
1.  Introduction
Knickpoints are typically defined as abrupt changes in channel slope along a river profile. While conceptual 
work on knickpoints dates back to the 19th century (Davis, 1899), knickpoints are nowadays widely used for de-
ciphering the tectonic history. The basic types of knickpoints, their generation, and their fundamental properties 
can be illustrated by the three scenarios sketched in Figure 1, where the fundamental concept is that erosion rates 
increase with increasing channel slope and that erosional signals propagate upstream through time.

Initiating an ongoing vertical displacement at a fault (Figure 1a) results in a discontinuity in uplift rate along the 
river. As a consequence, a steeper river segment emerges above the fault and expands upstream through time. 
While the channel slope of this segment is already adjusted to the increased uplift rate, the rest of the river pro-
file still reflects the original conditions. The channel slope changes abruptly at the edges of this river segment, 
resulting in a pair of knickpoints. The upper knickpoint moves upstream, whereas the lower knickpoint stays at 
the fault.

While this scenario describes slope-break knickpoints, a sudden vertical offset (e.g., by a strong earthquake) may 
result in a second type of knickpoint (Figure 1b), typically called topographic-step knickpoint (e.g., Whipple 
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et al., 2013). Since the erosion rate is high in the steep segment, it migrates 
upstream, but does not necessarily leave a persistent signature at the fault 
itself. Topographic-step knickpoints are typically visible as a waterfall and 
are thus recognized more easily in field than slope-break knickpoints. Con-
ceptually, however, slope-break knickpoints can be seen as the more funda-
mental type of knickpoint since a topographic-step knickpoint can be equally 
described as a steep reach bound by slope-break knickpoints on either side.

Owing to the apparently simple behavior of mobile knickpoints at least on a 
qualitative level, they can often be seen as a window into the tectonic history. 
However, the occurrence of knickpoints is not necessarily related to active 
tectonics or other time-dependent conditions. As illustrated in Figure 1c, a 
contrast in lithology with a vertical interface may result in a knickpoint which 
is not only stationary at the interface, but also may even be completely steady. 
If the interface is not vertical, lithologic knickpoints will also migrate. There 

are several further scenarios where knickpoints may occur, for example, vertical-step knickpoints as the result of 
a caprock with a high resistance against erosion (Haviv et al., 2010). Beyond this, the effect of climatic signals 
on river profiles may be similar to those of tectonic signals. However, discussing these scenarios in detail would 
go beyond the scope of this study.

Investigating knickpoints in the context of the tectonic history is attractive since it can be done on a qualitative 
level without the need for running numerical simulations. While the occurrence of knickpoints can be interpreted 
qualitatively using simple concepts such as those illustrated in Figure 1, several computer-based tools for assist-
ing the manual delineation or for the automatic detection of knickpoints have become available (e.g., Gailleton 
et al., 2019; Neely et al., 2017; Queiroz et al., 2015; Schwanghart & Scherler, 2014).

Mobile knickpoints are typically considered in the context of detachment-limited erosion (Howard, 1994). The 
idea behind this concept is that all particles entrained by the river are immediately swept out of the system. The 
stream-power incision model (SPIM) is widely used in this context and is the key component of several models of 
large-scale fluvial landform evolution (for an overview, see, e.g., Willgoose, 2005; Wobus et al., 2006). It predicts 
the erosion rate E as a function of the upstream catchment size A and the channel slope S in the form

𝐸𝐸 = 𝐾𝐾𝐾𝐾𝑚𝑚𝑆𝑆𝑛𝑛.� (1)

If the exponents m and n were universal properties of the erosion process, the parameter K would be the only 
model parameter. The parameter K is typically called erodibility. While this term suggests that it is primarily a 
property of the river bed, it is in fact a highly lumped parameter that subsumes all dependencies of E except for 
A and S, for example, precipitation.

The problem with the exponents m and n is that only their ratio is well-constrained by real-world data. In his 
seminal study of longitudinal river profiles, Hack (1957) proposed the relation

𝑆𝑆 ∼ 𝐴𝐴−𝜃𝜃,� (2)

where θ is nowadays called concavity index. According to Equation 1, a river segment with constant K at a spa-
tially uniform erosion rate E satisfies this relation if 𝐴𝐴 𝑚𝑚

𝑛𝑛
= 𝜃𝜃 . While Hack (1957) obtained θ > 0.5 in the mean, 

contemporary studies use either θ = 0.45 or θ = 0.5 as a reference value (e.g., Lague, 2014; Whipple et al., 2013).

The absolute values of the exponents m and n are more uncertain than their ratio since they cannot be determined 
from the shape of equilibrium profiles under uniform erosion. Assuming n = 1 simplifies both theoretical con-
siderations and the numerical implementation since the model is linear with regard to S and thus also with regard 
to to the surface elevation H then. In turn, the results compiled by Lague (2014) as well as some recent studies 
(Adams et al., 2020; Harel et al., 2016; Hilley et al., 2019) rather suggest n > 1.

Inserting the SPIM into the equation of landform evolution,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑈𝑈 − 𝐸𝐸𝐸� (3)

Figure 1.  Three scenarios of knickpoint formation and migration.
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where U is the rate of uplift of crustal material relative to a given datum, yields a hyperbolic differential equation 
of the advection type. Propagation of information in one direction only—upstream here—is a characteristic prop-
erty of this type of differential equation. Anything that happens at a given point and a given time only affects the 
region upstream of this point in the future. So the SPIM is the simplest landform evolution model that captures 
the concepts described in Figure 1.

The analysis of longitudinal river profiles in the context of the SPIM was simplified by the χ transform introduced 
by Perron and Royden (2013). It transforms the along-stream coordinate x to a new coordinate

� = ∫

(

�(�)
�0

)−�

��,� (4)

where A0 is an arbitrary reference catchment size and the integration is performed along the river in upstream 
direction, starting from an arbitrary reference point. While A0 was introduced in order to avoid inconvenient 
physical units of χ for θ ≠ 0.5, the equations are simpler without A0. So let us omit A0 in the following. Then, 
Equation 4 yields

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴−𝜃𝜃.� (5)

While the original channel slope is 𝐴𝐴 𝐴𝐴 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (where x increases upstream), the slope of the χ-transformed profile is

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝜃𝜃𝑆𝑆𝑆� (6)

This property is also known as the steepness index ks. The SPIM can then be written in the form

� = �
(

��
��

)�

.� (7)

Thus, χ-transformed river profiles with constant K at a uniform erosion rate are straight lines, where tributaries 
are collinear to the trunk stream.

A theory for the migration of knickpoints based on the χ transform was developed by Royden and Perron (2013). 
It was found that knickpoints migrate upstream at a constant velocity along the χ-axis for n = 1. While Royden 
and Perron (2013) used a nondimensionalization where the velocity is unity, the velocity is K in the formula-
tion used here. This result can be obtained by inserting Equation 7 into Equation 3, but will also be recovered 
in Section 6. In turn, the velocity along the original coordinate x is KAθ (e.g., Beckers et al., 2015) and thus not 
constant. For n ≠ 1, however, the behavior is more complicated. The respective theory developed by Royden and 
Perron (2013) will be extended in Section 10.

However, sediment transport has an effect on erosion even in bedrock channels (e.g., Turowski, 2012), which 
questions the simple idea behind the SPIM that all entrained particles are immediately swept out of the system 
without any further effect. Any extension of the SPIM where the sediment flux affects the erosion rate changes 
the mathematical properties of the model fundamentally. While information propagates only upstream in the 
SPIM, the downstream flux of sediments introduces a downstream propagation of information. So signals typi-
cally propagate in both directions in mixed incision-transport models.

Whipple and Tucker (2002) formulated a simple extension of the SPIM toward sediment transport in the form

� = �
(

1 − �
�c

)

����,� (8)

where Q is the actual sediment flux (volume per time) and Qc the transport capacity. Since the erosion rate de-
creases linearly with increasing sediment flux, this model is called linear decline model. The transport capacity 
Qc defines the sediment flux at which net erosion turns into a net deposition of sediment.
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Whipple and Tucker (2002) also proposed a generic formulation of the tools-and-cover concept based on ideas 
of Sklar and Dietrich (1998). The idea behind this concept even dates back to Gilbert (1877). In contrast to the 
linear decline model, the tools-and-cover concept assumes that a moderate sediment flux increases the rate of 
incision by enhancing abrasion and creating fractures, while a large sediment flux shields the bed and thus re-
duces erosion. Whipple and Tucker (2002) implemented this concept by replacing the linear dependency on 𝐴𝐴 𝑄𝑄

𝑄𝑄c
 

in Equation 8 by a parabolic term. The linear decline model was interpreted as a reduction of the tools-and-cover 
concept to the cover effect in subsequent studies (Gasparini et al., 2006, 2007), where the ratio 𝐴𝐴 𝑄𝑄

𝑄𝑄c
 is considered 

as the degree of alluvial cover.

