
1.  Introduction
Receiver function (RF) analysis is a powerful technique to gain information about the discontinuities in the 
crust and upper mantle beneath a single three-component seismic station. RFs are essentially time series 
that are sensitive to the structure near the receiver. The basic principle behind this method is that when a 
seismic wave is incident upon a discontinuity, mode conversion between the compressional (P) and shear 
(S) waves will take place in addition to the generation of reflected and transmitted waves. The resulting con-
verted wave (Ps or Sp) will have a time offset with respect to its parent wave, and this time offset is directly 
proportional to the depth of the discontinuity and the velocity of the layers above. In addition to the direct 
converted waves, the multiples resulting from reflections and conversions between the discontinuity and 
the free surface can provide further constraints on the layer thickness and help to resolve the depth-velocity 
trade-off. The RF can be obtained by deconvolving the vertical component from the radial component of 
a teleseismic event recorded on a three-component seismometer (Ammon, 1991; Langston, 1979; Owens 
et al., 1987). Since only a small percentage of the incident energy is converted at a discontinuity, it is difficult 
to observe these conversions in a single seismogram. A number of RFs can instead be used to measure the 
crustal thickness and average v v

P S
/  ratios by H-k (crustal thickness—average v v

P S
/ ) stacking for individual 

stations (Helffrich & Thompson, 2010; Zhu & Kanamori, 2000) or for imaging by common conversion point 
(CCP) stacking of data from many stations (Dueker & Sheehan, 1997). This, however, requires assumptions 
on the velocity structure.

One method to obtain a detailed velocity structure is to directly invert the calculated RFs using linearized 
iterative procedures, but Ammon et al. (1990) showed that such inversions of RF contain an inherent trade-
off between the depth to a discontinuity and the velocity above. The primary sensitivity of the RF inversion 
is to velocity contrasts and relative travel time, not to absolute velocity. This lack of sensitivity to absolute 
velocity results from the relative S-P travel time constraints along with the limited range of horizontal 
slowness contained in the data (Ammon et al., 1990). Thus RF data sets are generally inverted jointly with 
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other independent data sets that provide additional constraints on absolute shear wave velocities like sur-
face wave dispersion curves (e.g., Du & Foulger, 1999; Julia et al., 2000), or Rayleigh wave ellipticity (Chong 
et al., 2016). One such relation, which has not been heavily exploited is between apparent S-wave velocities 
and P-wave polarization. The polarization of body waves has been traditionally used in seismology to study 
the anisotropy of crustal and upper-mantle structures (Fontaine et al., 2009; Schulte-Pelkum et al., 2001). 
But the P-wave polarization can also be used to constrain the near-surface shear wave speed. Svenningsen 
and Jacobsen (2007) showed that the amplitudes of the vertical (Z) and radial (R) components of the P-re-
ceiver function at zero time is directly related to the polarization of P-waves. Deconvolution removes the 
complex waveform of the incoming P-waves, which dominate the Z component. Hence the Z RF is an 
approximate zero-phase spike with arrival instant at exactly t = 0, where the time is measured relative to 
the P-wave arrival. This can be used to estimate the apparent P-wave incidence without influences from the 
P-wave coda. Further, filtering at successively long periods, a frequency-dependent apparent shear wave 
velocity profile can be obtained (Knapmeyer-Endrun et al., 2018; Svenningsen & Jacobsen, 2007) which can 
be used as an effective independent data set to be jointly inverted with the RFs.

Svenningsen and Jacobsen  (2007) used a linearized inversion of apparent S-wave velocity curves and 
demonstrated its independence of the starting model. Hannemann et al. (2016) applied the method to an 
ocean-bottom data set and used a grid search method concluding that the method is usable for single sta-
tion estimates of the local S-wave velocity structure beneath the ocean bottom. Schiffer et al. (2016) used 
an iterative least squares method to jointly invert apparent velocity curves and RFs utilizing a minimum 
number of layers (6–8). Knapmeyer-Endrun et al. (2018) used a grid search over parameter space to invert 
the S-wave velocity curve for crustal structure at several Earth stations with varying geology and synthetic 
Mars data. It has also been shown that a priori S-wave velocity information deduced from P-wave polariza-
tions can be useful when inverting RF waveforms (Peng et al., 2012). Park and Ishii (2018) further showed 
that the S-wave polarization is sensitive to both the compressional and shear wave speeds, and successfully 
combined P- and S-wave polarization directions measured by principal component analysis to derive the 
distribution of near-surface P- and S-wave speeds in Japan.

In this study, we use a modified version of the Neighborhood Algorithm (Sambridge, 1999a; Wathelet, 2008) 
for the joint inversion of receiver functions and apparent S-wave velocity profile. The Neighborhood Algo-
rithm (NA) is a derivative-free optimization method that uses a pseudo-random trajectory in exploring the 
parameter space. Rather than making inferences on model parameters using only the lowest-misfit model, 
it provides the option of using the suite of all generated models for this purpose. With a well-sampled pa-
rameter space, an ensemble algorithm also benefits from the possibility of a probabilistic solution with full 
uncertainty estimates. In contrast with earlier studies on this topic, which are predominantly based on large 
amounts of available data, we show how this method can be used with limited data sets comprising only a 
few events. This becomes crucial in the context of planetary seismology where the amount of data may be 
limited. For example, it can be used to study the crustal structure of Mars using data from the InSight mis-
sion (Lognonné et al., 2019). Another problem associated with determining the crustal structure is the num-
ber of inter-crustal layers to be inverted for. We address this problem using a two-fold approach: we start by 
inverting for a model of low complexity and gradually increase it till no significant velocity contrast along 
with misfit reduction is observed, with major discontinuities being adequately represented by the model. 
We then use Akaike weights derived from Akaike Information Criterion (AIC) values (Akaike et al., 1973) 
for all of these models as selection criteria. We apply this joint inversion scheme on synthetic seismograms 
for Mars and selected terrestrial data.

