
1.  Introduction
Floodplains are landscape elements that connect hillslopes, aquifers, and surface waters. Often their hy-
draulic and biogeochemical properties are of high importance for transport and transformation of solutes, 
because the elevated contents of organic carbon in floodplain sediments cause steep redox gradients when 
oxic water enters these zones (e.g., Bates et al., 2000; Clilverd et al., 2013; Cloke et al., 2003; Hill, 1990, 2019; 
Vidon et al., 2019; Woessner, 2000). Over the past decades, hydrogeological research has become aware of 
the necessity of jointly investigating surface and subsurface processes rather than treating them as separate 
domains (e.g., Winter et al., 1998). As a consequence, a key role in floodplain hydrogeology has been attrib-
uted to the interactions between aquifers and the connected rivers (e.g., Fritz et al., 2018; Ward et al., 2016; 
Ward & Packman, 2019). As summarized by Cook (2015), there are different types of such surface-water/
groundwater interactions, comprising river gain: exfiltration/discharge of groundwater into the river, river 
loss: infiltration/recharge of river water into groundwater, bank storage: bidirectional exchange between riv-
er and groundwater due to dynamic changes in river-water stage, and hyporheic exchange: water originating 
from rivers, taking a detour through groundwater and coming back to the river without a net impact on the 
water balance of either the aquifer or the river. In recent studies specifically related to floodplain hydrology, 
hyporheic exchange has received significant attention, as it is important for various aspects of water qual-
ity and ecology, including microbial activity, solute turnover, nutrient fate, and redox conditions (Boano 
et al., 2009; Fabian et al., 2011; Hayashi & Rosenberry, 2002; Lewandowski et al., 2019; Triska et al., 1993; 
Ward, 2016).

1.1.  Lateral Hyporheic Exchange

Hyporheic exchange occurs on different spatial and temporal scales (Barthel & Banzhaf,  2016; Boano 
et al., 2014; Magliozzi et al., 2017, 2018; Ward & Packman, 2019; Zachara et al., 2020), ranging from centim-
eter-scale exchange induced by bedforms, over meter-scale exchange between step-pool sequences, to kilo-
meter-scale hyporheic exchange, which is sometimes referred to as parafluvial flow (Cook, 2015; Mallard 
et al., 2014). While small-scale exchange typically takes place in the vertical direction, larger-scale hyporhe-
ic exchange can also occur laterally (Fabian et al., 2011; Gooseff et al., 2003; Hayashi & Rosenberry, 2002; 
Wagner & Bretschko, 2003), for example, between river meanders (Boano et al., 2009; Gomez et al., 2012).
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As shown by Tonina and Buffington  (2009), changes in cross-section-
al area of floodplain aquifers are one of three drivers for hyporheic ex-
change besides non-uniform hydraulic conductivity and changes in en-
ergy head gradients. It is quite typical for floodplain aquifers, to have a 
varying cross-sectional area in settings of alternating degrees of valley 
confinements. In geomorphology, the term “confined” typically is used 
to describe valleys with a narrow floodplain that are laterally bounded by 
steep flanks forming a typical V-shape (Baxter et al., 1999; Fotherby, 2009; 
Nagel et al., 2014). In contrast to that, unconfined valleys exhibit exten-
sive floodplains and flat surface topography (Nagel et al., 2014). Hence, a 
sequence of confined and unconfined valleys along a stream, as described 
by Baxter et al. (1999) and Nagel et al. (2014), among others, results in 
lateral widening and narrowing of floodplain aquifers. Such sequences 
can form when alternating softer and harder rock layers of a stratigraphic 
sequence dip into the direction of flow so that the river alternatingly cuts 
through these softer and harder rocks. At the up- and downstream ends 
of an unconfined basin, the river is hindered to erode the harder bedrock, 
whereas the soft bedrock in between can be carved out by the river. The 
widened valley is then filled with fluvial sediments and hillslope material 
forming the floodplain aquifer. In fact, floodplain aquifers with narrow 
inlet and outlet cross-sections and a basin-shaped central section occur 

frequently (e.g., Castro & Hornberger, 1991; Clément et al., 2003; Helton et al., 2012; Martin et al., 2020; Ó 
Dochartaigh et al., 2019). As example, Ohara et al. (2018) developed a simplified procedure to approximate 
the boundary of floodplain aquifers solely from digital elevation models. They made use of the fact that the 
top surfaces of floodplains exhibit small slopes, and that floodplain boundaries are characterized by inflec-
tion points of surface elevation (i.e., where the curvature is zero). The mappings of Ohara et al. (2018) show 
a number of floodplain aquifers along the investigated stream network following the typical widening shape 
between connection points of small width.

As mentioned above, the widening geometry of an unconfined valley in the middle of two confined ones 
can sustain lateral hyporheic exchange on the valley-scale (Buffington & Tonina, 2009; Nagel et al., 2014; 
Tonina & Buffington, 2009). Where the valley widens, river water infiltrates into the aquifer, then flows 
predominantly downvalley, and is pushed back into the river where the valley narrows again (similar effects 
on vertical non-uniform cross-sections were already described by Vaux, 1968). This large-scale excursion of 
river water into the adjacent aquifer defines the riparian hyporheic-exchange zone from a hydrogeological 
perspective and is the main point of interest of the present study. Figure 1 schematically shows that alter-
nating transitions from (partially) confined to unconfined valleys (and vice versa) can be a cause of lateral 
geometry-driven hyporheic exchange even in straight river reaches, which can often be found in anthropo-
genically modified, channelized floodplain systems (e.g., Brookes, 1987).

The actual quantitative measurement of hyporheic exchange in field studies (in terms of flux, travel times, 
or spatial extent) remains a challenge, particularly on larger scales. A number of different experimental 
quantification techniques exist, including heat tracing (Ren et  al.,  2019), conservative-tracer tests (Mal-
lard et al., 2014), isotope-data interpretation (Zhang et al., 2017), differential river-discharge measurements 
(Kalbus et al., 2006), geophysical exploration (Ward et al., 2010), or seepage-meter applications (Langhoff 
et al., 2006). Each of these methods comes with its own strengths and limitations (see Cook, 2015, for a 
detailed comparison). Flow models represent an attractive addition to field experiments for the quantifica-
tion of hyporheic exchange, because they are comparably cheap, versatile and allow full control over the 
respective system. Consequently, there is a long history of surface-water/groundwater exchange modeling 
studies, of which we want to highlight the ones most significant to our investigations.