While the linear decline model is a generic model, the ξ-q model

𝐸𝐸 = 𝐾𝐾𝐾𝐾𝑚𝑚𝑆𝑆𝑛𝑛 − 𝐺𝐺𝑄𝑄
𝐴𝐴

� (9)

proposed by Davy and Lague  (2009) starts from a simple approach for the settling velocity of particles. The 
symbol G follows the notation of Yuan et al. (2019) since the symbol Θ used by Davy and Lague (2009) might 
be confused with the concavity index θ. The nondimensional parameter G involves the settling velocity and the 
vertical distribution of the particles and the precipitation rate. On a more generic level, it controls the transition 
from the SPIM (G = 0) toward the transport-limited regime. It is easily recognized by comparing Equations 8 
and 9 that the ξ-q model can be seen as a specific version of the linear decline model with

𝑄𝑄c =
𝐾𝐾
𝐺𝐺
𝐴𝐴𝑚𝑚+1𝑆𝑆𝑛𝑛.� (10)

As a main property of the ξ-q model, rivers at a spatially uniform erosion rate satisfy Hack's relation (Equa-
tion 2) with the same θ for all values of G. As pointed out by Whipple and Tucker (2002), the rivers studied by 
Hack (1957) already covered a wide range from detachment-limited to transport-limited conditions without a 
systematic difference in the concavity index θ. In the context of the linear decline model, this finding suggests 
that the transport capacity must be proportional to Am+1Sn (Equation 10), and the ξ-q model provides some justi-
fication of this approach from a simplified model of settling particles.

However, Equation 10 reveals that the ξ-q model may be more complex than it seems at first. The definition of G 
based on a settling velocity includes no obvious dependence on the properties of the bedrock. So a low erodibility 
of the channel bed would result in a low transport capacity. In reality, however, settling particles would rapidly 
built up an alluvial cover with an erodibility K much higher than that of the bedrock. The SPACE model (Shobe 
et al., 2017) implements this concept by relating the thickness of the cover to the roughness of the bed.

Efficient numerical implementations of the ξ-q model using a fully implicit time step have recently become avail-
able, which make the model more attractive for large-scale simulations over long time spans. While the scheme 
presented by Yuan et al. (2019) involves a fixed-point iteration for the sediment flux that converges rapidly as 
long as G is not too large, Hergarten (2020b) proposed an even more efficient direct solver without this limitation 
for the linear model (n = 1).

2.  The Shared Stream-Power Model
While the ξ-q model directly refers to incision and sediment deposition, the mathematically equivalent formulation

�
�d

+ �
�t�

= ���� =
(

��
��

)�

� (11)

proposed by Hergarten (2020b) returns to a generic level. This model contains two erodibilities, where Kd de-
scribes the erodibility in absence of transported sediment and is the same as K in the linear decline model and in 
the ξ-q model. In turn, Kt characterizes the ability to transport sediment at zero erosion. Since this formulation 
describes a sharing of the stream-power term AmSn between incision and sediment transport, the term “shared 
stream-power model” was suggested. The shared stream-power model turns into the original SPIM for Kt → ∞ 
and into a transport-limited model for Kd → ∞.
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The shared stream-power model is a specific version of the linear decline model with K = Kd and Qc = Kt A
m+1Sn. 

So it contains no tools effect in the sense of the tools-and-cover concept. An interpretation as the cover component 
would be possible, but would be an unnecessary narrowing of the generic concept of sharing stream power be-
tween incision and sediment transport.

At this point, it should be emphasized that the erodibility Kd refers to the actual river bed, which may differ 
strongly from the erodibility of the bedrock if a thick alluvial cover is eroded. The erodibility of a fresh alluvial 
cover is typically much higher than that of the bedrock, so that the model would even be almost transport-limited. 
Furthermore, a net deposition of sediments should also be described by the transport-limited version of the model 
(Kd → ∞).

Alternatively, the shared stream-power model can be written in the form

𝐸𝐸 = 𝐾𝐾d

𝐾𝐾t𝐴𝐴
(𝑄𝑄c −𝑄𝑄),� (12)

which closes the loop to the idea of the undercapacity model proposed by Kooi and Beaumont (1994). This model 
starts from the transport-limited regime instead of the SPIM and attributes erosion and deposition to the deviation 
of the actual sediment flux Q from the transport capacity Qc. The almost symmetric formulation of the shared 
stream-power model in Equation 11 emphasizes the equivalence of both starting points.

The mathematical equivalence of the shared stream-power model to the ξ-q model is recognized by defining K = 
Kd and 𝐴𝐴 𝐴𝐴 = 𝐾𝐾d

𝐾𝐾t
 . However, it should be emphasized that this definition of G as a ratio of two erodibilities is in its 

spirit fundamentally different from the original definition based on settling velocities. So there is a process-relat-
ed interpretation of the parameter G and a generic interpretation. While Davy and Lague (2009) estimated G ⪆ 1 
from typical settling velocities, the more recent study of Guerit et al. (2019) used natural and experimental river 
profiles for estimating G. So the idea of estimating G by its effect on topography rather than from its ingredients 
was already present before the shared stream-power model and the generic interpretation 𝐴𝐴 𝐴𝐴 = 𝐾𝐾d

𝐾𝐾t
 were proposed. 

In the following, the generic interpretation is used without introducing a new symbol in order emphasize that 
the estimates of G given by Guerit et al. (2019) and future estimates derived from topography are valid for the 
definition 𝐴𝐴 𝐴𝐴 = 𝐾𝐾d

𝐾𝐾t
 .

The motivation for replacing the symbol K from the other models (SPIM, linear decline model, ξ-q model) by Kd 
in the shared stream-power model may not be obvious. In this context, it has to be taken into account that values 
of K are typically not derived from theoretical considerations, but inferred from field data, for example, recently 
in a comprehensive compilation of worldwide basin-averaged denudation rates by Harel et al. (2016). For spa-
tially uniform erosion, the sediment flux is Q = EA, and Equation 11 collapses to a form analogous to the SPIM 
(Equation 1) with an effective erodibility K according to

1
𝐾𝐾

= 1
𝐾𝐾d

+ 1
𝐾𝐾t

.� (13)

This means that relating measured erosion rates to catchment sizes and channel slopes does typically not yield 
Kd (so K of the other models), but rather the effective erodibility K according to Equation 13 (in the best case of 
spatially uniform erosion). So, if we see Equation 1 not as the SPIM (detachment-limited erosion), but as an ex-
pression for spatially uniform erosion in the respective upstream catchment, the effective erodibility K according 
to Equation 13 is the relevant property. Therefore, it makes sense to reserve the symbol K for this property and 
introduce a new symbol Kd for the erodibility in absence of transported sediment.

As an alternative to Equation 11, the shared-stream power model can be written in terms of K and 𝐴𝐴 𝐴𝐴 = 𝐾𝐾d
𝐾𝐾t

 :

1
1 + �

� + �
1 + �

�
�

= ����� = �
(

��
��

)�

� (14)

In the sense of sharing stream power, a fraction 𝐴𝐴 1
1+𝐺𝐺

 of the total stream power is spent for incision, while a fraction 
𝐴𝐴 𝐺𝐺

1+𝐺𝐺
 is spent for sediment transport at uniform erosion (Q = EA). Alternatively, we can also say

𝑄𝑄
𝑄𝑄c

= 𝐾𝐾
𝐾𝐾t

= 𝐺𝐺
1 + 𝐺𝐺

.� (15)
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With regard to Equations 14 and 15, introducing a new parameter 𝐴𝐴 Γ = 𝐺𝐺
1+𝐺𝐺

∈ [0, 1] might be convenient since 
it directly corresponds to the fraction of stream power used for sediment transport or to the ratio of the actual 
sediment flux and the transport capacity at uniform erosion. However, the parameter G has the same value of 
G in the ξ-q model, where some preliminary estimates have already been obtained from analyzing natural and 
experimental river profiles (Guerit et al., 2019). So it might be better to keep G in this context.

Which form of the shared stream-power model (Equations 11 or 14) is more suitable, depends on the question. 
The K-G version (Equation 14) has the advantage that K is directly related to the steepness of river profiles at 
uniform erosion. It mainly defines how steep topographies will be at a given uplift rate, so that it is not a big 
challenge to find a realistic estimate for a given scenario. In turn, G allows for moving between the SPIM and the 
fully transport-limited model without changing equilibrium topographies fundamentally.