2.  Data Sets
2.1.  Mars Synthetics

In order to demonstrate and verify our proposed method, we first use synthetic seismograms for Mars that 
are generated using Green's Function (GF) databases prepared for a suite of a priori one-dimensional (1D) 
velocity models with varying crustal thicknesses, seismic wave speeds, densities, mantle compositions, 
and aerotherms. These a priori models are obtained by the inversion of bulk chemistry, mineralogy, and 
geotherm, following the approach described in Khan and Connolly  (2008), Connolly  (2009), and Khan 
et al. (2016). The GF databases are computed using a 2.5D axis-symmetrical spectral element code, AxiSEM 
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(Nissen-Meyer et al., 2014), and are publicly available within the Marsquake Service (MQS) at ETH Zurich 
(Ceylan et  al.,  2017, http://instaseis.ethz.ch/marssynthetics/). Synthetic broadband seismograms can be 
calculated from these GF databases for arbitrary moment tensors and source-receiver combinations using 
the Instaseis package (van Driel, Krischer, et al., 2015). These simulations are based on full numerical solu-
tions of the visco-elastic wave equation and include the effects of attenuation, are accurate down to a period 
of 1 s, and allow for a total simulation duration of 30 min.

Since a large variation in crustal thickness is expected across Mars, a thin (30 km) and thick (80 km) crust is 
employed to create the initial models, both with a 10 km thick upper crustal layer. Further details of these 
models can be found in Ceylan et al. (2017). The thin and thick crusts with different velocity contrasts at the 
Moho represent 1-D global end-member models, rather than what is expected beneath the InSight landing 
site. In this study, we have used two thin crust models (C30VH_AKSNL, C30VL_AKSNL) and one thick 
crust model (C80VL_AKSNL) for the purpose of demonstrating the method. For all of these models, we 
calculated synthetic seismograms and receiver functions at epicentral distances between 15E  and 180E  in 1E  
increments. Assuming normal faulting, a dip-slip source at an angle of 45E  and at a depth of 5 km north of 
the seismometer was used to generate the synthetic waveforms. Since the synthetics do not have any added 
noise, we assume a reasonable 25%E  standard deviation on mean absolute values of RFs and ,S appE V  whenever 
appropriate for likelihood calculations. We demonstrate the results of applying our method first on a single 
event and then multiple events together.

2.2.  Terrestrial Data

To verify how the algorithm works in a real setting, we analyzed data from two stations in Central Europe—
BFO in Germany (Federal Institute for Geosciences and Natural Resources,  1976) and SUW in Poland 
(GEOFON Data Centre, 1993). Details of the events used are listed in Table 1. Reference values of crustal 
thickness for these stations were taken from the Moho depth map of the European plate (Grad et al., 2009) 
and Knapmeyer-Endrun et al. (2014). Because these sites have known differences in crustal structure, this 
gives us the opportunity to test how the method works in a range of possible scenarios and in the presence 
of noise. Station BFO is located on the thinned crust of the Upper Rhine Graben, which is a part of the 
European Cenozoic Rift system (Ziegler, 1992). In contrast to this, station SUW is situated on the relatively 
thick East European Craton, which is the core of the Baltica proto-plate and occupies the northeastern half 
of Europe. It is characterized by a thick three-layer crust with an additional fast lower crustal layer (Grad 
et al., 2003). The East European Craton is of Precambrian origin and overlain by a young thin sedimentary 
cover (Bogdanova et  al.,  2006) which leads to strong reverberations in the P-receiver function for SUW 
(Wilde-Piórko et al., 2017)

Date
Origin time 

(UTC) Station
Ray p 

(s/deg)

Location

wE M
Distance 

(°) 2 RFE Latitude Longitude

Sep 3, 2007 16:14:53 BFO 5.35 45.836E N 150.060E E 6.2 79 0.036

Jul 6, 2008 09:08:21 BFO 5.31 45.387E N 150.965E E 5.7 82 0.052

Jun 6, 2009 20:33:28 BFO 7.66 23.864E N 46.105E W 6.0 51 0.056

Nov 24, 2008 09:02:58 BFO 5.68 54.203E N 154.322E E 5.3 70 0.048

Oct 29, 2009 17:44:31 BFO 7.78 36.391E N 70.722E E 6.2 45 0.078

Feb 8, 2008 09:38:14 SUW 6.38 10.671E N 41.899E W 6.8 72 0.082

Sep 30, 2009 10:16:09 SUW 5.17 0.720E S 99.867E E 6.9 82 0.063

Oct 7, 2009 21:41:13 SUW 5.57 4.079E N 122.371E E 6.8 77 0.056

Mar 30, 2010 01:02:53 SUW 6.26 43.308E N 138.379E E 5.7 68 0.162

Sep 10, 2008 13:08:14 SUW 6.35 8.093E N 38.705E W 5.2 64 0.052

Oct 2, 2007 18:00:06 SUW 6.01 54.511E N 161.708E W 5.8 60 0.073

Table 1 
Event Information for Stations BFO and SUW

http://instaseis.ethz.ch/marssynthetics/
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3.  Method
3.1.  Calculation of Receiver Functions