1.2.  Previous Work & Knowledge Gap

An early two-dimensional model of vertical hyporheic exchange was developed by Vaux (1968), who used 
electric analogs to visualize his findings, as neither a closed-form solution nor a numerical approximation 
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Figure 1.  Conceptual drawing of large-scale, lateral, geometry-driven 
hyporheic exchange zones in a river catchment. (a) hyporheic exchange 
between river meanders (not part of this study), (b) hyporheic exchange 
in widening floodplains with straight (channelized) river section (focus of 
this study).
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of his formulation were available/feasible at that time. Lateral hyporheic flow was modeled by Harvey 
and Bencala (1993), who applied the finite difference method to analyze the effect of alluvial streambed 
topography on hyporheic exchange in horizontal, rectangular domains. Revelli et al. (2008) used a finite 
volume model to evaluate lateral hyporheic exchange occurring within a river meander. Similarly, Carde-
nas  (2009a,  2009b) developed finite element models to investigate hyporheic exchange between mean-
ders in horizontal domains, incorporating also ambient river gain or loss. Huang and Chui (2018) derived 
proxy-equations for pool-riffle systems, serving as simplified empirical models to estimate the spatial scale 
of a hyporheic zone, as well as the related exchange flux and the median travel time of water flowing 
through it. Boyraz and Kazezyılmaz-Alhan (2013, 2017) developed (semi-)analytical solutions for two-di-
mensional flow in closed, horizontal, rectangular domains. As the only source and sink of groundwater in 
their cases is the simulated river, their studies can be interpreted as hyporheic flow investigations (where 
all water in the system belongs to the hyporheic exchange zone by definition). Recently, they expanded 
their work by deriving an analytical solution for hyporheic exchange in rectangular systems under the 
influence of groundwater recharge from ponds and wetlands (Boyraz & Kazezyılmaz-Alhan, 2021). In sum-
mary, many of these models have targeted hyporheic exchange for various settings, including the case (a) of 
Figure 1. However, we see a lack of research studying valley-scale lateral hyporheic exchange driven by the 
geometry of the floodplain aquifers (i.e., the case of spot (b) in Figure 1), which we want to address. To this 
end, we define an idealized two-dimensional plan-view model and solve it semi-analytically.

1.3.  Semi-Analytical Methods

Within the modeling spectrum, semi-analytical techniques are located between fully analytical closed-form 
solutions and numerical methods. While fully analytical solutions are mathematically elegant, absolutely 
correct, scale- and discretization-independent, and very quick to evaluate, they are typically restricted to 
mostly inflexible simplistic problems with predefined geometries (e.g., rectangular domains) or simplistic 
boundary conditions (like the sinusoidal head fluctuations of Tóth, 1963). Numerical solutions, by contrast, 
can be used for problems of arbitrary complexity allowing full flexibility, but come at the cost of larger 
evaluation times and accuracy limitations often related to spatial (or temporal) discretization. In addition 
to that, spatially resolved models often require many parameters and input information that might not 
be available for all cases (see for example, Barthel & Banzhaf, 2016; Dall'O’ et al., 2001). Semi-analytical 
methods represent a compromise between the two end members, as they are typically based on a set of 
simplifying assumptions, while maintaining the desired flexibility (e.g., by allowing arbitrary geometries 
or boundary condition values for relevant parts of the domain). This results in exact analytical expressions, 
which cannot directly be evaluated, for example, because they involve integrals without a general closed-
form solution or infinite series with a set of coefficients that are fully determined but cannot be backed out 
(e.g., Zlotnik et al., 2011). Semi-analytical solutions solve these integrals or infinite-series coefficients by 
numerical methods. Once the set of approximate coefficients has been evaluated for a specific model setup, 
the semi-analytical expression can be used to evaluate the solution at the same convenience as a fully ana-
lytical solution. Semi-analytical techniques have been used in past hydrogeological research, in particular 
for vertical cross-sections of hillslopes connected to rivers, drainage ditches or groundwater bodies (e.g., 
Craig, 2008; Li et al., 1996; Powers, 1966; Read, 2007), but also for lateral two-dimensional problems (e.g., 
Boano et al., 2006; Gomez-Velez et al., 2017; Suribhatla et al., 2004). The Analytical Element Method (e.g., 
Bakker, 1999, 2006; Bakker & Strack, 2003; Fitts, 2010; O. D. Strack, 1989; O. D. L. Strack, 2003, 2018; O. 
D. L. Strack & Nevison, 2015) represents a large class of semi-analytical models. It allows the construction 
of solutions for a given problem with a modular superposition approach, where each internal or external 
boundary condition represents a so-called analytical element.

1.4.  Objectives of This Study

In this study, we develop a semi-analytical solution for the valley-scale lateral hyporheic-exchange zone 
driven by the geometry of floodplain aquifers. We aim to answer three questions that are typically of inter-
est when investigating hyporheic exchange (e.g., Huang & Chui, 2018; Kasahara & Wondzell, 2003; Welch 
et  al.,  2015), which address relevant aspects of biogeochemical reactive processes related to river-borne 
dissolved compounds:
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�1.	� How much water (in terms of the volumetric flux) flows through the 
valley-scale lateral hyporheic exchange zone?

Answering this question allows comparing the exchange flux with the 
total river discharge and with total groundwater fluxes. If, for example, 
only a small fraction of the total river flow makes it into the aquifer, the 
river-water composition will not be drastically affected by the hyporheic 
exchange.

�2.	� What is the spatial extent of the valley-scale lateral hyporheic zone?

This is important whenever field studies within the aquifer are conduct-
ed, because it marks the boundary of “true” groundwater and infiltrated 
river water, which might carry a different chemical signature (e.g., micro-
pollutants originating from waste-water effluents).

�3.	� How long does the river water stay in the valley-scale lateral hyporheic 
exchange zone before returning to the river?

The travel times quantify the contact time between water and aquifer ma-
terial, which typically determines the degree to which any kinetic reac-
tions or microbial interaction can take place.

After deriving the semi-analytical expression for an idealized two-dimensional floodplain aquifer, we per-
form a systematic parameter-variation study, to infer how the lateral exchange flux depends on the ge-
ometric and hydraulic input parameters. This allows us to construct approximate predictive proxy-models. 
We demonstrate the applicability of these proxy-models with two examples mimicking field sites close to 
Tübingen.