The Kd-Kt version (Equation 11) is particularly useful if considering spatial variations, for instance in lithology. 
Then the simplest concept would be assuming that Kd directly depends on the properties of the bedrock (or of 
deposited sediments), while Kt might even be independent of the lithology. This version should also be preferred 
for extensions of the model. As an example, assuming that a given fraction of the detached material is swept out 
of the system as dissolved load could be included easily by increasing Kt accordingly. In turn, assuming that Kd 
increases with Q would be an option to include the tools effect.

3.  Scope
While the shared stream-power model covers the entire range from detachment-limited to transport-limited ero-
sion, both end-members differ fundamentally concerning their mathematical properties. As discussed above, 
the SPIM is described by a hyperbolic differential equation of the advection type, where knickpoints propagate 
upstream. In turn, the transport-limited end-member follows a parabolic differential equation of the diffusion 
type where mobile knickpoints cannot exist. This behavior is immediately recognized by setting Kd → ∞ in 
Equation 11. While discontinuities in E go along with slope-break knickpoints (discontinuities in S) in the gen-
eral model, the first term vanishes for Kd → ∞, so knickpoints can only arise from discontinuities in Q or A (at 
confluences) or in Kt.

This leads us to the central question of this study. How do knickpoints behave in the regime between the two 
extremes of the SPIM and transport-limited erosion? In particular, are mobile knickpoints smoothed by sediment 
transport, and how does their lifetime depend on the parameters? At one side, these properties are fundamental 
for the question of how well knickpoints can be detected in reality and over which time spans they can be used for 
recording the tectonic or climatic history. In turn, the prevalence or absence of knickpoints could provide insights 
into the relevance of sediment transport for landform evolution even in rivers with little alluvial cover.

The transition from an advection equation to a diffusion equation might suggest that the mixed model behaves 
like a diffusion-advection equation where knickpoints migrate upstream, but are smoothed through time. How-
ever, Gasparini et al. (2006, 2007) already found a two-phase response of the linear decline model and of some 
more elaborate models to disturbances, where the behavior is initially similar to the SPIM, but turns into a more 
diffusive behavior later. At that time, however, results were limited by computing capacities as well as by the 
performance of the available numerical schemes. It seems that the question has not been addressed systematically 
since then, although simulations on lattices of several million nodes can be run over long time spans nowadays.

This study is not intended to cover the variety of phenomena in the context of knickpoints, where already only a 
few were discussed in Section 1. Focus is on the simplest scenario of tectonic knickpoints, slope-break knickpoints 
at vertical faults (Figure 1a). As discussed in Section 1, vertical-step knickpoints (Figure 1b) can be conceptually 
described as a pair of slope-break knickpoints. However, neither the SPIM nor its extensions were designed for 
application to very steep slope segments. So the results of the following sections may also be helpful for under-
standing the effect of sediment transport on vertical-step knickpoints, but these are not considered explicitly.

Concerning the effect of sediment transport on erosion, this study is also reduced to a minimum, represented by 
the shared stream-power model. In particular, the tools effect of the sediment flux is not taken into account. Both 
formulations of the model (Kd-Kt, Equation 11 or K-G, Equation 14) would be suitable for covering the range 
from the SPIM to a transport-limited model. In terms of Kd and Kt, we could assume that Kt is constant, while Kd 
refers to the properties of the bedrock. Increasing Kd, so assuming a more erodible bedrock, would be a shift to-
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ward the transport-limited model. In the following, however, the K-G version with fixed K and variable G is used. 
This means that we compare conditions where all rivers would have the same equilibrium profile under uniform 
uplift, while increasing 𝐴𝐴 𝐴𝐴 = 𝐾𝐾d

𝐾𝐾t
 moves toward the transport-limited model.

4.  Model Setup
This study combines analytical considerations with the results of numerical simulations, starting from the linear 
version (n = 1) of the shared stream-power model with θ = 0.5. Since the physical dimension of K (and also Kd 
and Kt) is time−1 then, the erodibility directly defines the time scale of the model, regardless of the spatial scale. 
As an order of magnitude, we may follow Robl et al. (2017) and assume K = 2.5 Myr−1. Then, one time unit 
corresponds to a time scale 𝐴𝐴 𝐴𝐴 = 1

𝐾𝐾
= 400, 000 yr, regardless of the spatial scale.

The linear model with θ = 0.5 is even invariant under horizontal scaling since the occurrences of the horizontal 
length scale in the catchment size and in the channel slope compensate each other. While this invariance was seen 
as an unrealistic property of the SPIM by Kwang and Parker (2017), it only reflects the property S → ∞ for A → 
0 if hillslope processes are not taken into account, which leads to a dependence of relief on the mesh width of the 
considered grid (e.g., Hergarten, 2020a). This problem is independent of θ and requires a thorough consideration 
of the spatial resolution, but is not an argument against the choice θ = 0.5.

In the following, a fluvial equilibrium topography for uniform uplift (the same as in Hergarten, 2020b, 2021b) on 
a 5,000 × 5,000 grid is used as an initial topography. Nondimensional coordinates are used, where the pixel size 
defines the horizontal length scale. The vertical length scale is defined by assuming K = 1 and a uniform uplift 
rate U = U0 = 1. While the topography was computed using the SPIM, it is a valid equilibrium topography for 
any combination of Kd and Kt that satisfy Equation 13 with K = 1 since K and U0 are constant.

In all examples, it is assumed that the uplift rate suddenly changes from U = U0 to U = U0 + u at t = 0 in the 
central part of the domain, 1,000 ≤ x2 ≤ 4,000. This region of increased (or reduced) uplift was extended in such 
a way that it includes the entire upstream catchment of each point. The boundary of the region of increased uplift 
is depicted by the red lines in Figure 2.

It was assumed that the change in uplift u is so small that it will not cause changes in the flow pattern. While the 
reorganization of drainage patterns was addressed in several studies (e.g., Castelltort et al., 2012; Hergarten & 
Neugebauer, 2001; Lyons et al., 2020; Willett et al., 2014), including their effect in the simulations would not be 
helpful for understanding the fundamental properties of knickpoints.

In the following, the symbols H0, U0, E0, and Q0 refer to the initial steady-state topography. The respective low-
ercase symbols refer the time-dependent deviations from this state arising from the change u in uplift, so that, for 
example, H = H0 + h is the time-dependent surface elevation.

Subtracting the respective version of Equation 11 for H and for H0 yields

�
�d

+
�

�t�
=
(

��0

��
+ �ℎ

��

)�

−
(

��0

��

)�

,� (16)

where

𝑒𝑒 = 𝑢𝑢 − 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,� (17)

and q is the integral of e over the upstream catchment. For the linear model (n = 1), Equation 16 reduces to

𝑒𝑒
𝐾𝐾d

+
𝑞𝑞

𝐾𝐾t𝐴𝐴
= 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,� (18)

which means that h, q, and e are described by the same equation as H, Q, and E, respectively (Equation 11 for 
n = 1). Inserting Equation 17 into Equation 18 also reveals that h, e, and q are directly proportional to u.

This linearity simplifies both the numerical implementation and the formulation of theoretical relations. Instead 
of using the equilibrium topography as an initial state, we can set H0 = 0 everywhere (so only use the drainage 
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pattern of the original topography) and assume U = 1 for 1,000 ≤ x2 ≤ 4,000 and U = 0 outside this region. Then, 
the computed topography H at time t is not an absolute elevation, but the change in surface elevation per change 
in uplift rate, 𝐴𝐴 ℎ

𝑢𝑢
 . The same holds for the erosion rate and for the sediment flux. This treatment also covers negative 

changes in uplift rate u < 0, which means that a decrease −u in uplift has the same effect on h as an increase u, 
except for the sign.

5.  Qualitative Analysis
As a first example, Figure 3 shows the evolution of the largest river in the domain (black line in Figure 2) for 
the SPIM, where U0 = u = 1. For illustration, it refers to the full elevation H = H0 + h and not to the change in 
elevation h as described in the previous section.

It is immediately recognized that the velocity of knickpoint migration with regard to the along-stream coordinate 
x is not constant, but decreases while the knickpoint migrates upstream. With regard to the vertical axis, however, 
the rate of migration is constant. This fundamental property was described first by Whipple and Tucker (1999) 
and will be revisited in Section 11. In this scenario, the knickpoint moves upward by 2 vertical units within 1 
time unit. So the rate is equal to the uplift rate U = U0 + u = 2. We could also say that the knickpoint follows 
the uplifted rock vertically. However, this property relies on the specific condition of equilibrium under uniform 
uplift. So its value for developing a general framework is limited.