The teleseismic P-wave receiver function represents the structural response near a recording station to the 
incoming teleseismic P-wave. It can be obtained by removing the source wavelet, propagation effects and 
the instrument response from the vertical, radial and transverse waveforms. This is generally done by de-
convolving the vertical component from the radial and transverse components in a process called source 
equalization (Phinney, 1964; Vinnik, 1977). Several methods have been described in the literature for this 
deconvolution process (e.g., see Kind et al., 1995; Langston, 1979; Owens et al., 1987; Phinney, 1964; Vin-
nik, 1977). We use a time-domain Wiener filter for deconvolution as described by Hannemann et al. (2017). 
The receiver function datasets used here are a subset of those used in Knapmeyer-Endrun et al. (2014) and 
Knapmeyer-Endrun et al. (2018). The synthetic seismograms do not require the removal of any instrument 
response, but they are filtered between 1 Hz and 50 s, 1 Hz being the upper-frequency limit of the synthet-
ics. Additionally, due to the alignment of source and receiver, these data are already in the ZRT system. 
For the terrestrial data, we first remove the instrument response from all components and then filter the 
seismograms between 5 Hz and 50 s. The ZNE coordinate system is then rotated into ZRT using back-azi-
muths determined by polarization analysis (Jurkevics, 1988) to obtain radial and transverse components. 
The Wiener filter is determined such that it transforms the P-wave signal on the vertical component into a 
band-limited spike. This filter is then applied to all components of the signal to finally obtain the RF with 
the spike positioned at the centroid of the signal.

3.2.  Apparent S-Wave Velocity

Following the relationship between true and apparent incidence angles (Wiechert, 1907), it can be shown 
that the apparent incidence angle is sensitive to absolute shear wave velocity

v i p
S app p,

sin( . ) 0 5 /� (1)

where i
p

 denotes the apparent P-wave incidence angle and E p denotes ray parameter. Svenningsen and Jacob-
sen (2007) proposed a method to directly estimate the apparent incidence angle using RFs instead of the 
raw waveform data, which in turn emphasized the true S-wave velocity information contained in them. We 
follow a similar procedure and estimate the apparent P-wave incidence angle from the amplitudes of verti-
cal and radial receiver functions at time t = 0 using the relation

tan
( )

( )
i

RRF t

ZRF t
p 




0

0
� (2)

Now estimating i
p

 as a function of low pass Butterworth filter period (T) results in a ( )SE v T  curve which 
emphasizes the absolute S-wave velocity variation with depth. Larger T implies more smoothing and thus 
more multiples at later times influence the values of the filtered receiver functions at t = 0. In contrast with 
the squared cosine filters used by Svenningsen and Jacobsen (2007), we use a Butterworth filter which has 
twice the corner period as a cosine filter. For each trace we measure the dominant period of the spike in the 
ZRF and discard the values of filter periods smaller than that. We show cases with both single and multiple 
events. When multiple events are used at varying epicentral distances, we calculate the median of the ap-
parent S-wave velocity curve at each sample period. For a numerical approximation of sensitivity kernels, 
showing the change in , ( )S appE v T  curves in response to changes in S-wave velocity in the background model 
IASP91 (Kennett et al., 1995), see Knapmeyer-Endrun et al. (2018).

3.3.  Inversion

For the purpose of this study, we have employed a modified version of the Neighborhood Algorithm (NA) 
(Wathelet, 2008) for the joint inversions of RF and apparent S-wave velocity curves. Being a derivative-free 
optimization algorithm and taking into account the low dimensionality of our problem, NA seems to be a 
good choice because of its simplicity (two tuning parameter scheme) and lack of dependence on starting 
models (Sambridge, 1999a). Moreover, an ensemble of models rather than a single model can be used to 
make robust statistical inferences about the model parameters. The modifications by Wathelet (2008) fur-
ther implement dynamic scaling of model parameters and allows to define irregular limits to the searchable 
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parameter space. The idea behind the NA is to start with an initial coarse sampling of the parameter space, 
then select the regions with lowest misfits and continue to resample these regions such that the heaviest 
sampled regions correspond to the models which best fit the data. In each iteration, the NA uses near-
est-neighbor regions defined by Voronoi cells to partition and search the parameter space. The misfit is 
assumed to be constant within each of these Voronoi cells, and with each iteration, sampling is concentrat-
ed on the cells with lower misfit relative to the rest of the cells. The algorithm relies on only two control 
parameters: Ns - number of new samples to generate at each iteration and Nr—number of promising mod-
els to select for further sampling. The ratio Ns/Nr controls whether the algorithm behaves exploratively or 
exploitatively (Sambridge, 1999a, 1999b).

