb = (L − 1)−1Xb(Xb)T , (3)

where Xb is an n × L matrix whose 𝓁th column con-
tains the background ensemble perturbation xb,𝓁 − xb. The
analysis at time tk constructs an ensemble

{
xa,𝓁

k ∶ 𝓁 =

1the Consortium for Small-Scale Modeling, including Italy, Switzerland,
Romania, Greece, Russia, Poland, and Germany.

1, 2, … ,L
}

such that

xa = L−1
L∑

𝓁=1
xa,𝓁 , (4)

Pa = (L − 1)−1Xa(Xa)T , (5)

where similarly to Xb, Xa is an n × L matrix whose 𝓁th col-
umn contains xa,𝓁 − xa. The increment of the LETKF is
calculated within the column space of Xb. A real-valued
vector w ∈ RL corresponds to a model state x = xb + Xbw.
The cost function of the LETKF is defined as

J̃(w) = (L − 1)wTw +
(

yo − H(xb + Xbw)
)T

R−1
(

yo − H(xb + Xbw)
)
, (6)

where yo denotes the m-dimensional observation vector.
The observation operator is linearized via the approxima-
tion

H(xb + Xbw) ≈ yb + Ybw. (7)

Here, yb denotes the sample mean of the observation
background ensemble {yb,𝓁 ∶ 𝓁 = 1, 2, … ,L}, where
yb,𝓁 = H(xb,𝓁) are the m-dimensional observation-space
equivalents of xb,𝓁 , and Yb denotes the corresponding m ×
L matrix whose 𝓁th column is made up of the perturba-
tion yb,𝓁 − y. Using this linearization, we obtain the cost
function

J̃∗(w) = (L − 1)wTw

+
(

yo − yb − Ybw
)T

R−1
(

yo − yb − Ybw
)
. (8)

As the cost function is formulated within the
low-dimensional ensemble space, its minimum can be
computed explicitly, which yields

wa = P̃a(Yb)TR−1(yo − yb), (9)

P̃a =
(
(L − 1)1 + (Yb)TR−1Yb)−1

, (10)

and the associated mean and covariance in model space
are

xa = xb + Xbwa (11)
= xb + XbP̃a(Yb)TR−1(yo − yb),

Pa = XbP̃a(Xb)T . (12)

The Kalman gain K = XbP̃a(Yb)TR−1 determines the
increments for the analysis mean when supplied with the
innovation (yo − yb). In our implementation of the LETKF,



3792 VOBIG et al.

that is, within the context of KENDA, there is an addi-
tional deterministic run whose background and analysis
state is denoted as xb and xa, respectively. The analysis of
this deterministic run is given through

xa = xb + K(yo − H(xb)), (13)

such that the increment for the deterministic run is gov-
erned by the Kalman gain and the innovation with respect
to the deterministic background. The ensemble members
are constructed by

Xa = XbWa, (14)

Wa =
(
(L − 1)P̃a)(1∕2)

, (15)

where a symmetric square root is employed. The ensemble
members are then given by

xa,𝓁 = xb + Xb(wa + Wa
𝓁), (16)

with the 𝓁th column Wa
𝓁 of Wa, illustrating that each

analysis ensemble member is a linear combination of the
background ensemble members.

In the case where all simulated observations are identi-
cal (e.g., when no reflectivity is simulated by all ensemble
members), the matrix Y is zero, Wa is the identity matrix,
and wa = 0. In this case, the analysis ensemble is identical
to the background ensemble and observations do not have
an effect on the analysis.

An important ingredient for a successful application of
ensemble Kalman filter approaches is localization (Hunt
et al., 2006), which confines the inclusion of observations
to a local region around each analysis grid point only.
KENDA implements localization by treating each analysis
grid point separately and scaling the entries of the inverse
observation–error covariance matrix R−1 with respect to
the distance of the observations from the analysis grid
point. The scaling is based on the Gaspari–Cohn function
(which is similar to a Gaussian but falls to zero beyond
a certain range) with a certain horizontal and vertical
localization range.

It is well known (e.g., Anderson and Anderson, 1999;
Ott et al., 2004; Hunt et al., 2006) that a pure imple-
mentation of the Kalman filter equations underestimates
the uncertainties of its background state (or, equivalently,
past observations). Several approaches have been sug-
gested to artificially inflate the background covariance.
Multiplicative inflation (Anderson and Anderson, 1999)
multiplies the background covariance matrix by a spe-
cific factor larger than one, additive inflation (Ott et al.,
2004; Hunt et al., 2006) usually adds a certain (but small)
multiple of the identity matrix to the background or

analysis covariance matrix, and relaxation to prior pertur-
bation (Zhang et al., 2004) inflates the analysis covariance
by relaxing each analysis ensemble perturbation towards
its corresponding background ensemble perturbation. In
KENDA, all these methods are available and are used in
the operational setup. However, they do not help to solve
the problem of zero spread when all ensemble members
are identical in simulating a particular observation.