After applying the χ transform, river segments exposed to uniform erosion turn into straight lines, and the knick-
point moves along the χ axis at a constant velocity. As pointed out by Royden and Perron (2013), this is a general 
property of the linear model (n = 1) and does not rely on any specific conditions.

Therefore, χ-transformed profiles will be used in the following, where the origin of the χ-axis is set to the sta-
tionary knickpoint (intersection with the red lines in Figure 2, red dot in Figure 3). In addition, only the change 
in elevation h as described in the previous section is considered, so that the initial state is characterized by h = 0. 
Figure 4 shows the respective evolution of the largest river for G = 0 (SPIM, Kd = 1, Kt = ∞), G = 1 (Kd = 2, 
Kt = 2), and G = ∞ (transport-limited, Kd = ∞, Kt = 1).

Figure 2.  Equilibrium topography used as an initial state. The red lines depict the boundary of the region of increased uplift. 
The blue and black lines show the rivers investigated in detail, where the black line refers to the river considered in Figures 3, 
4, 10 and 11.
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While the profiles for G = 0 are basically the same as those shown in Figure 3, the representation in Figure 4 is 
more general. Formally, it describes the change in elevation for u = 1, but as discussed in Section 4, the plot for 
any change u in uplift is obtained by multiplying h by u, which would also hold for u < 0 (a decrease in uplift rate). 
As expected, a mobile knickpoint moves upstream at a velocity Kd = 1 for the SPIM (G = 0). The river segment 
between the stationary knickpoint at χ = 0 and the mobile knickpoint has a steepness index 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑢𝑢 = 1 . The region 

above the mobile knickpoint just follows the increased uplift without any changes in channel steepness (𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ).

The results for the shared stream-power model with G = 1 are qualitatively similar to the SPIM at short times, but 
the river segment between the stationary knickpoint and the mobile knickpoint is less steep. In turn, the mobile 
knickpoint moves faster. After the mobile knickpoint has left the domain at t ≈ 6, the river still becomes steeper 

Figure 3.  Evolution of the largest river in the domain (black line in Figure 2) for the SPIM, plotted at equal time increments 
δt = 1, where U0 = u = 1. The lower set of lines refers to the original river profile, where the origin of the along-stream 
coordinate x is at the boundary of the domain. The upper set of lines describes the respective χ-transformed profiles. The red 
dots mark the location of the stationary knickpoint at the fault.

Figure 4.  River profiles of the largest river for G = 0, G = 1, and G = ∞ in χ representation. The origin of the χ-axis is set to the stationary knickpoint. Profiles are 
plotted at equal time increments δt = 1.
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until it finally approaches the same equilibrium steepness as in the SPIM (𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1 ). The transport-limited model 
(G = ∞) approaches the same equilibrium steepness without any distinct knickpoints.

It is already visible that the shared stream-power model is not a combination of the advection-type equation of the 
SPIM with the diffusion-type equation of the transport-limited model to an advection-diffusion equation. In this 
case, the mobile knickpoint should simply be smoothed while migrating upstream. Instead, the evolution rather 
consists of two different phases. In the beginning, it is similar to the SPIM, which means that sediment transport 
plays a minor part. Later, sediment transport becomes increasingly important, and the evolution is similar to the 
transport-limited end member. While a similar behavior was already found by Gasparini et al. (2006, 2007) in 
the linear decline model and in some more elaborate models, a quantitative analysis and the development of the 
theory is the subject of the following sections.

6.  Mobile Knickpoints
The numerical analysis of mobile knickpoints is hampered by numerical diffusion. Figure 4a reveals that the 
mobile knickpoint is more and more smoothed as it moves upstream in the SPIM, while the sharp edge should 
theoretically persist until the knickpoint arrives at the drainage divide (e.g., Royden & Perron, 2013). The con-
version of a distinct knickpoint into a zone with a gradual change in steepness is called knickpoint smearing or 
knickpoint stretching.

Numerical diffusion is an inherent property of the first-order scheme used for computing the channel slope 
and affects explicit and implicit schemes in a similar way. A higher-order scheme that reduces numerical diffu-
sion was proposed by Campforts and Govers (2015) and implemented in the landform evolution model TTLEM 
(Campforts et al., 2017). However, such higher-order schemes are not compatible with implicit schemes. As dis-
cussed by Hergarten (2020b), sediment transport reduces the maximum stable time increment of explicit schemes 
extremely. So it seems to be impossible to avoid the numerical diffusion at a reasonable effort.

Practically, however, numerical diffusion is not as severe as it looks in Figure 4 since the χ transform is high-
ly nonlinear and stretches the upper segments of rivers. While the mobile knickpoint appears to be strongly 
smoothed when it passes the middle of the χ axis (χ ≈ 6) in Figure 4a, Figure 3 reveals that is point is already close 
to the drainage divide in the original river profile. So only the uppermost river segments are seriously affected by 
knickpoint smearing due to numerical diffusion.

Nevertheless, knickpoint smearing still hampers a thorough investigation of the properties of the knickpoints. 
So let us start with a theoretical investigation by applying the method of characteristics to Equation 18 in com-
bination with Equation 17. This method considers the topography not at a given position as a function of time, 
but along lines χ(t). So we would move along a river profile that changes through time along a suitable path χ(t), 
where we will recognize in the next step what suitable means. The rate of change in h(χ(t), t) along any path χ(t) 
is given by the total derivative

𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕� (19)

=

(

� − �ℎ
��

�d
+

�
�t�

)

��
��

+ �ℎ
��

.� (20)

The partial derivative 𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , so how h changes through time at a fixed position, is not immediately known. So a path 
χ(t) is suitable for simplifying the problem if 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 vanishes from the equation, which is the case here if χ(t) satisfies 

the condition

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾d.� (21)

The respective paths χ(t) starting from different points χ(0) at t = 0 are the so-called characteristics of the dif-
ferential equation. Here, the characteristics move upstream along the χ-axis at a velocity Kd. Since this velocity 
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is constant and the same for all characteristics, the method of characteristics is equivalent to using a coordinate 
system that moves upstream at a constant velocity Kd here. Equation 20 turns into

𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑢𝑢 + 𝐾𝐾d

𝐾𝐾t

𝑞𝑞
𝐴𝐴� (22)

then. Without the second term, characteristics starting from different points χ(0) would be decoupled, which 
means that h along each characteristic can be computed without knowing anything about the neighborhood, so 
about the other characteristics. Then, Equation 22 could be solved analytically by

ℎ(𝜒𝜒(𝑡𝑡), 𝑡𝑡) =

𝑡𝑡

∫
0

𝑢𝑢(𝜒𝜒(𝜏𝜏), 𝜏𝜏) 𝑑𝑑𝑑𝑑 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢𝑢𝑢𝑢𝑢𝑢 (𝑡𝑡) ≥ 𝐾𝐾d𝑡𝑡

𝑢𝑢
𝐾𝐾d

𝜒𝜒(𝑡𝑡) for 0 < 𝜒𝜒(𝑡𝑡) < 𝐾𝐾d𝑡𝑡

0 𝜒𝜒(𝑡𝑡) < 0

� (23)

This solution describes a mobile knickpoint migrating upstream at the velocity Kd, where the segment between 
the stationary knickpoint at χ = 0 and the mobile knickpoint has a constant steepness index 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑢𝑢

𝐾𝐾d
 . This solution 

is the same as for the linear version of the SPIM, but with Kd instead of K.

Since q is the integral of e over the upstream catchment, characteristics are not fully decoupled in the shared 
stream-power model (Equation 22). The future development along a given characteristic is independent of the 
downstream characteristics (lower χ), but still depends on the upstream characteristics (higher χ). This residual 
one-sided coupling impedes a full analytical solution, but helps to constrain the properties of the solution. In 
particular, the upper part of Equation 23,

ℎ = 𝑢𝑢𝑢𝑢 for 𝜒𝜒 ≥ 𝐾𝐾d𝑡𝑡𝑡� (24)

remains valid for the shared stream-power model since e = 0 here and thus also q = 0. This means that the river 
segment defined by χ > Kdt does not change its shape as long as it exists, but is just uplifted uniformly. In particu-
lar, there is no upstream knickpoint smearing in the shared stream-power model.

The behavior downstream of the presumed (since it might still be a smooth transition in channel slope) mobile 
knickpoint at χ = Kdt is, however, more complicated. Since points below this point (characteristics that start at 
χ(0) < 0) have already experienced a change in erosion rate (e > 0), q > 0 there. This increased sediment flux 
inhibits erosion below the mobile knickpoint. Since it increases downstream, it reduces the channel steepness 
below the presumed knickpoint. In the following, it will be shown that this effect is not strong enough to remove 
the difference in ks across the presumed knickpoint rapidly, in which case the considered point would no longer 
be a slope-break knickpoint.