We use the L2 norm in order to measure how well a given model with a particular set of parameters can 
reproduce the given data quantitatively

( )
( )

m
d

obs

d


g m



2

� (3)

where ( )E g m  is the estimated data and 2
dE   is the estimated variance of the data noise. In this study, the noise 

has been assumed uncorrelated for simplicity and thus a simple Euclidean distance can be used. For a joint 
inversion of receiver function and apparent S-wave velocity, the objective function is defined by the linear 
combination of misfits of the weighted receiver functions RFE   and the apparent velocity curve VappE  , using 
the L2 norm, thus takes the form

( ) RF Vappm     � (4)

The weighting constant E  is tuned manually by sample forward runs prior to the inversion process such 
that both the individual misfits are of the same order of magnitude. Here we have used 8E    for synthetic 
data and 10E    for terrestrial data. As mentioned before, the two parameters that control the NA need to 
be tuned depending on the problem and the style of sampling needed. For a more explorative search that is 
robust against local minima, we perform 1200 iterations in each inversion run with 300 models produced 
at each iteration ( sE n ) and 100 cells re-sampled at each iteration ( rE n ), resulting in an ensemble of E 360,000 
models per run. Each inversion was repeated several times to test the stability of the results. High n n

s r
/  ratio 

ensures faster convergence while a high number of initial models ( 0 3000sE n  ) ensures highly explorative 
behavior.

Knapmeyer-Endrun et al.  (2018) compared several algorithms used in literature for the computation of 
receiver functions before choosing the forward calculation implemented by Shibutani et  al.  (1996). The 
algorithm calculates the impulse response of a layer stack in the P-SV system. We then convolved the result-
ing synthetic Z- and RRFs with the observed ZRFs to account for the observed complexity and waveform 
widths. Once the RFs are obtained, we can straight away calculate the apparent S wave velocities using the 
procedure described in the last section. Density was not considered to be a parameter to be inverted for and 
was calculated using Birch's law (Birch, 1961), while the S-wave velocity and the v v

P S
/  ratio of each layer 

were allowed to vary. Furthermore, the S-wave velocity was constrained to increase with increasing depth. 
The fact that a single forward calculation can be performed in a matter of seconds and the waveform com-
plexity matches that of real data makes this algorithm suitable for the purpose of this study.

3.4.  Bayesian Formulation

The Bayesian formulation allows to account for prior knowledge of the parameters of our model, provid-
ed that this information can be expressed as a probability distribution ( )E  m . The prior corresponds to the 
knowledge that we have about our system, for example from previous studies. As new data is available, 
often in the form of likelihoods, this prior information can then be updated using Bayes' rule. This results 
in what is known as the posterior distribution for these unknowns—A distribution over the full range of 
these parameters.

3.4.1.  Computing Average Likelihoods

The likelihood ( )d m
obs

|  is a function of the model parameters that describes the goodness of fit of a model 
to the observed data. Assuming a Gaussian error distribution for a given misfit measure, ( )E Φ m , the likeli-
hood function is defined as:
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( )
( )

d m
obs

| 








exp

m
2

� (5)

As mentioned before, the NA initially starts with a coarse sampling of the parameter space, and eventually, 
the algorithm guides the sampling such that the best fitting regions of the parameter space are also the 
most heavily sampled regions. This, therefore, introduces a bias in the sampling of the parameter space 
which otherwise could be used to compute the full uncertainty from the ensemble of acceptable solutions. 
Sambridge (1999b) demonstrates that this could be achieved by a Gibbs re-sampling of the output ensemble 
which essentially concentrates on the low misfit regions and approximates the true posterior density by 
an approximate one. Here we show a simple alternative method to compute marginal histograms from the 
biased samples based on binning model parameters. In essence, each model in the ensemble has a pair-wise 
distance to every other model, which can be calculated using multi-dimensional scaling. Binning model 
parameters within a small distance and computing average likelihoods then approximates the true posterior 
density as a histogram.

Consider N sample models (1) ( ), ,E  Nm m  in a K-dimensional space, distributed according to an (everywhere 
positive) unknown distribution ( )E ν m . Assume that ( )E ν m  is close to the distribution, ( )E f m , and that we wish 
to compute the marginal histograms ( )k kE f m  from the samples.

The height [ , ]a bE h  of the histogram column for an interval [a,b] must (for E N  ) be proportional to the mar-
ginal probability ( )k kE P a m b  . Hence,

[ , ] ( )b
a b a k k kh f m dm � (6)

except for a normalization factor. This can be re-written as a mean value (expectation) of the ratio ( )
( )

k k

k

f mE
m

 

over the interval [ , ]E a b  with respect to ( )kE m :

[ , ]
( ) ( )
( )

b k k
a b a k k

k

f mh m dm
m




 � (7)

and since the sample models (1) ( ), ,E  Nm m  are distributed according to ( )E ν m , we have the approximation:
( )

[ , ] ( )( ){ | }

1 ( )
( )

i
k

a b
ii a m bk

fh
N  

  i
m

ν m� (8)

This expression can be used when kE f  can be evaluated in the sample points, and when we can evaluate 
( )( )E iν m  from the density of sample points. The density at ( )iE m  can, for example, be evaluated over a cube E C 

with edge length E m , centered at ( )iE m :

( ) 1( )
( ) cK N

m



iν m� (9)

where CE N  is the number of sample points in E C

3.4.2.  Priors

We impose a minimal prior knowledge on all the parameters by using the uniform distribution as our 
choice of priors. The prior for each parameter takes a constant value over a defined interval. For example, 
if X is a model parameter which can take values over the interval ( )max minE X X X   , we define the prior 
probability density as:

( )
,

,

x X
X x X

i

min i max
 







1

0


if

otherwise
� (10)

We can now apply Bayes' rule (Bayes, 1763) to combine the likelihood of observing the data with the prior 
distribution and to give the posterior probability density function:

  ( ) ( ) ( )m d d m m
obs obs

| |� (11)