A comparable proxy-model for hyporheic exchange fluxes between sinuous river meanders has been devel-
oped by Cardenas (2009a, 2009b). Of course, each floodplain site is unique with all its complex three-di-
mensional geology, morphology and heterogeneity as well as its dynamic processes taking place on multiple 
scales. It is therefore certainly not possible to capture all details of a site with our simplified model, but it can 
give an easy and a quick order-of-magnitude type of estimation for the hyporheic-zone metrics of interest 
in cases where only little information about the floodplain is known (this motivation is similar to the one of 
Huang & Chui, 2018). Finally, our study gives insight into major dependencies, which might get lost in the 
details of a site-specific modeling study.

2.  Methods
2.1.  Conceptual Model/Problem Statement

We simulate steady-state horizontal groundwater flow in a simplified two-dimensional aquifer (see schemat-
ic illustration in Figure 2) without internal sources or sinks. The overall geometry idealizes the mid-section 
subcatchment of a typical channelized river in a landscape formed on bedrocks of alternating competence. 
In such settings, the large-scale along-valley ambient hydraulic gradient and the topography (including aq-
uifer bottom and top) essentially follow the slope of the river, whereas the across-valley slopes are negligible. 
Laterally connected hillslopes are not part of our modeling domain; their effect on the floodplain aquifer 
are considered as boundary condition. The restriction to two dimensions can be justified by the typical large 
lateral extent of floodplain aquifers compared to their small and mostly uniform thickness (e.g., Clément 
et al., 2003). For ease of description, we will use the terms northern (in the direction of y), eastern (in the 
direction of x), southern (against the direction of y) and western (against the direction of x) to denote the 
four directions and boundaries.

The domain extends laterally within 0 x L   and 0 ( )By f x  . Here, L [ ]L  represents the domain length. 
The continuous and real-valued function ( )Bf x  defines the location of the northern boundary and there-
by the domain width. At this northern end, a fixed specific flux north ( )q x  [ ]L L T3

/ /  crosses the boundary in  
y-direction, which simulates lateral inflow of an adjacent hillslope ( north 0q   implies an influx). In the fol-
lowing derivations, we do not impose any further assumption or restriction with respect to ( )Bf x , but in the 
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Figure 2.  Schematic illustration of the two-dimensional problem 
definition. The tan line in the north represents a Neumann boundary 
with constant flux northq . The other three lateral sides reflect Dirichlet 
boundaries with values 1h , 2h  and 3( )h x  (warmer colors indicate higher 
hydraulic heads). L, minw  and maxw  represent the length of the domain as 
well as its minimum and maximum width. The shape of the northern 
boundary is defined by ( )Bf x , which creates an additional area northA  
compared to the rectangular area rectA .
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investigated cases we will focus on a “cosinusoidal” curve mimicking the widening shape of a floodplain 
aquifer:

min max min
1( ) ( ) 1 cos 2 ,
2B

xf x w w w
L


  

         
� (1)

where minw  [ ]L  is the minimum width of the domain (which applies for the western and eastern end) and 

maxw  [ ]L  is the maximum width (which occurs at x L
2

). In later comparisons, we also investigate two al-

ternate shapes that we denote “composite” and “bump.” The latter shape follows a classical bump function 
defined by the points ( | )0 wmin , ( | )

L
w

2 max  and ( | )L wmin  and uses the following equation:

min max min 2
1( ) ( ) exp 1 .

21 1
Bf x w w w

x
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 
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� (2)

The “composite” configuration is defined as a piece-wise function by connecting the six points ( | )0 wmin ,  
( | )p w1 min , ( | )p w2 max , ( | )p w3 max , ( | )p w4 min  and ( | )L wmin  with three constant and two cosinusoidal segments to 
achieve an elongated shape with continuous first derivative. We use the following equation:
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with the four parameters 1
1
40

p  , 2
15
40

p  , 3
25
40

p   and 4
39
40

p  . These parameters create a straight cen-

tral section of length 
2
L

 and straight inlet and outlet sections with a total length of a tenth of that.
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Figure 3.  Four flow-net examples with colored head contour lines, gray stream function contour lines, and arrow 
indicators of exchange flux (black arrows highlight fluxes that occur within the hyporheic exchange zone). The 
hyporheic exchange zone is shown in blue, the zone of water originating from the northern boundary is shown in tan. 
(a–c) different shapes without northern influx; (d) with northern influx. The flow nets and flux indicators visualize 
actual results obtained with the semi-analytical solution.

a : bump b : composite

c: cosinusoidal d : cosinusoidal
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Figure 3 shows example geometries for all three domain shapes. We denote the rectangular area of the 
southern part rectA  [ ]2L  and the additional northern area northA  [ ]2L , such that the total surface area of the 
domain totA  [ ]2L  is the sum of the two:

tot rect north min north .A A A L w A    � (4)

At the western and eastern boundaries, the fixed heads 1h  [ ]L  (western boundary) and 2h  [ ]L  (eastern bound-
ary) impose an ambient flow field, which we assume to be connected to adjacent aquifers up- and down-
stream of the investigated catchment segment. The southern boundary is assumed to be in perfect hydraulic 
contact with a river that provides another fixed-head boundary with 3( )h x  linearly varying between 2h  and 

1h . We allow the hydraulic conductivity to be anisotropic in the principal directions (x and y), leading to a 
diagonal transmissivity tensor T [ / ]L T2 :

0
.

0
x

y

T
T

 
   
 

T� (5)

The evaluation of travel times requires a depth-integrated flow-effective porosity, or the aquifer thickness 
times the mean porosity, which we denote  [ ]L .

2.2.  Semi-Analytical Solution for Hydraulic Head and Stream Function

The starting point of our derivation is the two-dimensional, steady-state, anisotropic groundwater-flow 
equation for divergence-free flow. It involves the hydraulic head h, the spatial coordinates x and y and the 
transmissivities xT  and yT  (e.g., Bear, 1972):

2 2

2 2 0.y

x

Th h
Tx y

 
 

 
� (6)

The Cauchy-Riemann equations (e.g., Bear, 1972; O. D. L. Strack, 2017):

y
hT

x y
 


 

� (7)

,x
hT

y x
 

 
 

� (8)

relate the hydraulic head with the stream function  [ ]L T3
/ . The stream function helps in formulating Neu-

mann (“fixed flux”) boundaries and allows for trivial flux evaluations after obtaining its solution.