According to Equation 18, the additional erosion rate e is constrained by

𝑒𝑒 𝑒 𝑒𝑒d
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.� (25)

This constraint is relevant for the upstream catchment of the considered point up to the presumed mobile knick-
point, while e = 0 above this point. This condition constrains the increase in sediment flux q according to

𝑞𝑞 = ∫ 𝑒𝑒 𝑒𝑒𝑒𝑒 ≤ max(𝑒𝑒)∫𝑒𝑒𝑒0
𝑑𝑑𝑑𝑑𝑑� (26)

where the integral extends only over the part of the upstream catchment where the erosion rate has already in-
creased, so between the considered point and the presumed mobile knickpoint. If we define

𝜓𝜓 =
∫𝑒𝑒𝑒0 𝑑𝑑𝑑𝑑

𝐴𝐴
� (27)
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as the respective fraction of the total upstream catchment size A, the ratio 𝐴𝐴 𝑞𝑞
𝐴𝐴
 

occurring in Equation 22 can be constrained by

�
�

≤ �max(�) < ��dmax
(

�ℎ
��

)

� (28)

according to Equation 25.

The nondimensional factor ψ is plotted in Figure 5, where δχ on the x-axis is 
the distance between the presumed knickpoint and the considered point on 
the χ-axis. The factor ψ increases with increasing δχ at a given catchment size 
A (which is trivial), but decreases with increasing A. Since the χ-transformed 
equilibrium river profiles are straight lines for uniform uplift, Figure  5 is 
basically the same as the hypsometric curve on a catchment basis.

Inserting Equation 28 into Equation 22 yields
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< � + �
�2

d
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)

.� (29)

Then, the elevation difference δh toward the presumed knickpoint (where 
𝐴𝐴 𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑢𝑢 ) decreases through time, but
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< �
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d

�t
max
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)

.� (30)

The occurrence of the 𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 impedes an instantaneous decrease of δh and thus a decrease of the steepness index 𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
to zero even for points very close to the presumed knickpoint. So the point at χ = Kdt is indeed a sharp knickpoint 
and not exposed to smearing.

It is noteworthy that the velocity of knickpoint migration along the χ axis is Kd, and the initial change in ks is 𝐴𝐴 𝑢𝑢
𝐾𝐾d

 . 
So the initial response is dictated by the detachment-limited erodibility Kd. Revisiting Figure 3, the increased 
velocity at G = 1 compared to the SPIM (G = 0) arises from keeping the effective erodibility K = 1 (Equation 13) 
constant. Then G = 1 requires Kd = 2 instead of Kd = 1 for G = 0. If Kd was kept constant and the transition from 
the SPIM toward the transport-limited model was employed by reducing Kt, the initial response would be the 
same in Figures 3a and 3b. However, the initial equilibrium topography (which is not visible) and the long-term 
response would depend on Kt then. In this sense, the increase in knickpoint migration velocity observed in Fig-
ure 3 is not a direct effect of sediment transport, but arises from comparing river profiles starting from the same 
initial profile at the same uplift rate. However, as discussed in Section 2, this should not be seen as an artifact, but 
is rather the natural approach when analyzing real-world river profiles.

While a distinct break in channel slope persists, the steepness index downstream of the knickpoint gradually de-
creases through time, and thus also the difference in steepness index across the knickpoint. In order to distinguish 
this effect from knickpoint smearing, the term knickpoint flattening is used in the following. Since the factor ψ 
decreases with increasing catchment size, flattening is slower at larger catchment sizes.

Knowing that knickpoint smearing in Figure 4 is solely a numerical artifact, knickpoint flattening can be investi-
gated numerically despite the numerical diffusion. Assuming that numerical diffusion acts almost symmetrically, 
the slope 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 at the knickpoint should be the mean of 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 above and below the knickpoint. Since 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 above the 

knickpoint, 𝐴𝐴 𝐴𝐴𝐴𝐴s = 2 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is an estimate of the difference in the steepness index δks = ks↓ − ks↑ (where ↓ and ↑ refer to 

downstream and upstream of the knickpoint, respectively) across the knickpoint. In order to achieve a reasonable 
accuracy, the slope 𝐴𝐴 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is only computed when the knickpoint passes any node of the grid (so at the time when it 

is closest to the node according to the χ-coordinate of the node and to the velocity of migration Kd). Then, the 
node and its upstream and downstream neighbors are interpolated by a parabolic function, and the slope of the 
parabolic function at the exact position of the knickpoint is computed. This procedure was tested for the SPIM, 

Figure 5.  Ratio ψ of the catchment size up to a given value δχ above the 
considered point to the total upstream catchment size A. The color refers to 
the total upstream catchment size A. The first curve refers to the mean over all 
catchments with sizes from 512 to 1,023 pixels, the second curve to 1,024 to 
2,047 pixels, etc.
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where δks should be δks = 1 up to the drainage divides. All obtained values 
were in the range 0.85 < δks < 1. So the scheme still underestimates δks by up 
to 15%, but this is not crucial.

The results shown in Figure 6 reveal that δks stays almost constant at 𝐴𝐴 1
𝐾𝐾d

 for 
some time in large rivers, which is consistent with small values of ψ at small 
δχ for large catchment sizes. After the knickpoint has migrated upstream for 
some time, δks decreases, where the curves for rivers of different sizes are 
mainly shifted horizontally. This means that the degree of flattening main-
ly depends on how long the knickpoint still has to migrate to the drainage 
divide, which is equivalent to its actual distance to the drainage divide on 
the χ-axis. Its history, that is, how long it has been migrating, has a minor 
influence.

In order to quantify the effect of flattening, the catchment size Ahalf where the 
knickpoint has flattened by 50% was measured, that is, where δks across the 
knickpoint has decreased to half of its initial value 𝐴𝐴 1

𝐾𝐾d
 . Figure 7 shows that 

Ahalf is typically smaller than 10 pixels for G = 1. It increases with increasing 
G, but is not larger than some hundred pixels for G = 5. Beyond this, Ahalf 
depends only weakly on the catchment size A at the stationary knickpoint. 
This result is in agreement with the previous finding that the degree of flat-
tening mainly depends on the actual position of the knickpoint in relation to 
the drainage divide, while the distance from the stationary knickpoint has a 
minor effect.

7.  Stationary Knickpoints
A fundamental property of stationary knickpoints is readily obtained by com-
bining Equations 3 and 11 in the form

� (31)

Both the rate of change in surface elevation 𝐴𝐴 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and the sediment flux Q must 
be continuous across the knickpoint, while the uplift rate U is discontinuous 
and makes a step of u. So this discontinuity must be directly reflected in a 
jump of the steepness index (i.e., a slope-break knickpoint) according to

𝑘𝑘𝑛𝑛
s↑ − 𝑘𝑘𝑛𝑛

s↓ =
𝑢𝑢
𝐾𝐾d

.� (32)

This difference is basically the same as in the SPIM without sediment trans-
port. Similar to the velocity of knickpoint migration, the only difference is 
that the erodibility is not the effective erodibility K (Equation 13), but Kd.

For the linear version, Equation 32 implies that the difference ks↑ − ks↓ across 
the knickpoint is constant, while both ks↑ and ks↓ increase through time for 
u > 0. In terms of knickpoint flattening as discussed in Section 6, this means 
that the stationary knickpoint is not flattened absolutely, but only relative 
to the overall channel steepness around the knickpoint. In turn, Equation 32 
predicts a decrease in ks↑ − ks↓ for n > 1, so an absolute flattening of the 
knickpoint. This flattening, however, should not affect the ability to detect 
stationary knickpoints fundamentally.

However, there seems to be no analytical solution for ks↑ and ks↓ as a func-
tion of time. Figure 8 shows ks↑ for the 69 rivers obtained from numerical 

� − ��
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�d
+ �

�t�
=
(
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��
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Figure 6.  Difference in steepness index across the mobile knickpoint. The 
color refers to the catchment size A at the stationary knickpoint. The last point 
of each curve corresponds to the time when the knickpoint passes the second-
last point of the river. The dashed red lines show the theoretical initial value 

𝐴𝐴 𝐴𝐴𝐴𝐴s = 1
𝐾𝐾d

 .

Figure 7.  Catchment size Ahalf where the mobile knickpoint has flattened by 
50%, that is, where δks has decreased to half of its initial value 𝐴𝐴 1

𝐾𝐾d
 .
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solutions for G = 1 and for the transport-limited model (G = ∞). The result 
obtained from the SPIM (G = 0) was included for comparison, where a step-
like adjustment from ks↑ = 0 to 1 should occur theoretically. For G > 0, the 
adjustment toward the asymptotic value ks↑ → 1 is faster for small rivers (blue 
curves). While this result is not surprising, it is visible that even a variation 
in A over some orders of magnitude results in a moderate change in the time 
scale of adjustment.