Note that the denominator in the Bayes' rule, ( )E obsρ d , which is a sum over all possible models has been 
treated as a constant in this work, leading to a proportionality sign in the equation.
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3.5.  Model Selection

We use AIC (Akaike et al., 1973) as a model selection criterion, which essentially gives the Kullback-Leibler 
divergence between a candidate model and the true model as

2 2 ( )AIC k ln L � (12)
where k and L denote the number of model parameters and the value of maximum likelihood of the model, 
assuming Gaussian errors. The first term in this equation is a measure of fit between the synthetic model 
and the true model representing the reality; the second term penalizes the order of complexity of this syn-

thetic model. While raw AIC values themselves have no meaning, the quantity 
2

min iAIC AICE exp
 
 
 

 is an 

estimate of the relative likelihood of the th model. These model likelihoods can then be normalized to 
obtain Akaike weights iE w (AIC) (Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004),

1

{ 0.5 ( )}( )
{ 0.5 ( )}

i
i K

k k

exp AICw AIC
exp AIC

 

  

� (13)

which can be interpreted as the probability that the th model is the best (i.e., it minimizes the estimated 
information loss Anderson & Burnham, 2004). The strength of evidence in favor of one model over the 
other can then also be obtained by dividing their respective Akaike weights. When the number of samples 
is small, a correction factor is added to the above equation giving the corrected AIC (AICc) values

22 2 ( )
1

knAICc k ln L
n k

  
 

� (14)

Here k denoted the number of model parameters and n the number of independent samples. Since the sam-
ples of a seismogram are generally correlated, with the correlation length being proportional to sampling 
frequency, we instead use the product of the Nyquist rate and the signal length as a measure of the number 
of independent samples (van Driel, Wassermann, et al., 2015). For a band-limited signal, the Nyquist rate 
is given by 2 ( )high lowE f f   which gives 1.96 and 9.96 Hz for synthetics and terrestrial data, respectively  
( highE f  and lowE f  denote the upper and lower frequency limits). Anderson and Burnham (2004) suggest using 
AICc when the ratio between the sample size E n and the number of model parameters E k is low ( 40E  ). We will 
therefore use AICc when dealing with synthetic data and AIC for terrestrial data.

4.  Results
4.1.  Mars Synthetics

Figures 1 and 2 show the result of applying the method on single events for a priori Martian velocity models 
with a thin fast (C30VH_AKSNL) and a thick slow (C80VL_AKSNL) crust, respectively. Since noise is not a 
limiting factor here, in both cases, the residual includes the misfit for the complete waveform up to 30 s and 
apparent S wave velocity to 117 s. Each inversion was repeated three times to test the stability and the results 
were concatenated. The plots include all models within a maximum misfit value, ranked and color-coded 
according to misfit with black models being the best fitting solutions. This maximum misfit value is derived 
such that it encompasses the best 25%E  of all the models in the ensemble.

Adding a third layer to the model parameterization did not produce any considerable changes to the result. 
For C30VH_AKSNL the additional third layer produced a velocity contrast of around 0.8% against the lay-
er adjacent to it with an insignificant misfit drop, while C30VH_AKSNL produced a similar low velocity 
contrast of around 0.45%. This shows that an additional layer is not warranted by the data. This is also 
confirmed numerically by our model selection criteria. Figures 3a and 3b show the respective probabili-
ties obtained from AICc values for 1, 2, 3, and 4 layer models with constant velocity over a half-space for 
C30VH_AKSNL and C80VL_AKSNL respectively. For C30VH_AKSNL, there is a higher probability ( 16%E  ) 
of explaining the data with just a single layer than for C80VL_AKSNL. This is consistent with a weak Moho 
signal produced by the small velocity contrast. Since the two layer model has the highest probability (and 
thus minimum AIC), we conclude that it is the optimum model that explains this data set. This is also in 
agreement with the true models indicated by the blue dashed lines in Figures 1 and 2. The a priori range for 
each parameter in both cases are identical to the ranges shown for the 1D marginals and can be retrieved 
from Figures 4 and 5.
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The top layer crustal E S-wave velocity and transition depth is well resolved for both the representative 
end-member models. For C30VH_AKSNL, there is high uncertainty in the Moho depth which in turn es-
calates the uncertainty in the E S-wave velocity in the lower crust. This might be explained as the direct con-
verted phase (1.8 s) and the multiples (5.5 and 7.2 s) produced by the intra-crustal discontinuity at 10 km 
depth are clearly visible in the data while the Moho conversion (4.1 s) for the thin crust model is not readily 
recognizable. This is in contrast to C80VL_AKSNL where the direct converted phase (14.7  s) produced 
at the Moho is clearly visible. The mantle S-wave velocities on the other hand are better constrained for 
C30VH_AKSNL than for C80VL_AKSNL. This is explained by the ,S appE v  curves for the models. The ,S appE v  
curve for C80VL_AKSNL does not contain any information on the upper mantle velocity within its period 
range whereas in the ,S appE v  curve for C30VH_AKSNL, the velocities converge to the upper mantle velocity 
of 4.1 km/s for periods longer than 50E   s. This demonstrates the advantage of inverting receiver functions 
along with frequency-dependent apparent S-wave velocities.