We want to find the solution ( , )h x y  of Equation 6 meeting the following boundary conditions:

1 at 0h h x � (9)

2 ath h x L � (10)

2 1
1 at 0h hh h x y

L


  � (11)

north2

1( ) ( ) ( ) at ( ),
( ) 1

B
B

h x q x y f x
f x

    


T n� (12)

where ( )xn  is the unit normal vector along the northern boundary (pointing outwards) and ( )Bf x  is the 
derivative of ( )Bf x  in the x-direction. Similar to the derivation of Read (2007), it is possible to express the 
northern Neumann boundary in terms of the stream function, such that Equations 12 and 13 are equivalent 
(see Text S1):
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north( , ( )) ( ) d ( ) at ( ).B Bx f x q R x y f x      � (13)

Note that the stream function is only defined subject to an arbitrary constant offset. Like in most studies, we 
are only interested in differences between stream-function values so that the offset drops out. To clarify di-
mensions: north ( )q x  is a (potentially location-dependent) specific flux expressed in L T2

/  and ( )R x  represents 
a fixed value for the stream function and is therefore expressed in L T3

/ .

By separation of variables (a detailed derivation is given in Text S2) we derive the following series solution 
of the boundary-value problem:

2 1
1

1
( , ) sin sinh ,n

n

h h n nh x y h x A x y
L L L

  




     
       

   
� (14)

where nA  [ ]L  is the n-th series coefficient and   represents the dimensionless square root of the anisotropy 

ratio x

y

T
T

  . The associated stream function is:

2 1
0

1

1( , ) cos cosh ,x n
n

h h n nx y T A y A x y
L L L

  






      
               

� (15)

in which the coefficient 0A  [ ]L  reflects the arbitrary offset of the stream function.

The series coefficients A (i.e., 0A  to nA ) are fully determined by the shape of the northern boundary ( )Bf x  
and the associated boundary condition ( )R x :

!
2 1

0
1

1( ) cos cosh ( ) ( ).x B n B
n

h h n nT A f x A x f x R x
L L L

  






      
              

� (16)

However, except for very simple cases (e.g., a valley with uniform width and constant normal flux at the 
northern boundary) it is practically impossible to determine the coefficients analytically. We alleviate this 
problem by numerical approximations of the series with a finite number of terms. We use an approach 
similar to the analytical element method of O. D. Strack (1989), that was refined and applied by Barnes and 
Janković (1999), Janković and Barnes (1999), Read (2007) and Craig (2008). In essence, we choose a finite 
number of M points along the northern boundary ( | ( ))x f x

i B i
, that are used to evaluate the 1N M   coef-

ficients A, in which N  is the number of terms in the truncated infinite series.

The solution of Equation 16 can then be obtained through a least squares formulation minimizing the sum 
of squared approximation errors   along the northern boundary:

0
1

( ) ( ) ( ),i n n i i
n

A A f x g x



  A� (17)

with

2 1( )( ) ( ),i
i B i

x

R x h hg x f x
T L


   � (18)

and

1( ) cos cosh ( ) .n i i B i
n nf x x f x

L L
  


    

    
   

� (19)

The goal is to minimize the sum of (potentially weighted) squared approximation errors across the M points:

2

1
arg min ( ) ,ˆ M

i i
i

w 


 
A

A A� (20)

in which iw  represents the weight of the i-th point. This optimization problem is converted to a system of 
linear equations by setting the derivative to zero (Craig, 2008). This yields 1N   equations with 1N   un-
knowns, regardless of the number of points M:
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0
1 1 1 1

( ) ( ) ( ) ( ) ( ); 1 ,
M N M M

i i n i i n i i i i
i n i i

A w f x A w f x f x w f x g x N   
   

         � (21)

0
1 1 1

( ) ( ).
N M M

n i n i i i
n i i

A A w f x w g x
  

     � (22)

In the case of 1M N  , the system is determined and the solution will be met exactly on all M points. 
Then, these points are referred to as collocation points (Barnes & Janković,  1999). Unfortunately, the 
Gibbs-Wilbraham (Gibbs, 1898; Wilbraham, 1848) and Runge phenomena (Runge, 1901) can lead to sig-
nificant and strong oscillations between the points, which cannot be fixed by increasing the approximation 
order N  (for more information see for example, Hewitt & Hewitt, 1979; Ray, 2020; Read, 2007). Instead, it 
can be beneficial to choose more points than coefficients to reduce the adverse effects of the Gibbs-Wilbra-
ham phenomenon. The resulting solution will then not be met exactly at all points (the system of equations 
is over-determined), but the error is minimized in an average sense. In such a case of 1N M   the points 
are typically called control points (Barnes & Janković, 1999). In our study, we use 10N   and 25M  .

As highlighted by Craig (2008), additional Gibbs-Wilbraham effects can be caused wherever Dirichlet and 
Neumann boundaries meet at angles that lead to inconsistent hydraulic gradients. In our model setup this 
can happen at the intersection points of the northern boundary and the western and eastern boundaries, 
depending on the choice of ( )Bf x  and north ( )q x . In problematic cases, according to Craig (2008), non-uniform 
weights with smaller values close to these points can reduce the influence of these inconsistencies on the 
remaining parts of the domain. Another way to deal with the problem is to use a non-uniform spacing of 
the points ix . Neither of these remedies were necessary in this study, so that we used identical weights for all 
points ix  spaced equidistantly (tests with parameter combinations outside of the investigated ranges suggest 
that the most critical parameters with respect to the Gibbs-Wilbraham phenomenon are strong anisotropies 
and extreme width-to-length ratios).