The curves for G = 1 are qualitatively similar to those in Figure 5, which 
show the fraction of the upstream catchment size that already delivers more 
sediment according to the actual position of the mobile knickpoint. In par-
ticular, the curves for different catchment sizes differ by some kind of lag in 
the sense that ks↑ and thus also ks↓ stay constant for some time for large rivers. 
This behavior, which was already visible in Figure 4b, is directly related to 
the result that only a small part of a large catchment is captured by the mobile 
knickpoint in the beginning.

Figure 9 quantifies the time scale of adjustment as a function of A and G. The 
time Thalf when ks reaches the middle between its initial value and its final 
value was taken as the characteristic time scale of adjustment. Although the 
scatter among the 69 rivers is high, a systematic dependence on both A and G 
is visible. The solid lines are logarithmic functions

𝑇𝑇half = 𝛼𝛼log10𝐴𝐴 + 𝑏𝑏� (33)

fitted for each value of G individually. All obtained values α are between 0.48 and 0.52, where the 95% confi-
dence intervals are considerably wider than this range (the widest interval ranges from 0.4 to 0.6). This result 
suggests α = 0.5.

However, the most important result of Figure 9 is the weak dependence of Thalf on G. Larger values of G (more 
toward the transport-limited model) result in a faster adjustment, but the systematic variation over the entire 
range G ≥ 0.5 is less than one time unit. So the dependence of Thalf on both Kd and Kt is weak as long as K = 1 as 
assumed here. Since one time unit is 𝐴𝐴 1

𝐾𝐾
 for θ = 0.5, the main dependency of Thalf is 𝐴𝐴 1

𝐾𝐾
 . Thus, the time scale of the 

adjustment of the stationary knickpoint is governed by the effective erodibility K, in contrast to knickpoint migra-
tion where Kd defines the velocity. As it is recognized from the straight lines in Figure 9, the systematic variation 

of Thalf over the entire range G ≥ 0.5 and over the four orders of magnitude 
in catchment size considered here ranges from about 2.8 to 5.8, which is not 
much more than a factor of two. Using K = 2.5 Myr−1, Thalf is in an order of 
magnitude of one to a few million years then.

Let us summarize the findings of the two previous sections and revisit Fig-
ure 4. The shared stream-power model (Equation 11) for n = 1 can also be 
interpreted as splitting up the steepness index 𝐴𝐴 𝐴𝐴s = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 into a detachment 

component and a transport component. As the main result of Section 6, the 
initial response to a tectonic signal only concerns the detachment component. 
So the steepness index changes by 𝐴𝐴 𝑢𝑢

𝐾𝐾d
 at first. This change goes along with 

the occurrence of a mobile knickpoint, which moves upstream at the velocity 
Kd > K. The second phase of the response is related to the change in sediment 
flux from the upstream range, which finally causes an additional change of 

𝐴𝐴 𝑢𝑢
𝐾𝐾t

 in the steepness index. In total, the change is 𝐴𝐴 𝑢𝑢
𝐾𝐾

 . In the SPIM, only the 
first phase occurs, while the transport-limited end-member shows the second 
phase only.

Considering the channel steepness at a given point, for example, χ = 5 in Fig-
ure 4b, reveals a quite complex behavior of the channel steepness. The steep-
ness suddenly increases when the knickpoint passes. Afterward, the sediment 
flux increases, which results in a decrease in steepness at first. According 

Figure 8.  Steepness index upstream of the stationary knickpoint (relative to 
the steady-state topography) for G = 0 (SPIM), G = 1, and G = ∞. The color 
refers to the catchment size A at the stationary knickpoint.

Figure 9.  Time Thalf when ks reaches the middle between its initial value and 
its final value as a function of the catchment size A for different values of G. 
The solid lines are logarithmic functions according to Equation 33.
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to the findings of Section 6, this decrease is stronger if the upstream catchment is small. Later on, the steepness 
increases again and approaches the equilibrium steepness dictated by U and K.

8.  The Influence of the Spatial Resolution
Both the SPIM and the shared stream-power model do not involve a canonical horizontal length scale. Since the 
pixel size defines the horizontal length scale in the setup used in this study, all results that involve lengths or areas 
depend on the spatial resolution of the grid. This concerns the time scale Thalf of adjustment of stationary knick-
points, which has at least a weak dependency on the catchment size, and the catchment size Ahalf where mobile 
knickpoints have flattened by 50%.

In the context of Thalf and Ahalf, the time scale at which sediment transport reacts to changes in base level is the 
relevant property. This is obvious for the stationary knickpoint, where the sediment flux increases after the 
change in erosion rate has captured a considerable part of the upstream catchment. As found in Section 7, the 
response of small catchments is faster than that of large catchments. The same holds for the flattening of mobile 
knickpoints. While the knickpoint moves upstream, tributaries experience a lowering in base level and respond 
by an increased sediment flux. Since the response of small catchments is faster, small tributaries have a strong 
effect on knickpoint flattening.

The pixel size defines the smallest catchment resolved in the model and thus the fastest response to changes in 
base level. For a single-pixel catchment, the sediment flux is Q = EA. Then, the shared stream-power model 
(Equation 11) collapses to a form analogous to the SPIM (Equation 1) with the effective erodibility K (Equa-
tion 13), and the sediment flux is

𝑄𝑄 = 𝐾𝐾𝐾𝐾𝑚𝑚+1𝑆𝑆𝑛𝑛.� (34)

So the sediment flux is a function of the difference of surface elevation and base level via the channel slope S. 
This means that the delay in the response of the sediment flux to changes in base level vanishes for single-pixel 
catchments.

In this sense, the pixel size defines the scale where the sediment flux instantaneously responds to changes in 
base level. This scale should be related to the transition from channelized flow to hillslope processes. A similar 
interpretation was recently proposed by Hergarten (2020a) for the scaling problem that occurs when the SPIM 
is coupled to a model for hillslope processes, while previous studies (Howard,  1994; Pelletier,  2010; Perron 
et al., 2008) attributed the problem to the channel width.

However, some caution is still required since the pixel size does not only define a scale, but also how fast the 
response is. For the linear model, it is easily recognized that a single-pixel catchment turns into a linear reservoir 
with a decay constant 𝐴𝐴 𝐾𝐾𝐾𝐾𝜃𝜃

𝛿𝛿𝛿𝛿
 , where δx is the distance between the considered point and its flow target. If we, how-

ever, assume the transition to any model for hillslope processes (e.g., diffusion), there is no reason why hillslopes 
should have the same decay constant as single-pixel catchments in the shared stream-power model. So it can only 
be stated that all occurrences of catchment sizes in Thalf and Ahalf must be interpreted in terms of a given scale (an 
area) that is somehow related to the transition from the fluvial regime to hillslope processes, but estimating this 
scale requires a model for hillslope processes and is nontrivial.

9.  The Influence of the Concavity Index
As discussed earlier, the choice θ = 0.5 is convenient for converting nondimensional coordinates to physical 
coordinates, but several authors prefer a slightly lower reference value θ = 0.45. In order to investigate the effect 
of the concavity index θ, simulations were also performed with θ = 0.4, where the same drainage network as for 
θ = 0.5 was used for simplicity.

The equilibrium topography, however, depends strongly on θ. Since catchment sizes are measured in pixels, the 
values Aθ are lower for θ = 0.4 than for θ = 0.5, in particular for large catchment sizes. The maximum χ value of 
the largest river above the stationary knickpoint is about 29 for θ = 0.4, while it was about 12 for θ = 0.5, which 
is an increase by a factor of about 2.5. Since K = 1 and U0 = 1 are also assumed here, the maximum surface 
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elevation and the time scale are also larger by this factor. Accordingly, the 
χ-transformed profiles are plotted at time increments δt = 2.5 in Figure 10 
instead of δt = 1 in Figure 4.

When comparing Figures  4b and  10, it is recognized that the results for 
θ = 0.4 are very close to the results for θ = 0.5 except for the scaling. In prin-
ciple, the relation between A and χ for the individual rivers depends on θ, and 
thus also the ratio 𝐴𝐴 𝑄𝑄

𝐴𝐴
 in Equation 11. However, the effect appears to be small. 

So the results suggest that there is little influence of the concavity index at 
least in the range θ ∈ [0.4, 0.5].