In both cases, the v v
P S

/  ratio is also fairly well constrained for the top two layers by the method, as can 
be seen in the sub-figures (d). This is in agreement with Sambridge (1999a), where it was shown that the 
v v

P S
/  ratio from the NA inversion is better resolved in the top layers than for the deeper ones. The thick-

ness of the layers and their corresponding S-velocities are also better constrained than the v v
P S

/  ratio. For 
C80VL_AKSNL, the v v

P S
/  ratio of the half-space is not well resolved and varies across the whole model 

range investigated, whereas for C30VH_AKSNL, it is adequately resolved for all the layers even though the 
variance increases with depth.

Figure 1.  Result for thin crust model C30VH_AKSNL and event distance 70E  (a) 1-D velocity profile. The light gray lines represent traversed models outside 
the maximum misfit range. The blue dashed line represents the true model. (b) Fit to ,S appE v , (c) v v

P S
/  ratio as a function of depth and (d) Fit to receiver function 

waveforms. The blue dashed lines denote the observed data and the green dash-dotted lines represent the uncertainty in observations.
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Figure 2.  Same as Figure 1 for C80VL_AKSNL. Event distance is 40E .

Figure 3.  Model probabilities based on Akaike Information Criterion (AICc) values for (a) C30VH_AKSNL (b) C80VL_AKSNL (c) C30VL_AKSNL and AICc 
values for (d) BFO (e) SUW.
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To test how the method performs when multiple events are available, a median ,S appE v  curve was calculated 
for model C30VL_AKSNL from the RFs between 40E  to 90E  where the ,S appE v  curves are similar for each dis-
tance (Knapmeyer-Endrun et al., 2018). This median ,S appE v  curve was then jointly inverted with 6 receiver 
functions selected at epicentral distances of 90E , 80E , 70E , 60E , 50E  and 40E . The resulting profile along with 
the waveform fit for each RF and ,S appE v  curve is shown in Figure 6. The velocity profile lies well within the 
range of the uncertainty and the receiver function at each distance is also well modeled. The variance in 
velocity again increases with depth and is maximum for the mantle. The median ,S appE v  curves are also close 
to the observed curve, even though the kinks between 2–3 s and 7 s appear to be slightly sharper than in 
the observed curve. Unlike C30VH_AKSNL, C30VL_AKSNL has a shorter ,S appE v  curve extending to 82 s 
(Figure 7). This restricts the retrieval of S-wave velocity information from longer periods and has the effect 
of an increased variance in the upper mantle velocity. The Moho on the other hand is well resolved due to 
a high impedance contrast which results in a direct phase at around 6 s for RFs at 40E  and 50E , and a clear 
multiple at around 19 and 24 s for RFs at 90E , 80E , and 70E . Looking at the probability densities we see that 
using more data has the effect of an overall decrease in uncertainty levels. From Figure 3c, we see that the 
data is best explained by a 2 layer model which has the highest value for jE w  (AICc). To check how a joint 
inversion performs against separate inversions of ,S appE v  and RF, we further compared their density plots for 
depth and the velocity of the second layer using the data generated from model C30VL_AKSNL. Here we 
used the best 25%E  models of the respective ensembles. In the case of RF inversion alone (Figure 8a), we 
see a strong trade-off between the Moho depth and velocity above, as RFs as a relative travel-time method 
are sensitive to the depth-velocity quotient and not absolute velocity. When ,S appE v  data are inverted alone 
(Figure 8b), the velocity is well recovered but the Moho depth is not very well constrained. Joint inversion 
of both datasets (Figure 8c) shows a considerable improvement in resolving both the depth and velocity of 

Figure 4.  C30VH_AKSNL: 1D marginal posterior densities of depth, velocity and v v
P S

/  ratio for each layer. The half-space has no depth parameter. The red 
dashed line denotes the mean value and the black dotted line represents the true parameter value.
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Figure 5.  Same as Figure 4 for C80VL_AKSNL.

Figure 6.  Example of multiple inversions for C30VL_AKSNL (a) 1-D velocity profiles. The light gray lines represent traversed models outside the maximum 
misfit range. (b) Fit to receiver function waveforms at epicentral distance of (i)90E  (ii) 80E  (iii) 70E  (iv) 60E  (v) 50E  and (vi) 40E  (c) Fit to the median ,S appE v  (d) v v

P S
/  

ratio as a function of depth. The blue dashed curves denote the observed data and the green dash-dotted lines represent the data uncertainty.
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the second layer and, therefore, the two data types are complementary. For an application of the method to 
synthetic data with added noise see Drilleau et al. (2020).

4.2.  Terrestrial Data

The examples above from synthetic data show that in principle the joint inversion of apparent S-wave ve-
locity with receiver functions serves as a useful complement. This section presents inversion results for 

Figure 7.  Same as Figure 4 for C30VL_AKSNL.

Figure 8.  Comparison of depth-velocity trade-off for (a) receiver function (RF) inversion (b) ,S appE v  inversion (c) Joint inversion of RF with ,S appE v . The gray 
dashed lines denote the true values of depth and velocity of second layer.
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terrestrial data where the inherent data noise becomes an important consideration and has a strong influ-
ence on the resulting model parameters and their associated uncertainties. The RF uncertainty is calcu-
lated using the pre-event noise of the radial component of the receiver function since it should ideally be 
independent and non-correlated. It is defined as twice the standard deviation of the amplitude of the pre-
event radial receiver function between −30 and −10 s, relative to the direct P-wave arrival. The uncertainty 
value for each RF is listed in Table 1. Similarly, the uncertainty in the ,S appE v  is defined as twice the standard 
deviation of the residuals from the median curve. Figure 9a shows the noise levels computed for stations 
BFO (green) and SUW (blue)—for each station we calculate the mean of the pre-event noise of the radial 
component of each receiver function from all the events considered here for multiple inversions and bin 
them according to amplitude, creating a distribution from which noise parameters can be estimated. The 
variance in noise level was found to be the higher for SUW with each roughly following a Gaussian distribu-
tion. Similarly, Figure 9b shows the noise characteristics for the ,S appE v  curve for both the stations calculated 
by binning of residuals from the median curve.