As a final part of KENDA, we need to discuss latent
heat nudging (LHN). The LHN component of KENDA
allows the assimilation of radar-derived precipitation
rates. The LHN approach is based on the assumption that
the precipitation rate near the surface is approximately
proportional to the release of latent heat. This latent heat
is then accounted for via the introduction of tempera-
ture increments into the model. Additionally, there is an
increment in specific humidity to ensure that the rela-
tive humidity is conserved. The increments obtained from
the LHN approach are horizontally local with respect to
the underlying precipitation rates and applied during the
model run. For more information on the concepts and
details of the LHN approach, see (Stephan et al., 2008).

2.2 The convective-scale atmospheric
model ICON-LAM

The ICON modeling framework (Zängl et al., 2015; Prill
et al., 2020) is the numerical weather prediction and cli-
mate modeling system developed by a consortium of insti-
tutions and weather services, in particular Deutscher Wet-
terdienst (DWD) and the Max-Planck-Institut for Meteo-
rology (MPI-M). The ICON model runs operationally at
the DWD on a global scale as well as on a European subdo-
main (ICON-EU). The convection-permitting model setup
ICON-D2, whose model domain coincides roughly with
that of COSMO-D2, is currently becoming the operational
model of DWD, replacing the COSMO model (Baldauf
et al., 2011).

The system of equations solved by the ICON model is
based on a specific set of prognostic variables, and broadly
speaking, a two-component system is assumed, consisting
of dry air and water that may occur in all three phases
including drops and ice particles. More specifically, the
system of equations contains the horizontal velocity com-
ponent normal to triangle edges vn, the vertical wind com-
ponent w, the virtual potential temperature 𝜃v, the total
density of air mixture 𝜌 =

∑
k 𝜌k, and mass fractions qk =

𝜌k∕𝜌. Note that the index k occurring within the density 𝜌k
and mass fraction qk refers to dry air (k = d), water vapor
(k = v), cloud water (k = c), cloud ice (k = i), rain (k = r),
snow (k = s), and graupel (k = g).
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F I G U R E 1 Model domain of
the COSMO-D2-KENDA system.
The ICON-D2-KENDA system has
approximately the same extent. The
map is given in rotated coordinates
[Colour figure can be viewed at
wileyonlinelibrary.com]

Horizontally, the ICON model employs an unstruc-
tured triangular grid, and vertically, it defines a specific
number of levels {li}, of which the lowest levels, that is, the
ones closest to the ground, are terrain following whereas
all higher levels gradually shift to levels of constant height.
The levels are indexed from top to bottom such that l1 is
the highest level and li+1 is below li.

We conduct ICON simulations in the limited area
mode configuration ICON-D2, with a domain displayed in
Figure 1. The ICON-D2 configuration uses a model res-
olution of approximately 2 km and has 65 vertical levels,
and lateral boundary conditions are provided by ICON-EU
simulations. For an in-depth discussion of the ICON
model, see (Prill et al., 2020).

2.3 3D-volume radar reflectivity
simulation by EMVORADO

The observations used for the convective-scale configura-
tion ICON-D2 of ICON include 3D-volume radar obser-
vations (Bick et al., 2016). In the present work, two
different sources for radar observations are used. On the
one hand, we include the observations as measured by the
German Radar Network by 3D volume radar data. The

German Radar Network consists of 17 dual-polarization
C-band Doppler radar stations completely covering Ger-
many, as shown in Figure 2. The scanning strategy for
3D volume scans of each radar station, which is also
depicted in Figure 3, consists of an azimuthal 360◦ sweep
with a resolution of 1◦ at a total of ten elevation angles
ranging from 0.5◦ to 25◦ and a radial distance of up to
180 km with a radial resolution of 1 km. Further, data
supplied via the OPERA network, including the precipita-
tion scan of the German Radar Network, enter the LHN
mechanism.