10.  The Nonlinear Model
As discussed in Section  1, there is still uncertainty about the exponent n. 
The linear model (n = 1) is a convenient choice, but recent studies (Adams 
et al., 2020; Harel et al., 2016; Hilley et al., 2019) rather suggest n > 1. As the 
main complication toward the linear model, the disturbance h in topography 
cannot be separated from the initial topography H0 for n ≠ 1, which was the 
basis of all considerations of mobile knickpoints in the previous sections. So 
the properties of knickpoints are no longer independent of the initial topog-
raphy. This becomes obvious if we try to apply the methods of characteristics 
(Section 6) to the nonlinear model. Performing the steps from Equations 19–
21 for the full shared stream-power model (Equation 11), we obtain

��
��

= �d

(

��
��

)�−1

.� (35)

So the velocity at which the characteristics move upstream depends on the unknown surface elevation H. Thus, 
the problem cannot be separated into a first step of computing the characteristics and a second step of computing 
the elevation along the characteristics. We can, however, at least guess that a straight (H vs. χ) river segment 
migrates upstream (as a morphologic element, not by material) at a velocity given by Equation 35. Then, steep 
river segments migrate faster than less steep river segments for n > 1. As a consequence, steeper river segments 
catch up with less steep river segments running ahead, which consumes the adjacent edges of the segments. This 
process counteracts a potential smearing of convex knickpoints and may even convert convex river segments into 
knickpoints. So it is called knickpoint sharpening in the following. In turn, concave knickpoints are stretched 
to an extended transition zone. The behavior for n < 1 is opposite. The concept of sharpening and stretching 
knickpoints and its implications for the velocities of knickpoint migration are described in detail by Royden and 
Perron (2013) for the SPIM, so that we focus on the new aspects arising from sediment transport.

As a second complication, the change in topography h resulting from different changes in uplift rate u cannot be 
obtained by rescaling h. In particular, increases and decreases in uplift rate may even have qualitatively different 
effects as already pointed out by Royden and Perron (2013) for the SPIM.

Let us start with the linearized version of the model. If the change in uplift u is sufficiently small, the right-hand 
side of Equation 16 can be approximated by

(

��0

��
+ �ℎ

��

)�

−
(

��0

��

)�

≈ �
(

��0

��

)�−1
�ℎ
��

,� (36)

so that

�
�d

+
�

�t�
= �

(

��0

��

)�−1
�ℎ
��

.� (37)

Figure 10.  River profiles of the largest river for θ = 0.4 and G = 1. The origin 
of the χ-axis is set to the stationary knickpoint. Profiles are plotted at equal 
time increments δt = 2.5.
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This is the same relation as Equation 18 for the linear model except for the term 𝐴𝐴 𝐴𝐴( 𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

)
𝑛𝑛−1

 . So we can also inter-

pret the linearized model as a linear model where the erodibilities are 𝐴𝐴 𝐴𝐴𝐴𝐴d( 𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

)
𝑛𝑛−1

 and 𝐴𝐴 𝐴𝐴𝐴𝐴t ( 𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

)
𝑛𝑛−1

 , respectively. 
As an immediate consequence, the velocity of knickpoint migration is

��
��

= ��d

(

��0

��

)�−1

.� (38)

This relation differs formally by the occurrence of the factor n from Equation 35. Thus, a small disturbance on a 
straight (H vs. χ) river segment migrates upstream n times faster than the segment itself. It seems, however, that 
Equation 35 is occasionally misinterpreted as the velocity of knickpoint migration (e.g., Beckers et al., 2015).

In our scenario where 𝐴𝐴 𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

= 1 , equilibrium topographies are the same for all n at the same erodibilities. Then, 
the linearized model is the same as the linear model with erodibilities nKd and nKt, respectively, and all results of 
the previous sections remain valid, but with erodibilities increased by a factor n. The only effects of nonlinearity 
are a decrease of the time scale by a factor of n, in particular that knickpoints migrate n times faster, and that a 
given change in uplift rate u has a smaller effect on the topography. This effect of nonlinearity is, however, not a 
property unique to the shared stream-power model, but also occurs in the SPIM.

However, the simple result that Kd still dictates the velocity of knickpoint migration and that nonlinearity increas-
es the velocity by a factor n only holds for small changes in uplift, so only for knickpoints where the difference 
in channel steepness across the knickpoint is much smaller than the overall steepness. Since distinct knickpoints 
in real rivers typically do not satisfy this condition, the effect of nonlinearity beyond the linear approximation 
deserves attention.

Figure 11 shows two scenarios for n = 2. The upper parts of the plots (curves with h > 0) refer to an increase in 
uplift by u = 1. So the uplift rate increases from U0 = 1 to U0 + u = 2. In turn, the lower parts of the plots (curves 
with h < 0) refer to a decrease in uplift by u = − 0.5. So the uplift rate decreases from U0 = 1 to U0 + u = 0.5.

The plots reveal that the nonlinearity affects the velocity of knickpoint migration beyond the linear approxima-
tion, where the velocity would be 2, 4, and 6 for G = 0, G = 1, and G = 2, respectively (Equation 38). Knickpoint 
migration is faster than predicted by Equation 38 for convex knickpoints (u > 0) and slower for concave knick-
points (u < 0). Since the respective velocities were already derived by Royden and Perron (2013) for the SPIM, 
only a sketch of the extension by sediment transport is given in the following. As a main result, it will turn out 
that the effect of nonlinearity beyond the factor n in the velocity can be expressed in terms of a nondimensional 
parameter

𝛾𝛾 = 𝐾𝐾
𝐾𝐾d

𝑢𝑢
𝑈𝑈0

,� (39)

Figure 11.  River profiles of the largest river for the nonlinear model with n = 2. For clarity, the difference in elevation h toward the equilibrium elevation H0 is plotted 
instead of the absolute elevation H. The origin of the χ-axis is set to the stationary knickpoint. Profiles are plotted at equal time increments δt = 0.5. The upper curves 
(h > 0) refer to an increase in uplift by u = 1, and the lower curves (h < 0) to a decrease by u = − 0.5.
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where the ratio 𝐴𝐴 𝑢𝑢
𝑈𝑈0

 (which may be negative) describes the relative strength of 
the disturbance in uplift, while the first term, 𝐴𝐴 𝐾𝐾

𝐾𝐾d
∈ [0, 1] , refers to the differ-

ence toward the SPIM.

Similar to the linear model, it can be assumed that the change q in the sedi-
ment flux is small slightly below the knickpoint, and that uplift is in balance 
with erosion there. Then, Equation 16 yields

�
�d

=
(

��0

��
+ �ℎ

��

)�

−
(

��0

��

)�

.� (40)

As described in Section 2, the shared stream-power model collapses to a form 
analogous to the SPIM with an effective erodibility K according to Equa-
tion 13 for spatially uniform erosion. This condition is satisfied for the initial 
state if U0 is constant at least within the domain above the knickpoint, and 
we obtain

(

��0

��

)�

= �0

�
.� (41)

Using the nondimensional parameter γ (Equations 39 and 40) can be written 
in the form

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕0

𝜕𝜕𝜕𝜕
((1 + 𝛾𝛾)

1
𝑛𝑛 − 1).� (42)

In turn, the river segment above the mobile knickpoint is not affected by any change in erosion, so that 𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 
there. So the river segment below the knickpoint is by the amount given in Equation 42 steeper than the segment 
above the knickpoint. The latter, however, is still rising at a rate

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢𝑢� (43)

while the lower segment is already in equilibrium (𝐴𝐴 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ). Then the knickpoint, that is, the intersection of the 
two segments, moves upstream at a velocity

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢
𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

((1 + 𝛾𝛾)
1
𝑛𝑛 − 1)

.� (44)

according to Equations 42 and 43. If we define

𝐹𝐹 (𝛾𝛾) =
𝛾𝛾

𝑛𝑛((1 + 𝛾𝛾)
1
𝑛𝑛 − 1)

,� (45)

the velocity can be written in the form

��
��

= ��d

(

��0

��

)�−1

� (�).� (46)

Here, the first terms are the velocity of the linearized version (Equation 38), so in the limit of small changes 
in uplift, while F(γ) describes the effect of nonlinearity. The function F(γ) is plotted in Figure 12 for different 
exponents n.