The system of equations that we solve includes hyperbolic cosine terms (see Equations 19, 21 and 22). As 
the hyperbolic cosine function grows rapidly with its argument, it can be useful to reformulate the solution 
to avoid terms that grow exponentially with n. This is possible by redefining the series coefficients 1A  to nA  
and scaling them with a hyperbolic cosine term to obtain:

*
maxcosh ,n n

nA A w
L
 

 
   

 
� (23)

in which *
nA  [ ]L  are the modified series coefficients and maxw  is the maximum extent of the northern bound-

ary. The resulting ratios of hyperbolic sine and cosine functions can be exploited with the identities:

sinh( ) exp( ) exp( ) ,
cosh( ) 1 exp( 2 )

t t b t b
b b

   


 
� (24)

and
cosh( ) exp( ) exp( ) ,
cosh( ) 1 exp( 2 )

t t b t b
b b

   


 
� (25)

that involve only terms having a negative sign in the exponential for our case. This results in modified ver-
sions of the hydraulic head function:

*2 1 max max
1

1 max

exp( ( )) exp( ( ))( , ) sin( ) ,
1 exp( 2 )n

n

h h c y w c y wh x y h x A cx
L c w

 






    
   

 � (26)

and the stream function:
( , )

cos( )
exp( ( )) e*

x y T

A
h h

L
y A cx

c y w

x

n
n

  




 
 





0
2 1

1

1


 max xxp( ( ))

exp( )
,

 
 











c y w

c w




max

max1 2

� (27)

which make use of a new shorthand nc
L


 . A similar procedure has been exploited by Powers  (1966) 

and Powers et al. (1967). If there was an ideal computer with infinite precision the solutions of the two 
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formulations were identical, and the only difference would lie in the magnitude of the series coefficients. 
Due to round-off errors, however, the modified version yields more precise results when using standard 
double precision floating-point operations.

2.3.  Characterization of the Hyporheic-Exchange Zone

Figure 3 shows semi-analytical flow nets for different model configurations, as well as directions and mag-
nitudes of the flux perpendicular to the southern boundary. This flux is zero at the western end ( 0x  ). 
Depending on the geometric configuration and the northern influx rate, it typically increases with x until 
it reaches a maximum. From there on, it decreases again, passes zero and becomes negative until it reaches 
a minimum. Finally, it increases again to reach zero once more at the eastern end (x L ). In summary, we 
can observe in the western part a net flux from the river to the aquifer and a reversed flux in the eastern part. 
Without a northern influx the pattern is symmetric and the net exchange between the river and the aquifer 
is zero. By following the stream lines, we can identify the parts of the domain, where the flow originates 
from the river and returns to it again. These parts define the valley-scale hyporheic exchange zone (blue 
areas in Figure 3). In the following we derive how to quantify the flux of water flowing through this zone 
(the hyporheic-exchange flux exQ ), how large the hyporheic exchange zone is (the exchange zone area exA ) 
and how travel times through this zone are distributed.

2.3.1.  Exchange Flux

As exchange flux, we define the discharge (in L T3
/ ) of water originating from the river at the southern 

boundary and returning back to it again. We can quantify the exchange flux by considering the stream func-
tion, which is defined such that the net discharge pqQ  crossing a line between two points p and q equals the 
absolute difference of the stream-function values at the two end points:

pq ( , ) ( , ) .q q p pQ x y x y   � (28)

In Figure 3 we can see different manifestations of the exchange zone. It can span the entire southern bound-
ary (see Figures 3a, 3b and 3c), parts of it (see Figure 3d) or may vanish completely (e.g., if the northern 
influx is very large). In any case, however, it is bounded by a dividing streamline that starts and/or ends 
at one of the southern corner points of the domain (i.e., either ( | )0 0  or ( | )L 0 ). According to Equation 7, an 
increase in the stream-function value along the southern boundary in the positive x-direction implies an 
exfiltration flux (groundwater discharge to the river). Thus, in the cases shown in Figure 3, the stream-func-
tion first decreases along the southern boundary, reaches a minimum and increases back until it reaches its 
initial value. In the case of Figure 3d it further increases, because the river gains more water than it loses. 
In this setting, the exchange flux is given by the stream-function values at ( | )0 0  and at the minimum point. 
With different geometries (e.g., a valley that first gets narrower and then widens) the southern boundary 
may start with exfiltrating conditions (river gaining groundwater). In that case the exchange flux is given by 
the difference of the stream-function values at the end point ( | )L 0  and at the minimum, such that all cases 
are covered by:

ex min[ (0,0), ( ,0)] min[ ( ,0)].Q L x    � (29)

If there is no hyporheic-exchange zone, the end point with the smaller stream-function value is identical 
with the point of minimal stream-function value, leading to the correct exchange flux of zero. In general, 
the minimum of the stream function along the southern boundary min( ( ,0))x  must be evaluated numeri-
cally. If the number M of points to determine the coefficients A was large enough, it is convenient to re-use 
the same set of x-locations that were also selected for constructing the system of equations.

2.3.2.  Area of the Exchange Zone

The volume exV  of the exchange zone can be expressed in terms of a two-dimensional area:

ex
ex ,VA 


� (30)
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where we make use of the depth-integrated effective porosity . Just as for the calculation of the exchange 
flux, a general analytical solution for the area of the exchange zone is not available. Hence, we determine 
the area numerically by constructing a polygon bounded by the southern domain border and the dividing 
streamline separating the exchange zone from the northern rest of the domain. The dividing streamline is 
the contour line of  representing a value of min[ (0,0), ( ,0)]L  . It can be constructed with standard con-
touring algorithms from a set of point observations of ( , )x y  placed throughout the domain. The evaluation 
of the polygonal area is trivial; we only need to make sure that we use enough points to approximate the 
polygon well enough. Again, it might be convenient to reuse the set of x-nodes in combination with a set of 
y-nodes for the construction of a mesh of points where  is evaluated.

2.3.3.  Travel Time Distribution

The mean travel time of water flowing through the hyporheic exchange zone is given by the ratio of its 
volume and the exchange flux:

ex ex
mean

ex ex
.V At

Q Q


 � (31)

In order to evaluate the full travel-time distribution of all water parcels flowing through the exchange zone 
we construct tn  contour lines of  across the full range of -values within the exchange zone (i.e., from 
min[ ( ,0)]x  to min[ (0,0), ( ,0)]L  ). By choosing equal steps between the contour line values (i.e., a con-
stant ), we construct stream-tubes of identical discharge. For each contour line we determine the respec-
tive travel time t [ ]T  and the fraction ( )F t  of discharge that has a travel time smaller than t. This gives one 
point of the travel-time distribution per contour line.