To assimilate radar observations, synthetic radar obser-
vations are derived from these model variables based on
the forward operator EMVORADO (Zeng et al., 2016),
yielding Doppler velocity and reflectivity in its current
single-polarization implementation. EMVORADO yields
simulated radar observations in observation space, that
is, for each radar observation, a corresponding model
equivalent is estimated. Several sophisticated physical
aspects associated with radar measurements are taken into
account by EMVORADO, in particular beam bending/
broadening/shielding, Doppler velocity with fall speed
and reflectivity weighting, attenuated reflectivity, and
detectable signal. For more information and details on
EMVORADO, see (Zeng et al., 2016).

http://wileyonlinelibrary.com
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F I G U R E 2 The
German Radar Network,
where blue dots represent the
sites of the operational radar
stations, while grey dots
indicate radar stations for
quality assurance and
research purposes. The blue
circles indicate a range of
150 km. The single green dot
(Borkum) indicates an
intermediate radar site
without polarimetric
observables [Colour figure
can be viewed at
wileyonlinelibrary.com]

3 TCI FOR LETKF

In the following, we introduce and discuss a TCI approach
for improving the assimilation of 3D radar data. The TCI
adds a certain part to the background uncertainty covari-
ance matrix and, therefore, is a type of additive covariance
inflation (ACI). However, unlike a “traditional” additive
covariance inflation, which selects random perturbations
based on climatological covariances, the TCI employs par-
ticular targeted correlations with selected model variables
for calculating the perturbations added to the background
covariance matrix in observation space. This approach
increases the uncertainty of the background in such a way
that the additive increments use correlations between sim-
ulated reflectivities and model variables, such that these
lead to a controlled change of the model variables in an
ensemble data assimilation step.

3.1 Theory and limitations of TCI

In the following, we denote the modeled (background)
reflectivity at the spatial point r = (𝜆, 𝜙, h) of the 𝓁th
ensemble member as Z(𝓁)

r , where 𝜆, 𝜙, and h refer to
longitude, latitude, and height above sea level. The cor-
responding ensemble of simulated reflectivities is given
by Zr = {Z(𝓁)

r }, the (background) reflectivity of the deter-
ministic member by Zd

r , and the reflectivity analysis and
increment of the deterministic member by Zd,ana

r and Zd,inc
r .

The time information will usually be suppressed as it will
be assumed that all quantities are given at assimilation
time – if not stated otherwise.

The goal of the TCI is to overcome the problems asso-
ciated with ensembles whose spread with respect to the
reflectivity in a certain spatial region is zero or small,
that is, 𝜎[Zr] ≪ 1. When Y b is zero or small, the LETKF

http://wileyonlinelibrary.com
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F I G U R E 3 Scanning strategy of the German radar network, showing the range of each of the ten fixed elevations as well as of the
terrain-following precipitation scan [Colour figure can be viewed at wileyonlinelibrary.com]

analysis (9)–(16) will show no or only very small analysis
increments.

To overcome this deficiency, we inflate the background
covariance in observation space based on correlations
between Z and particular model variables denoted as Ψ at
particular positions r. Formally, the inflated reflectivities,
denoted as Z′ here, are then defined via

Z′(i)
r = Z(i)

r + 𝛼TCI

(
Ψ(i)

r − 𝜇[𝚿r]
)
, (17)

where 𝛼TCI serves as a scaling factor for the strength of
the TCI. As a consequence of this definition, the inflated
reflectivity Z′ has the following properties:

𝜇[Z′
r] = 𝜇[Zr], (18)

var[Z′
r] = var[Zr] + 𝛼2

TCIvar[𝚿r] + 2𝛼TCIcov[Zr,𝚿r],
(19)

where 𝜇[⋅], var[⋅], and cov[⋅, ⋅] denote the mean, variance,
and covariance, respectively.

In the following, we assume that the reflectivity is
vanishing at our point of interest rso for all ensemble mem-
bers and the deterministic member, that is, Zd

rso
= Z(i)

rso
= 0,

which leads to

Z′(i)
rso

= 𝛼TCI

(
Ψ(i)

rso
− 𝜇[𝚿rso]

)
, (20)

𝜇[Z′
rso] = 0, (21)

var[Z′
rso] = 𝛼2

TCIvar[𝚿rso]. (22)

In this case, the variances of Z′ and Ψ are directly
proportional to each other and scaled by 𝛼2

TCI.

3.2 Single-Obs and increments

To study the effects of the TCI in more detail, we carry out a
single-observation experiment; that is, a single observation
at a specific spatial coordinate rso is assimilated. We choose
the reflectivity Z at a given point in space where the LETKF
has its limitation. Assimilating one scalar value of Z, incre-
ments of other variables Ωr produced by the LETKF are
solely based on correlations of the form 𝜌[Zrso ,𝛀r].