Selection of the model complexity that best describes the data is again done using the procedure described 
in the previous section. Starting at a low degree, we gradually increase the complexity until the parameter-
ization produces no significant deviation in profile and misfit reduction. We then compare the correspond-
ing relative likelihood values and choose the maximum.

The results for seismic station BFO are summarized in Figure 10. From the velocity profile (subplot a) we 
can see that the data can be sufficiently described by a minimum parameterization comprising 3 layers with 
constant velocity over a half-space—A low velocity top layer of sediments, an upper crustal layer extending 
from the base of the sediments to a depth of 7E   km and a thick lower crust that extends from 7 to 8 km 
to the Moho at 25E   km depth. Various studies found the Moho depth between 23.8 and 27 km for station 
BFO (Geissler et al., 2008; Grad et al., 2009; Knapmeyer-Endrun et al., 2014). The mantle velocities are also 
adequately constrained by the data showing a maximum probability for mantle SE v  velocity of 4.6 km/s. The 
results for the S-wave velocity model also show close agreement with Svenningsen and Jacobsen (2007) 
(shown in blue dashed lines) and Knapmeyer-Endrun et al. (2018) (shown in green dashed lines). Since 
Svenningsen and Jacobsen (2007) used the apparent velocity curve up to 0.2 s in contrast to 1.3 s allowed 
by our data set, the top sediment layer could be better resolved to thickness values below 1 km. Subplots (b) 
and (c) show the corresponding fits to the receiver function for each event and a median ,S appE v  curve. Except 
for the RF waveform in event (i) where the phase at 10E   s is over-pronounced, the models fit the data from 
other events adequately well. The modeled ,S appE v  curve also follows the data closely at all periods, including 
the sharp kink around 2E   s. At longer periods after 50E   s, the velocities seem to converge to 4.8E   km/s pro-
viding a tight constraint on the upper mantle which explains the low uncertainty seen in the half-space SE v .

Figure 9.  Noise characteristics of (a) Receiver function (RF) shown as a frequency distribution of amplitude calculated from radial component of receiver 
functions for different stations (b) ,S appE v  calculated as a frequency distribution of error from the median curve.
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Station SUW is located on the East European craton and sits on a relatively thicker crust than BFO. Using 
a similar parameterization as before with 3 layers including a top sedimentary layer results in a subsurface 
velocity profile shown in Figure 11a. The model predicts the Moho to be located at a depth of 45E   km with 
the highest probability density and an intra-crustal discontinuity at 15 km. Previous studies have estimat-
ed the Moho depth to lie between 41 and 46.8 km for station SUW (Geissler et al., 2008; Grad et al., 2009; 
Knapmeyer-Endrun et al., 2014). The thickness and SE v  of the sedimentary layer, however, are not well con-
strained with the uncertainty for SE v  being the highest amongst all layers. This is also evident from the mod-
eled ,S appE v  curves (subplot c) which show a slight deviation from the observed curve at short periods. Such 
a deviation could indicate that the sedimentary layer is more complex than our parameterization, which 
models it simply as a layer with constant velocity. An increase in the model complexity (e.g., modeling the 
sedimentary layer with a velocity gradient) could lead to a better fit here as suggested by Knapmeyer-En-
drun et al. (2018). Further, the missing SE v  information at long periods in the observation leads to an increase 

Figure 10.  Example of joint inversions for terrestrial data from station BFO (a) 1-D velocity profiles. The blue and green dashed line represents the results from 
Svenningsen and Jacobsen (2007) and Knapmeyer-Endrun et al. (2018). The light gray lines represent traversed models outside the maximum misfit range. (b) 
Fit to receiver function waveforms at epicentral distance of (i) 82E  (ii) 79E  (iii) 70E  (iv) 51E  (v) 45E . The blue dashed curve denotes the observed radial receiver 
function and green dashed lines represent the standard error. The dark blue dotted line at 15s shows the end of the misfit window. (c) Fit to the median ,S appE v  (d) 
v v

P S
/  ratio as a function of depth.

Figure 11.  Same as Figure 10 for station SUW (b) shows the fit to receiver function waveforms at epicentral distances of (i) 82E  (ii) 77E  (iii) 72E  (iv) 68E  (v) 64E  
(vi) 60E .
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in uncertainty in the upper mantle velocity which shows the highest probability density at a value of 4.9E   
km/s. The modeled RFs shown in Figure 11b clearly show the ringing effect with gradual decrease in am-
plitude with time caused by the thin sediment layer. These strong reverberations produce high amplitude 
oscillations in the early part of the signal and completely masks the direct Moho conversion at 6E s . This 
example in particular shows that caution is needed to interpret receiver functions with a sedimentary layer 
in terms of subsurface structures.