The result that the effect of nonlinearity can be expressed by the nondimensional parameter γ (Equation 39) is, 
however, more important than the exact shape of the respective function F(γ). While 𝐴𝐴 𝐴𝐴 = 𝑢𝑢

𝑈𝑈0
 for the SPIM, it is by 

a factor of 𝐴𝐴 𝐾𝐾
𝐾𝐾d

= 1
1+𝐺𝐺

 smaller in the shared stream-power model, leading to a smaller effect of nonlinearity on the 
velocity of knickpoint migration. For the examples shown in Figure 11, the velocities are 2.41 for u = 1 (upper 

Figure 12.  Velocity of knickpoint migration relative to the velocity in the 
linearized model. The function F(γ) (Equation 45) describes the factor by 
which knickpoints migrate faster than predicted by the linearized model. 
The nondimensional parameter γ (Equation 39) combines uplift rates and 
erodibilities.
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curves) and 1.81 for u = − 0.5 (lower curves), respectively, compared to 2 for the linearized model (u → 0) in the 
SPIM (G = 0). The respective values are 6.46 and 5.74 versus 6 for G = 2. While the difference is similar on an 
absolute scale here, it becomes considerably smaller relative to the velocity itself. So the effect of the nonlinearity 
decreases with increasing G, that is, toward the transport-limited model.

Since sharpening and stretching of knickpoints is also related to the effect of nonlinearity on the velocity of mi-
gration, basically the behavior is observed for the shape of the knickpoints. Comparing the upper and lower curves 
in Figure 11 for the SPIM reveals that the knickpoints do not only migrate at different velocities, but also that the 
knickpoints in the lower curves are clearly stretched at long times, while those in the upper curves remain sharp 
except for some numerical diffusion. In turn, the shapes of the upper and lower profiles are quite similar for G = 1 
and also similar to the linear version (Figure 4b). So sharpening and stretching of knickpoints is already quite small 
for G = 1 if the uplift rate varies by a factor of two compared to the initial equilibrium (u = 1 and u = − 0.5 at 
U0 = 1). This effect becomes stronger for G = 2. So there are still differences in the velocity of migration between 
the upper and lower curves, but sharpening and stretching of knickpoints appears to be negligible here.

11.  Vertical Rates of Knickpoint Migration
While the theory based on the χ transform is well-suited for advanced analyses, investigating how knickpoints 
migrate vertically is more intuitive. As already discussed in Section 5, the SPIM predicts a constant vertical rate 
of knickpoint migration for n = 1 under specific conditions. This fundamental property is generalized with regard 
to the nonlinear model and to sediment transport in the following.

Let us follow the knickpoint upstream or, to be more precise, a point slightly above the knickpoint, given by a 
function χ(t) and track its elevation H(χ(t), t). This point is uplifted at a rate u, while its channel slope is still the 
same as for the initial topography H0. Thus, its vertical rate of migration is

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕0

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑢𝑢𝑢� (47)

Using Equation 46 that describes the horizontal velocity of knickpoint migration and the equilibrium condition 
(Equation 41), this relation can be simplified to
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�� (�) + �.� (48)

For the linear version of the SPIM (K = Kd, n = 1, F(γ) = 1), this relation collapses to

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑈𝑈0 + 𝑢𝑢 = 𝑈𝑈𝑈� (49)

which reproduces the result that knickpoints follow the uplifted rock (Whipple & Tucker, 1999). If the order of 
magnitude of the uplift rate is known, this relation provides an idea of how long a knickpoint initiated at a given 
location could migrate upstream until it is lost at the drainage divide or at the hillslopes. Similarly, it can be used 
for estimating at which time an existing knickpoint was initiated if the location of the fault is known or vice versa.

For the general situation, Equation 48 typically predicts a faster vertical migration. So knickpoints are typically 
running ahead of the uplifted rock. Both sediment transport and nonlinearity contribute to this phenomenon. The 
effect of sediment transport is represented by the factor 𝐴𝐴 𝐾𝐾d

𝐾𝐾
= 1 + 𝐺𝐺 in Equation 48. As already discussed in Sec-

tion 10, the effect of nonlinearity consists of two components, where an increase in rate typically occurs for n > 1. 
Primarily, there is a factor of n that describes the increase for small changes u in uplift rate, while the component 
F(γ) (Equations 39 and 45) is a correction for larger u.

12.  Implications
As found in the previous sections, sediment transport does not affect the properties of knickpoints qualitatively. 
As an immediate implication for landform evolution modeling, we cannot conclude from the existence of distinct 
knickpoints alone that sediment transport is unimportant for fluvial landform evolution in the respective region. 
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So neglecting sediment transport in fluvial landform evolution, for example, by using the SPIM, cannot be justi-
fied by the existence of knickpoints alone.

The implications of the results on the role of rivers as tectonic (or climatic) archives are more complex. While 
rivers still record the history unless they are fully transport-limited, sensitivity and capacity of the recorder are 
reduced by sediment transport.

First, the same tectonic signal causes a weaker change in channel steepness and thus a smaller difference in chan-
nel steepness across the knickpoint compared to the SPIM. In addition, this difference decreases further while 
mobile knickpoints migrate upstream, which was described as knickpoint flattening in Section 6. If we assume 
that only knickpoints with a given minimum difference in channel steepness can be detected reliably, sediment 
transport reduces the sensitivity of the knickpoint archive to tectonic signals.

Second, mobile knickpoints migrate upstream faster than in the SPIM at the same effective erodibility K, which 
has an immediate effect on the time span covered by the archive. As an example, the theory of Whipple and Tuck-
er (1999) for the linear version of the SPIM predicts that an available upstream difference in elevation of 1,000 m 
along the river from a fault would theoretically allow for an archive covering 4 million years at an uplift rate of 
0.25 mm per year. According to the results of Section 11, sediment transport reduces this time span by a factor 

𝐴𝐴 𝐾𝐾d
𝐾𝐾

= 1 + 𝐺𝐺 . Based on the preliminary estimate G = 1.6n−1.1 proposed by Guerit et al. (2019, data supplement), 
the increase in velocity compared to the linear version would be a factor of (1 + G)n ≈ 2.5 for 1 ≤ n ≤ 3 if the 
change in uplift u is small. In this case, the tectonic archive would only cover about 1.5 million years instead of 
4 million years.

Third, the response of the sediment flux to a tectonic signal is faster in small catchments as shown in Section 7. 
As a consequence, the second phase of adjustment (after the mobile knickpoint has passed) is also faster in small 
catchments. In principle, this result also holds for tributaries. This leads to a temporary loss of the collinearity 
of the trunk stream and its tributaries in a χ-plot, which is a fundamental property of the SPIM. Owing to their 
faster response, tributaries will temporarily be steeper than the trunk stream in a χ-plot in response to an increase 
in uplift rate. So some caution is required when using the collinearity of tributaries for estimating the concavity 
index θ (e.g., Hergarten et al., 2016).

13.  Conclusions
The most important result of this study is that sediment transport does not cause a smearing of mobile knickpoints 
at least for the simplest extension of the SPIM by sediment transport. This may be surprising since the shared 
stream-power model used in this study covers the entire range from pure bedrock incision to the transport-limited 
model, which does not support sharp mobile knickpoints at all.

In terms of the shared stream-power model, the detachment-limited erodibility Kd dictates the initial response 
to tectonic signals, which suggests that sediment transport has no effect on the initial response. However, when 
comparing rivers with the same steepness at the same overall erosion rate (so at the same effective erodibility), 
Kd increases with increasing relevance of sediment transport. Then the velocity of knickpoint migration increases 
when moving from the SPIM toward the transport-limited model. This leads to a shorter lifetime of knickpoints 
until they arrive at the drainage divide. So knickpoints leave the domain rapidly instead of being smeared if we 
approach the transport-limited model. However, some flattening occurs in the sense that the difference in channel 
steepness across the knickpoint decreases while the knickpoint migrates upstream.

Nonlinearity has qualitatively the same effect on the migration of mobile knickpoints as in the SPIM. Knickpoints 
arising from small changes in uplift migrate by a factor n (the slope exponent in the stream-power law) faster 
than in the linear model. So sediment transport may have the same effect on knickpoint velocity as an exponent 
n > 1 in the SPIM. As a major difference toward the SPIM, however, tributaries are not necessarily collinear to 
the trunk stream in a χ-plot if sediment transport is included in the model.

Convex knickpoints move faster than concave knickpoints for n > 1 and vice versa. Concave knickpoints are lost 
through time by stretching for n > 1, while this happens to convex knickpoints for n < 1. As the main difference 
toward the SPIM, however, sediment transport considerably reduces the effect of nonlinearity on the properties 
of mobile knickpoints.
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In contrast to the SPIM, stationary tectonic knickpoints are not immediately steady in the shared stream-power 
model. The overall channel steepness around a concave knickpoint slowly increases through time due to the 
increasing sediment flux from the upstream region and vice versa. In the linear model, the difference in channel 
steepness across the knickpoint remains constant, while nonlinearity results in a flattening of concave steady 
knickpoints (increasing uplift) for n > 1 through time and vice versa.
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