For a single-observation experiment, the LETKF
equation for obtaining the analysis state vector can be
significantly simplified. We are studying a reformula-
tion of our problem with a one-dimensional observation
space whose elements are associated with the observed
reflectivity yo = Zo

rso
and a two-dimensional model space

whose two dimensions are associated with the mod-
eled reflectivity Zrso at the spatial position of the single
observation—serving as the model equivalent for the sin-
gle observation—and another for the most part arbitrary
model quantity Ωr. The (deterministic) background state
vector may then be written as xb =

(
Zd

rso
Ωd

r
)T , and the

observation operator connecting the model and observa-
tion space with each other takes the simple form H = (1 0).
Employing Equation (13), we obtain(

Zd,inc
rso

Ωd,inc
r

)
=

(
var[Zrso]

cov[Zrso ,𝛀r]

)
(R + var[Zrso])

−1(Zo
rso

− Zd
rso
),

(23)

http://wileyonlinelibrary.com
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where we employed the Sherman–Morrison formula
for analytically calculating the inverse appearing within
the expression for the Kalman gain matrix. Using
Equations (20) and (22) for expressing covariances involv-
ing the variable Z in terms of covariances involving Ψ, we
obtain the following expression:

Ωd,inc
r =

𝛼TCI cov[𝚿rso ,𝛀r]
R + 𝛼2

TCI var[𝚿rso]
(Zo

rso
− Zd

rso
) (24)

=
𝛼TCI 𝜎[𝚿rso]

R + 𝛼2
TCI var[𝚿rso]

𝜌[𝚿rso ,𝛀r]𝜎[𝛀r](Zo
rso

− Zd
rso
)

(25)
=  (𝛼TCI,R, 𝜎[𝚿rso ])𝜌[𝚿rso ,𝛀r]𝜎[𝛀r](Zo

rso
− Zd

rso
),
(26)

where we define

 (𝛼TCI,R, 𝜎[𝚿rso]) ≡
𝛼TCI 𝜎[𝚿rso]

R + 𝛼2
TCI var[𝚿rso]

, (27)

and employ the definition of the correlation coefficient,
that is,

cov[𝚿r,𝛀r] = 𝜌[𝚿r,𝛀r]𝜎[𝚿r]𝜎[𝛀r].

While the specific values for the correlation coefficient
𝜌[𝚿rso ,𝛀r], the variance var[𝚿rso], and the innovation
(Zo

rso
− Zd

rso
) are usually fixed input parameters, that is,

determined through the model states and observations,
the increment Ωd,inc

r and, thereby, the impact of the TCI
may still be tuned to specific needs via variation of the
observation error R and the TCI scaling factor 𝛼TCI as
demonstrated by Figure 4.

Additionally, a localization scheme is applied by scal-
ing the inverse of the observation covariance matrix R−1

with the Gaspari–Cohn function as already mentioned in
Section 2.1.1. The Gaspari–Cohn function f g.c.

h (d) gradually
suppresses a contribution to an increment with respect to
the distance d from the associated observation. The local-
ization is carried out in vertical and horizontal direction
independently, and the strength of the localization may
be controlled via the localization range h where f g.c.

h (d ≥
2h) = 0 holds. In the context of a single-observation
experiment, the effect of the localization can be written
as

Ω
inc
(r) → Ω

inc
(r) f g.c.

hv
(|(r − rso)v|) f g.c.

hh
(|(r − rso)h|) ,

(28)
where (r − rso)v and (r − rso)h denote the vertical and hor-
izontal component of r − rso, respectively.

F I G U R E 4 Using several values for the observation error R
(shown in different colors) as a parameter, this plot displays the
dependence of  defined in Equation (27) on 𝛼TCI 𝜎[𝚿rso

] [Colour
figure can be viewed at wileyonlinelibrary.com]

3.3 Statistical evaluation for variable
selection

To provide a sound basis of artificial targeted correlations,
we carried out a series of statistical evaluations on cor-
relations between reflectivity and model variables on the
convective scale, whose details lie beyond the scope of this
work. In summary, we found that reflectivity and humid-
ity are only weakly correlated with each other, but there
are stronger correlations between Z and the vertically inte-
grated specific humidity, denoted as qint

v :

qint
v (𝜆, 𝜙, l0, l1, 𝛽)

≡ ∫
d𝜆′d𝜙′ f𝛽(𝜆′ − 𝜆, 𝜙′ − 𝜙)∫

h(l1)

h(l0)
qv(𝜆′, 𝜙′, h)dh.

(29)

The boundaries h(l0) and h(l1) of this integral cor-
respond to the heights of the ICON layers l0 and l1,
respectively, between which the numerical integration
takes place. Furthermore, to account for time shifts of
the correlations between Z and qint

v leading to horizontal
shifts of these two variables, a running average is applied
to the vertically integrated fields. Implemented via a con-
volution using a rectangular function with respect to both
arguments of f𝛽 , the strength 𝛽 of this running average
controls the width of f𝛽 , that is, the range within which f𝛽
falls to zero.