The travel time it  of the i-th contour line can be approximated by summation of the travel times segt  of all 
its segn  line segments. A segment's travel time can be determined from its length segL  and its average flow 
velocity avgv . We assume that the velocities of the segment endpoints ( 1v  and 2v ) apply both each for half of 
the segment length, which results in an arithmetic averaging procedure:

t t
L L

j

n

j

n

j

n

i

seg

seg

seg
seg

avg

seg
seg  



  
  

1 1 1 1 2

2

v v v

.� (32)

Here, the linear velocity v [ / ]L T  is given by Darcy's law (Darcy, 1856) and the depth-integrated porosity :

1 .h  


v T� (33)

The corresponding fraction of hyporheic discharge that has a travel time smaller than it  can be determined 
with the stream function:

ex

min( ( ,0))( ) ,i
i

xF t
Q

  
� (34)

where i  is the stream function value of the i-th contour line. The tn  points ( | ( ))t F t
i i

 describe the approx-
imated cumulative distribution function of travel time. For better comparison among different settings, 

we normalize the travel-time distribution by the mean travel time, which 
yields a dimensionless time:

mean
.tt

t
� (35)

2.3.4.  Summary of the Semi-Analytical Procedure

In short, the semi-analytical determination of hyporheic-exchange-zone 
properties for a given setting involves the following steps:

1.	 �Define all parameter values (including those describing the 
geometry).

2.	 �Decide on N , M and ix .
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Parameter Symbol Value Unit

Fixed head at inlet 1h 3 m

Fixed head at outlet 2h 0 m

Transmissivity in x xT 310 m s
2

/

Transmissivity in y yT 310 m s
2

/

Northern influx northq 0 m s
2

/

Table 1 
Constant Hydraulic Parameter Values for Analyzing the Effects of 
Geometric Properties on Hyporheic-Exchange Metrics
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3.	 �Set up the system of equations (Equations 21 and 22).
4.	 �Solve the system of equations to obtain the coefficients A.
5.	 �Evaluate the stream function on selected points to determine exQ , exA  or ( )F t  according to Equations 29, 

30 and 34.

Depending on N  and M, this scheme can be computationally expensive. Also, it gives no direct evidence of 
how parameters affect the exchange flux, the area of the exchange zone, or the travel-time distribution. As 
our primary interest is to relate these quantities to the various input parameters, we perform a systematic 
parameter-variation study setting the base for easy-to-use empirical relationships.

3.  Relating Exchange-Zone Metrics to Hydrogeological and Geometric 
Properties of the Floodplain Aquifer
As first target of the parameter-variation study we consider the hyporheic-exchange flux, before addressing 
the hyporheic-zone area and the travel-time distribution.

3.1.  Exchange Flux

We focus on the “cosinusoidal” shape to infer relationships between the input parameters and exQ  and use 
the “bump” and “composite” shapes for verifying the derived expression. For the interested reader, we also 
provide a global sensitivity analysis of exQ  using Sobol indices (Sobol', 1993, 2001) in Text S3.

3.1.1.  Cosinusoidal Shape

To understand how the hyporheic-exchange flux relates to the domain geometry for a given hydraulic set-
up, we fix all hydraulic parameters to the values defined in Table  1 and vary the domain length in the 
range 500m 3500mL  , the minimum width in the range min50m 350mw   and the ratio of maximum 

to minimum width in the range max

min
1.0 2.5w

w
  . With this initial sample, we can resemble most of the 

floodplain examples mentioned previously, which range from a few hundred meters to a few kilometers 
in length and have approximate w Lmax/  ratios between 10% and 50% (e.g., Clément et al., 2003; Ó Dochar-
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Figure 4.  Response of the exchange flux to geometric parameters; (a) slices and scatter plot involving geometric 
parameters; (b) transformation bringing the response of the exchange flux to all three geometric parameters onto a 
single curve that can be approximated by a scaled hyperbolic secant function (black line).
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taigh et al., 2019) and approximate w wmax min/  ratios of up to 2.5 (e.g., Castro & Hornberger, 1991; Helton 
et al., 2012).

Figure  4a shows a three-dimensional slice and scatter plot of corresponding exchange fluxes for the 
13 7 7 637    parameter combinations that we tested.

This plot reveals the following insights: (a) For a width ratio of one, the exchange flux is zero, independent 
of the other two parameters. This is obvious, because the domain collapses to a rectangle, where the solution 
of the related system of equations is trivial ( 1A  to nA  equal zero) and there is no driving force for any lateral 
hyporheic exchange. (b) For a fixed length and minimum width, the exchange flux increases monotonically 
with the ratio of maxw  to minw . (c) For any fixed width-ratio larger than one, the magnitude of the exchange 
flux depends on both the domain length and the minimum width. (d) There seems to be a ratio of the latter 
two that gives a maximum flux. (e) For ratios larger or smaller than that, the exchange flux declines.

This rather complex behavior in three-dimensional parameter space can be simplified and the dimensional-
ity can be reduced. Figure 4b shows that all simulated points can be brought very close to a single curve by 
plotting the following two transformed quantities against each other: On the horizontal axis we display the 
ratio of the average width to the domain length. For that we calculate the average domain width by dividing 
the domain's total area by its length:

tot
mean .Aw

L
� (36)

On the vertical axis of the transformed plot, we show the product of the exchange flux and the ratio of do-
main length to the transmissivity in x-direction and maximum width-difference w , which is:

max min.w w w  � (37)

After subsequent variations of the hydraulic properties 1h , 2h  and   for fixed geometries (not shown), we 
found an easy way to incorporate their influence on the exchange flux into the existing transformation as 
long as there is no northern hillslope influx (i.e., north 0q  ): The square root of the anisotropy ratio   affects 
only the scaling in the direction of the horizontal axis and needs to be multiplied with the ratio of the aver-
age width to the domain length. The hydraulic heads 1h  and 2h  only matter as a head difference:

1 2.h h h  � (38)

This difference only affects the vertical axis of the plot and can be accounted for in dividing the existing 
expression by h .