Figures 3d and 3e show the respective model probabilities obtained from AIC values. We see that both the 
data can be best explained by three layer models with constant velocity over a half-space. However, there 
is still 9%E   probability for a 4 layer model in both cases. The resulting values for v v

P S
/  for each layer are 

also shown in subplots (d) in Figures 10 and 11. The a priori ranges for these were selected such they con-
tain and considerably extend around the results from previous studies. Here we used Knapmeyer-Endrun 
et al. (2014) and Geissler et al. (2008) for information on crustal v v

P S
/  values and Artemieva (2007) for the 

upper mantle. Unlike the case for synthetics, a high variation is observed here between the layers. In all 
the examples, the top sediment cover shows the highest uncertainty. The first and second layers are better 
resolved. For the half-space, the resulting values for BFO were observed to be rather variable dependent on 
the a priori range which indicates that one should be cautious in interpreting the result and that this param-
eter is not well constrained. The average crustal v v

P S
/  values estimated from RF analysis in previous studies 

are between 1.69 and 1.75 for BFO (Geissler et al., 2008; Knapmeyer-Endrun et al., 2014) and between 1.81 
and 1.84 for SUW. We find that the mean values from our results are broadly similar with values of 1.67 and 
1.82, respectively. Figures 12 and 13 show the respective 1D marginal posterior densities and a priori ranges 
used for stations BFO and SUW.

5.  Implications for InSight
Some aspects in applying this method to InSight data do warrant attention. As the primary aim here is to 
obtain a first-order 1D subsurface structure, we have neglected the effects induced by azimuthal anisotropy 
from our analysis. Although this could potentially lead to amplitude errors in the observed RF waveforms, 
with only sparse data available, we can consider these to be of second-order. The effect of location uncer-
tainties will also considerably affect the calculation of ,S appE v . Knapmeyer-Endrun et al. (2018) showed that 
the biggest effect in ,S appE v  can be caused by uncertainty in distance and back azimuth. A 25%E   uncertainty 
in distance could yield an uncertainty of 1E   s/deg of the ray parameter for the P phase, while an erroneous 
back azimuth will lead to a decrease in estimated SE v  values at shorter periods. The thickness and velocity of 
a thin regolith layer can also be quite difficult to resolve if there is missing or erroneous information at short 
periods, as was the case in our study of terrestrial data. Another factor that limits the information that can 
be obtained from ,S appE v  on Mars is long-period noise and effects of glitches (Scholz et al., 2020). Knapmey-
er-Endrun et al. (2018) suggests that long period noise will affect longer periods while it has been observed 
that glitches can contaminate any part of the signal. Unlike the synthetics and terrestrial data used in this 
study, the ,S appE v  curve obtained from actual Mars data could be limited to much shorter periods. This would 
then increase the uncertainty in the retrieved SE v  values at larger depths. A similar situation was encoun-
tered in Drilleau et al. (2020). In our previous study, Lognonné et al. (2020), we have been able to constrain 
the S-wave velocity and depth for the first inter-crustal layer of Mars between 1.7–2.1 km/s and 8–11 km, 
respectively, using such a limited ,S appE v  curve while further work involving the entire crust is in preparation. 
It is therefore important that all these factors are correctly accounted for.

6.  Summary and Conclusion
In the context of the InSight mission, receiver function analysis has been envisioned as a likely method to 
study the crustal structure of Mars (Panning et al., 2017). In order to diminish the depth-velocity trade-off 
inherent in travel time methods, we propose to use the information provided by apparent P-wave incidence 
angles derived from P-receiver functions as an additional constraint (Knapmeyer-Endrun et al., 2018). In 
this study, we present a method for joint inversion of receiver functions and frequency-dependent apparent 
S-wave velocity curves using the Neighborhood Algorithm. This results in an ensemble of model solutions 
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along with their respective misfit values which can, in turn, be used to compute the full uncertainty of the 
model parameters. We then develop such a probabilistic solution using the resultant ensemble and apply 
this method to various data sets. Further, determining the sufficient number of layers for an optimal model 
presents another challenge in waveform inversion. We tackle this by gradually increasing the number of 
layers till adding yet another produces no significant change, and then using AIC as a statistical inference 
test on all possible model families. The method is successfully applied to synthetic seismograms generated 
for three a priori Mars subsurface models. Here we used both single and multiple events, and the uncertain-
ty in the retrieved model parameters decreases with an increase in the size of the data set. We then applied 
the method on terrestrial data from three different seismic stations located in different geological settings. 
The resulting subsurface models were in good agreement with the results obtained in previous studies using 
diverse approaches, which corroborated the efficacy of the method.

Figure 12.  Same as Figure 4 for the inversion of data from station BFO.
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Data Availability Statement
Seismic data for station BFO and SUW were obtained from the Federal Institute for Geosciences and Natu-
ral Resources and GEOFON data centre of the GFZ German Research Centre for Geosciences, respectively. 
The data are publicly available and can be obtained from EIDA (http://www.orfeus-eu.org/data/eida/) us-
ing the event details listed in Table 1. The GF databases for Martian synthetics are publicly available within 
the Marsquake Service (MQS) at ETH Zurich (http://instaseis.ethz.ch/marssynthetics/). Details of the seis-
mic station used to retrieve the terrestrial data can be found in the supplement. The authors are thankful 
to the two anonymous reviewers for their feedback, which helped to improve the manuscript. This study is 
InSight Contribution Number 216.

Figure 13.  Same as Figure 4 for the inversion of data from station SUW.

http://www.orfeus-eu.org/data/eida/
http://instaseis.ethz.ch/marssynthetics/
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