In Figure 5, the correlation between 𝛿Z(i) ≡ Z(i) − 𝜇[Z]
and (𝛿qint

v )(i) ≡ (qint
v )(i) − 𝜇[qint

v ] is depicted by showing
(qint

v ,Z) data pairs for all 40 ensemble members and all
spatial positions of a specific area. The data pairs used for
this correlation study lie within a domain with 8.5◦ < 𝜆 <

12.0◦ and 50◦ < 𝜙 < 55◦ at 1200 UTC on June 3, 2019. We
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F I G U R E 5 For all spatial points of a specific area bounded
by 8.5◦ < 𝜆 < 12.0◦ and 50◦ < 𝜙 < 55◦ and for all 40 ensemble
members, the relationship between 𝛿Z(i) ≡ Z(i) − 𝜇[Z] and
(𝛿qint

v )(i) ≡ (qint
v )(i) − 𝜇[qint

v ] is shown. Note that we impose certain
restrictions on the inclusion of data: Only radar data at an elevation
angle of 0.5◦ are included here, and only data pairs fulfilling
𝜇[Zr] > 10 dBZ and 𝜎[Zr] > 8 dBZ are included. Based on this data,
the (nonlocal) correlation coefficient then amounts to 0.59. The red
dashed line indicates the result of a least-squares fit using a linear
function. For the slope of this linear function, we obtain
𝛼 = 4.89 dBZkgkg−1m−1. Note that we use l0 = 42, l1 = 1, and
𝛽 ≈ 21 km for the calculation of qint

v here, where these specific
values optimize the correlation coefficient [Colour figure can be
viewed at wileyonlinelibrary.com]

chose this specific area and time as a basis of our statis-
tical considerations as there are various convective events
taking place, that is, the kind of meteorological situation
whose dynamics we are trying to capture here.

For the calculation of qint
v , we employ l0 = 42, l1 = 1,

and 𝛽 ≈ 21 km, where these specific values are determined
through a maximization of the correlation coefficient.
Regarding the specific domain this statistical evaluation is
based on, the average height of the model level l0 amounts
to roughly 2500 m, and the height of the level l1, which also
happens to represent the model top, amounts to 22,000 m.
Note that these specific values for l0, l1, and 𝛽 are now
used as default values throughout the rest of this work.
Figure 5 shows that the two variables Z and qint

v are pos-
itively correlated. Performing a least-squares fit using a
linear function, the slope of this linear function amounts
to 𝛼 = 4.89 dBZkgkg−1m−1 which serves as a guideline for
the specific choice for the TCI scaling factor 𝛼TCI later on.

Note that the statistical study is based on radar data
at an elevation of only 0.5◦ whereas radar data at several
elevations of up to 12◦ are assimilated in an operational
setup. By including radar data only at this single elevation,
we are trying not to overcomplicate things at first and we
keep the integral for the vertically integrated qv as simple
as possible (as the heights we integrate over should mostly
lie above the radar observation, we choose the lowest

available elevation of 0.5◦). There is, however, a slight
impact of radar elevations: Alternatively using the eleva-
tion 1.5◦ as a basis for our statistical evaluation instead
of 0.5◦, the coefficient 𝛼 amounts to 4.26 dBZ kg kg−1 ⋅m−1

and the correlation coefficient 𝜌 amounts to 0.64. Even
though there is this slight impact of the radar elevation on
the result of the statistical evaluation of correlations, we
consider the inclusion of data at an elevation of only 0.5◦
as sufficient for the purpose of this work.

Regarding future applications of the TCI, the aim to
improve the description of deep convection could poten-
tially require observations from higher radar elevations.
We plan to study whether the possible issue of a small
spread of the integrated qv for greater values of l0 as well as
a decline of the correlation between reflectivities at higher
elevations and the integrated qv may then be resolved by
using additional variables as a basis for the TCI. However,
we want to leave these further, more complicated setups as
a subject for future research.

4 NUMERICAL RESULTS

Here, we evaluate the use of targeted covariance infla-
tion on 3D-volume radar data assimilation for ICON-D2
by focusing on a case study. Section 4.1 describes the setup
of the case study. The implementation of TCI is described
in Section 4.2. The evaluation of LETKF increments is car-
ried out in Section 4.3. Forecast impact is investigated in
Section 4.4, and a comparison with LHN is carried out in
Section 4.5.