The one-dimensional relationship derived in this way (see Figure 4b) starts at the point ( | )0 1  and is char-
acterized by a monotonic decline that has a small slope in the beginning, a steeper part around 0.25 and a 
tail asymptotically approaching zero. Such a behavior can be approximated by a hyperbolic secant function 
scaled in the direction of the horizontal axis (Figure 4b contains such a function fitted to the simulated 
model results). This relationship can be inverted to a description of the dimensional hyporheic-exchange 
flux depending on all model parameters (with exception of northq , which has been set to zero so far). As a 
result, we postulate the approximation:

mean
ex 0 1sech ,wQ Q a

L


 
   

 
� (39)

with a dimensionless fitting parameter 1a  and the reference discharge:

1 2
0 max min( ),x x x

h hQ I T w T w w
L


       � (40)

where xI  is the ambient hydraulic gradient in x-direction, which is given by the ratio of the head difference 
h  to the domain length L.

We can interpret the relationship of Equation 39 in the following way: (a) The difference between the max-
imum and minimum width of the valley exerts a linear control on the hyporheic exchange flux. (b) For 
a given width difference, there is a maximum potential exchange flux 0Q . (c) The magnitude of this flux 
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linearly depends on the ambient hydraulic gradient and the hydraulic transmissivity in x-direction. (d) The 
actual exchange flux exQ  is smaller than 0Q  and the ratio of the two is determined by the domain aspect 
ratio (w Lmean/ ) and the anisotropy (  T T

x y
/ ). We explain the details of this relationship in the following.

To understand the equation for 0Q , it makes sense to analyze the illustrative extreme case of minw  approach-
ing zero in a scenario of constant w . As seen in Figure 2, in such a case nearly the entire domain belongs 
to the northern part northA , and rectA  becomes small. Basically all water flowing through the domain must 
come exclusively from the river and return to it again (i.e., tot north exA A A  ). The easiest way to quantify 

the exchange flux for this specific scenario is to take a look at the widest part of the domain (i.e., 
1
2

x L ).  

Here, the discharge *Q  through the domain, is given by Darcy's law with the following approximation:

* 1 2 ,x x
h h hQ w T w T
x L

  
       

� (41)

where we assume a uniform hydraulic gradient in x-direction equaling h  over L. xT  is the only transmis-
sivity that matters here, because the hydraulic gradient in the y-direction is zero. It becomes clear now, that 

*Q  equals our reference discharge 0Q  and it represents the maximum discharge that could be reached for a 
given w  and adjustable minw .

The actual exchange flux can be smaller than 0Q  for two reasons: first the curvature of the domain/flow-
paths and second the distance between northern and southern boundary. Both of these effects are summa-
rized in the term w Lmean/  within the hyperbolic secant function in the following way: Even in cases with 

min 0w  , the actual exchange flux is smaller than 0Q , because of the curvature of the domain's northern 
boundary. This curvature leads to flow path lengths larger than L. Consequently, the hydraulic gradient 

/h x   is smaller than xI  at 
2
Lx  . For given domain widths, L serves as a control to change the curvature, 

with L   resulting in less curved flow-paths yielding ex 0Q Q . In addition to that, the deviation of exQ  
from 0Q  depends on the average domain width meanw , which is a measure for how far the northern bound-
ary (i.e., the driving force) is separated from the river. As the hyperbolic secant function decreases strictly 
monotonically, a larger separation distance always leads to a decrease of hyporheic exchange flux. This is in 
line with intuition: if the northern valley expansion is far away from the river, the water necessary to “fill” 

northA  can be drawn from the western boundary without affecting the river too much (an illustrative example 
is given in Text S4).

The hydraulic anisotropy acts as a scaling factor for the average aspect ratio w Lmean/  of the domain, meaning 
that if y xT T , it becomes easier to draw water from the river, having the same effect as moving the northern 
boundary closer to it. Vice versa, a case of x yT T  can be interpreted as increasing the distance between riv-
er and northern boundary. As   represents the square root of the anisotropy ratio T T

x y
/ , we can summarize 

the anisotropy-corrected aspect ratio to a new dimensionless variable:

mean ,wx
L

� (42)

which can be used to construct a dimensionless formulation for the exchange flux exQ :

 ex
ex 1

0
sech .QQ a x

Q
   � (43)

In the following, we want to analyze the dependence of the hyporheic exchange flux on the northern 
hillslope influx northq  to generalize Equation 43. Toward this end, we normalize the total northern discharge 
by 0Q , to obtain the dimensionless quantity:

2
north0 north

north
0 1 2 max min

d 1 .
L

x

q x q LQ
Q T h h w w

   
 

� (44)

An influx from the northern boundary leads to a reduction of the hyporheic exchange flux, because the ex-
change zone is “pushed” toward the river boundary. At sufficiently large values of northQ , the exchange zone 
may even vanish completely, meaning that no river-water infiltration takes place. By systematically varying 
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northQ  in test cases (see Text S5), we found that the following nonlinear subtraction relationship matched the 
exchange flux across all tested parameter combinations best:

ex 1 2 north 3sech( ) max 0,1 cosh( ) .Q a x a Q a x     
  � (45)

This involves a second empirical function with two coefficients 2a  and 3a , employing the hyperbolic cosine 
function. The implementation of the maximum-value function constructs a threshold leading to a constant 
exchange flux of ex 0Q   in cases of large values of north| |Q . This threshold can also be used to give a simple 
approximate logical expression indicating if the exchange zone is present for a given case of northQ  and x:

2 north 31 cosh( ).a Q a x  � (46)

In summary, our proxy-expression for the estimation of the hyporheic-exchange flux has a single empirical 
coefficient in case of zero northern influx, and two additional coefficients in cases with non-zero north-
ern influx. We will determine and compare these coefficients in the following for different shapes of the 
floodplain.

3.1.2.  Empirical Coefficients for Different Shapes

We construct a sample of 1,500 quasi-random model realizations to test whether the derived proxy-equation 
also works for shapes other than the “cosinusoidal” one. The parameter values of all realizations are drawn 
from uniform probability distributions within the ranges documented in Table 2, in which the sampling of 
parameter sets is done with a scrambled Halton sequence (Cheng & Druzdzel, 2013; Halton, 1960; Kocis & 
Whiten, 1997).

For each realization (i.e., parameter combination) we solve the semi-analytical model six times, twice for 
each of the three shapes (“cosinusoidal”, “bump” and “composite”), with and without influx from the north-
ern hillslope. This allows determining the empirical fitting coefficient 1a  independently of 2a  and 3a . Fig-
ure 5 shows the resulting normalized hyporheic-exchange flux for this stochastic model sample.