4.1 Case study setup

To study the effects of the TCI, we performed single-
observation experiments assimilating a single radar reflec-
tivity observation at rso = (51.60◦, 8.35◦, 1,035 m). This
observation is obtained from the radar station Flechtdorf
located at (51.31◦, 8.80◦, 551 m) and radar beam elevation
angle of 0.5◦. Thus, the radar station and single obser-
vation have a horizontal distance of about 45 km. The
assimilation takes place on June 3, 2019 at t0 = 1200 UTC.

Evaluating the reflectivity fields displayed in Figure 6,
the choice of this specific location can be motivated. The
radar composite for Zo shows an isolated cell approxi-
mately centered around rso, which is indicated by red
circles in the plots. However, the deterministic simula-
tion lacks this particular cell completely, and as indicated
by the vanishing ensemble spread of simulated reflectiv-
ities 𝜎[Z], also none of the ensemble members contains
simulated reflectivities in this region. As a result of the lack
of ensemble spread, also the assimilation via the LETKF at
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F I G U R E 6 Depiction of radar
composites at an elevation angle of
0.5◦ for Zo, Zd, 𝜇[Z], and 𝜎[Z] on
June 3, 2019 at t0 = 1200 UTC. A
specific region with an observed but
not simulated cell is indicated via a
red circle [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 7 Depiction of
qint

v
d and 𝜎[qint

v ] at t0. The fields
for qint

v are calculated by
vertically integrating and
horizontally averaging the
model fields for qv as discussed
in Section 3.3. The position rso

of the single observation is
indicated by concentric circles
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 Depiction of
((qint

v )(i)rso
,Z(i)

rso
) pairs for all 40 ensemble

members at the spatial point of the
single observation. Two different kinds
of datasets are shown here: first, the
default dataset without an application
of the TCI (squares) and, second, a
dataset resulting from an application
of the TCI (circles). Evidently, the TCI
leads to a linear relationship between
(qint

v )(i)rso
and Z(i)

rso
(with nonzero slope)

and, therefore, successfully increases
the spread of the simulated
reflectivities at the location of the
single observation [Colour figure can
be viewed at wileyonlinelibrary.com]

t0 rejects any observed reflectivities in this region, no incre-
ments are produced, and, consequently, the LETKF is also
not able to resolve the discrepancies between observed and
simulated reflectivities; that is, the assimilation still lacks
this particular observed cell.

We note that 𝜎[Z] is only a linearized approxima-
tion here. As Z is not a model variable, it is not updated

directly but implicitly through the update of other model
variables. However, even though the dependence of Z
on those other model variables is highly nonlinear and
dynamic, the linearized increments of Z depending on
𝜎[Z] represent a first approximation for how the model
may respond to increments of model variables introduced
via the LETKF.

http://wileyonlinelibrary.com
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F I G U R E 9 Vertical profiles of
the (deterministic) first guesses,
increments, and analyses for the
specific humidity qv (left), the
temperature T (middle), and the
relative humidity RH (right) at the
horizontal position of the single
observation at time t0. The black
lines indicate the values for the first
guess at assimilation time t0, the
blue and orange lines indicate the
values for the increment without
and with an application of TCI,
respectively, and the green line
indicates the values for the analysis
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 10 Increments for
(qint

v )d, Td, and Zd for the ICON layer
35 at t0. The single observation
position is indicated via concentric
circles. It should be noted that the
visualization for Zd has a coarser
resolution as it is given on a radar
observation grid, while (qint

v )d and
Td are given on the model grid,
which usually has a finer resolution
[Colour figure can be viewed at
wileyonlinelibrary.com]

Generally, for TCI to be applied at a specific loca-
tion, it is reasonable to demand that several conditions be
fulfilled. The first is that there is a zero spread for reflectiv-
ity. Furthermore, there should be a discrepancy between
observed and simulated (deterministic) reflectivity, as we
do not want to increase the spread at a location where
there is not any reflectivity observed (and simulated) in the
first place. For the final implementation of TCI, it includes
a loop over all reflectivity observations which checks the
above conditions, adds the TCI if they are satisfied, then
proceeds with the LETKF as usual.

The location chosen for our single-observation exper-
iments fulfills both of the requirements above, although
we also made sure that we were selecting a location
where even an assimilation of all radar observations does
not lead to the production of a cell (that is otherwise
observed) during the 60 min of a free forecast following the
assimilation, such that the potential impact of TCI can be
clearly seen.

4.2 Applying the TCI

Now, we employ the TCI to inflate the spread of Zrso based
on the correlation of Z with qint

v . A prerequisite for a suc-
cessful application of the TCI is the existence of a sizeable
spread of (qint

v )rso . This condition is fulfilled as demon-
strated by Figure 7, where (qint

v )d and 𝜎[qint
v ] are depicted.

Aiming for increments that are nearly maximized, we
have to choose a suitable value for the observation error R
and the TCI scaling factor 𝛼TCI. Guided by the previously
conducted statistical analysis from which we obtained 𝛼 =
4.89 dBZkgkg−1 ⋅m−1, we use 𝛼TCI = 5 dBZkgkg−1 ⋅m−1

as of now. Finding that 𝜎[(qint
v )rso] ≈ 0.55 kg⋅m⋅kg−1, we

obtain 𝛼TCI𝜎[(qint
v )rso] ≈ 2.75 dBZ so that, with the help

of Figure 4, we come to the choice of R ≡ 4 dBZ2. This
particular value for R has been chosen over the other alter-
natives as, firstly, R = 4 dBZ2 is still a physically plausible
value while producing a significantly increased increment
compared with larger values for R and, secondly, it is still

http://wileyonlinelibrary.com
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F I G U R E 11 Humidity fields qv at the ICON layer 35 without applying the TCI (first column), with applying the TCI (second column),
and the difference of those two fields (third column) for forecast times of up to 50 min (row-wise) with respect to the assimilation date at t0.
The position of the single observation is indicated by concentric circles [Colour figure can be viewed at wileyonlinelibrary.com]

comparatively smooth in the region of 𝛼TCI𝜎[(qint
v )rso] as

opposed to smaller values for R.
Figure 8 depicts pairs of Z(i)

rso
and (qint

v )(i)rso
for all

ensemble members with and without applying the TCI,

respectively. Without TCI, none of the ensemble members
shows any reflectivity at rso, but the TCI leads to a linear
relationship between Z(i)

rso
and (qint

v )(i)rso
with nonzero slope,

as is to be expected when considering Equation (17).

http://wileyonlinelibrary.com
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F I G U R E 12 Radar composites for Zo, Zd, and 𝜎[Z] for different forecast times of up to 60 min. Concentric circles indicate the position
of the single observation. The black line indicates the trajectory obtained from a numerical integration of the equation of motion describing
the movement of a particle starting at rso within the external wind field [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 LETKF increments

An important model quantity involved in the production
of reflectivity is the specific humidity qv and the temper-
ature T, whose increments are both shown in Figure 9.
Without TCI, the increment is zero for both qv and T,

which is directly clear as the only assimilated observation
is Zo

rso
and 𝜎[Zrso] is vanishing. Applying the TCI, there

are three pronounced peaks found for the increment of qv
around the ICON layers 35, 43, and 57 where the incre-
ment at layer 43 approximately amounts to the value of the
background at this layer. Furthermore, the increments for

http://wileyonlinelibrary.com
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F I G U R E 13 Similarly to Figure 12, this figure depicts radar composites for Zo, Zd, and 𝜎[Z] for different forecast times of up to 60 min,
but here LHN is also active. Concentric circles indicate the position of the single observation [Colour figure can be viewed at
wileyonlinelibrary.com]

T are comparatively large around layer 57 and 45, where
the largest increment is found in the vicinity of the ground,
amounting to approximately 2.5 K. It is important to note
that we use a large value for the vertical localization range
such that the effect of vertical localization is negligible for

our considerations here; that is, the increments imprinted
on the complete vertical column are barely damped with
increasing vertical distance from the single observation.

Figure 10 shows increments for qv and T for a spe-
cific ICON layer and (linearized) increments for Z at the

http://wileyonlinelibrary.com


VOBIG et al. 3803

elevation angle 0.5◦. Here, the effect of the horizontal
localization becomes directly visible: Nonzero increments
are only found within a certain horizontal distance from
the single-observation position—associated with the local-
ization range—and become zero beyond this range.

4.4 Impact on forecast

As the reflectivity is not a prognostic model variable, it is
not updated directly but rather implicitly via the update
of prognostic model variables such as qv and T. Thus, we
have to study how the model reacts to changes of incre-
ments of these prognostic variables that are eventually
introduced by the TCI approach and investigate whether
these changes lead to the new emergence of reflectivity.

The time evolution of qv at the ICON layer 35 is
depicted in Figure 11 starting at the assimilation time
t0 with free forecast times Δt of 1 hr for every 10 min.
Evidently, the TCI leads to the appearance of additional
humidity centered around the position of the single obser-
vation forΔt = 0. ForΔt > 0, this additional humidity does
not dissolve but is drifting in a northeast direction–which
is consistent with the modeled wind fields in this region.

Similarly to Figure 11, Figure 12 shows the evolution
of reflectivities with respect to forecast times Δt. The com-
posites for Zo show that the cell remains present for the
complete forecast time of 60 min and that it is drifting in a
northeast direction. The simulation without TCI, however,
does not show any reflectivity for all forecast times, and as
also the spread is zero within our region of interest, none of
the ensemble members has any reflectivity there. The TCI
approach and the additional increments for the humidity
which it introduces into the model lead to the appearance
of reflectivity starting at Δt = 10min. For Δt > 10min, the
cell grows in horizontal area and, additionally, drifts in a
northeast direction. The simulated cell seems to drift faster
than the observed one, but the drift is consistent with a
movement along the wind field predicted by the model.

4.5 Comparison with LHN

Figure 13 shows, similarly to Figure 12, radar compos-
ites for observed and simulated reflectivities for several
forecast times Δt. However, in contrast to our previous
studies, LHN is also applied within the time frame of t0 to
t0 + Δt. In this context, it is important to note that, in con-
trast to the TCI, LHN is applied to the complete domain
and not only a single location. Furthermore, it should be
noted that a double use of observations while simultane-
ously applying LHN and assimilating radar reflectivities
is not an issue here since these two approaches rely on

a separate execution of a precipitation scan and a vol-
ume scan, respectively, and, without going into too much
detail here, employ rather different frameworks for further
processing their observations. There are two particularly
interesting observations that can be made here: Firstly, the
LHN approach leads to the emergence of an additional
simulated cell southwest of the single observation that gets
increasingly larger over time and which is consistent with
an observed cell in this region.

We note that this cell is only simulated with an appli-
cation of LHN but not when only TCI is applied to a
location. This seems clear since there is a large horizontal
distance between this additional cell and the single obser-
vation. While we could have applied the TCI approach
at a location near the origin of this additional cell, we
wanted to demonstrate the principle of TCI in a very con-
trolled setup in this work. Secondly, it is noteworthy that
the LHN approach on its own, that is, without TCI, is not
able to produce the cell that, considering the composites
with an application of the TCI, first emerges in the vicinity
of the single observation at Δt = 10min and then drifts in
a northeast direction. This result indicates the significant
potential of the TCI approach.

5 SUMMARY AND OUTLOOK

In this work, we study a targeted covariance inflation (TCI)
approach for improving the assimilation of 3D-volume
radar reflectivities Z via the LETKF. While this approach
formally belongs to the class of additive covariance infla-
tion approaches, the background covariance matrix is not
inflated by adding random perturbations, but the specific
inflation is based on an empirical correlation of reflectiv-
ity with functions of model variables. We found vertically
integrated specific humidity to be a promising functional
candidate for adding artificial correlations by TCI.

Carrying out a case study, we investigate the effects
of the TCI in a single-observation experiment, assimilat-
ing only a single reflectivity at a specific spatial position.
This position was characterized by the fact that none of
its ensemble members nor the deterministic run exhibit
any reflectivity at assimilation time, although a sizeable
reflectivity is observed. Without application of the TCI
method, the increments obtained from the LETKF are
zero due to the vanishing spread of Z. Applying the
TCI, however, leads to a nonzero spread of Z and the
LETKF now takes the observation into account and pro-
duces nonzero increments. These increments are gener-
ated based on the correlations with functions of specific
humidity and added artificially, that is, outside of the
LETKF formalism.



3804 VOBIG et al.

We evaluate TCI-based increments for temperature
and specific humidity. Meteorological arguments show
their potential to contribute to the production of convec-
tion and then reflectivity during a subsequent ICON model
run. Our investigation shows that the model increment of
specific humidity was “stable,” that is, it did not disappear
during a 1-hr model run following the assimilation. Fur-
thermore, TCI successfully introduces a new convective
cell in the direct vicinity of the assimilated single observa-
tion after a model evolution of 10 min. This newly created
cell persists for the complete 60 min time window; it is con-
sistent with the observed cell, and drifts along the wind
fields in a northeastern direction. Furthermore, within our
case study, we compare the effect and capability of the
TCI approach with LHN, observing that LHN alone is not
able to generate the desired cell. Though only being a
case study at this point, this demonstrates the successful
implementation and the potential of targeted covariance
inflation.

Clearly, much further work needs to be done to fully
develop TCI based on the results of this work. A more
systematic study within the full convective-scale model
domain and more extended simulation periods is neces-
sary. However, we also need to investigate the applica-
bility of targeted covariance inflation to other observa-
tions of clouds, for example, visible reflectances measured
by satellites. When the model does not generate clouds
in a given column, LETKF faces similar challenges as
for radar observations and TCI could be an approach to
help resolve the problems which LETKF faces in this
situation.
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