This figure could also be used as a tool to determine exQ  from x and | |Qnorth  graphically. Table 3 lists the fitted 
empirical coefficients and metrics indicating the quality of the fits.

The results are similar for all three shapes and closely follow the hyperbolic secant curve in the cases with-
out northern influx. Considerable differences between the shapes only occur for large northern influxes, 
but are mostly restricted to how quickly the associated exchange flux drops. The “bump” and “composite” 
shape are very similar to each other and exhibit a slower decrease of exQ  with increasing northQ  compared to 
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Parameter Symbol Minimum Maximum Unit

Length L 100.0 3000.0 m

Gradient xI 0.0 3.0 %

Length ratio w Lmax/ 0.1 0.5 –

Width ratio w wmax min/ 0.4 1.0 –

Log. transmissivity
10log ( )x yT T 6.0 2.3 T  in m s

2
/

Log. anisotropy log ( / )10 T T
x y

1.0 1.0 –

Northern influx
northQ 3.0 0.0 –

Table 2 
Ranges of Geometric and Hydraulic Parameters That Were Explored in the Stochastic Simulation to Obtain Shape-
Dependent Empirical Coefficients
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the “cosinusoidal” shape. The qualitative behavior, however, is identical for all domain shapes. This is also 
reflected in the fitted coefficients 1a , 2a , and 3a , which differ only slightly between the shapes.

We quantify the quality of the proxy-equation with the root-mean-square error of exQ  when comparing 
the proxy-equation to the semi-analytical solution. We do this independently for the cases, in which the 
northern influx is zero (“ 0RMSE ”), and those with a non-zero northern influx (“ 0RMSE ”). Given that exQ  
ranges between zero and one, the RMSE-values of up to 0.027 indicate a very good agreement between the 
proxy-equation and semi-analytical solution and reveal that our interpretations are valid across the different 
domain shapes. Finally, we performed a linearized uncertainty propagation to estimate the uncertainties of 
the fitted coefficient values. The resulting relative uncertainties (shown in Table 3) are on the order of a few 
percent or less, indicating a high confidence in the fitted coefficients.

3.2.  Area of the Exchange Zone

For each realization of the model sample, we determined the area of the hyporheic-exchange zone. In this 
section, we construct a simplified proxy-equation relating this area to the model input parameters. To do 
so, we define a dimensionless area A , by normalizing exA  with northA  for all realizations. This dimensionless 
area seems to be approximately proportional to exQ , and additionally depends on north| |Q  in the following 
nonlinear way:

ex ex

north north

.
1 | |

A QA
A Q

 



� (47)

Figure 6 shows that the 3,000 simulations decently follow this curve for all three domain shapes, and Ta-
ble 4 summarizes the respective quality of the fits. Again, the RMSE values ( areaRMSE ) of up to 0.028 are 
small compared to the range of observed values (zero to one).
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Figure 5.  Dimensionless exchange flux results for three domain shapes with fitted proxy-models shown for different values of north| |Q  (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 
and 3.0).

Shape 1a 2a 3a 0RMSE 0RMSE

“Cosinusoidal” 6.242 0.002 0.434 0.001 4.121 0.024 0.005 0.014

“Bump” 5.852 0.009 0.355 0.001 4.607 0.037 0.023 0.025

“Composite” 5.515 0.010 0.331 0.001 4.755 0.026 0.027 0.019

Note. Coefficient values shown as fit uncertainty , where the uncertainty is obtained through linearized uncertainty 
propagation.

Table 3 
Fitted Proxy-Model Coefficients and Quality of Fit Metrics for the Sample of 1,500 Model Realizations Per Domain Shape



Water Resources Research

The relationship of Equation 47 suggests that in cases without a northern influx, the area of the hyporheic 
exchange zone closely scales with the normalized exchange flux and northA . This implies that pronounced 
widening (i.e., large width differences w wmax min ) leads to a larger exchange zone, but a greater ambient 
hydraulic gradient ( xI ) would not have any effect on exA .

As intuitively expected, an influx on the northern hillslope boundary leads to a reduction of the exchange 
area. As outlined above, the influx from the northern hillslope leads to a reduction of the exchange flux, 
but the reduction of the area of the exchange zone is even bigger. One interpretation of that could be that 
an increase of north| |Q  does not only shrink the exchange zone in the y-direction, but also reduces its extent 
along the southern boundary. For cases with north 0Q  , on the other hand, the southern boundary of the 
exchange zone always covers the entire river and the occupied area varies only in the y-direction.

Similar to our analysis of exQ , we also provide a full global sensitivity analysis of exA  using Sobol indices 
(Sobol', 1993, 2001) in Text S3.

3.3.  Hyporheic Travel Times

For all simulated model scenarios, we calculated the distribution of normalized travel times as outlined 
above. Figure 7a, 7c and 7e show the resulting cumulative distribution functions for the three different do-
main shapes in the cases without northern influx. The plots for the cases with northern influx (see Text S6) 
show similar results and are subject to the same interpretations as done in the following.

We plotted the th5 , th50  and th95  percentiles to highlight the spread across the collection of curves. It becomes 
clear that this spread is comparably small, and the travel-time distributions are similar, both for all distribu-
tions of a specific shape and between the three shapes. All curves show a sigmoidal behavior starting at a 
travel time of zero, approximately passing 50% cumulative probability at the mean travel time (determined 
from the area of and discharge through the exchange zone), and finally reaching 100% probability at about 
twice the mean travel time.

That the cumulative distribution function of travel times start at the or-
igin is intuitively clear: an infinitesimally small travel time exists at the 
transition point along the river between losing and gaining conditions. 
The fact that all distributions nearly pass 50% at the mean travel time 
indicates that the median and mean travel times are almost identical. It 
is obvious that there must be a finite maximum travel time, which cor-
responds to the time that the water needs to travel along the bounding 
stream-line of the hyporheic exchange zone, which separates it from 
the remaining aquifer. This maximum travel time is about twice as large 
as meant . Altogether, this results in a symmetric travel-time distribution, 
which qualitatively differs from skewed travel-time distributions occur-
ring in systems with stagnation points.
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Figure 6.  Relationship between the normalized exchange-zone area and the dimensionless discharge for the three 
domain shapes.

Shape areaRMSE

“Cosinusoidal” 0.017

“Bump” 0.024

“Composite” 0.028

Note. The results are obtained for the sample of 3,000 model realizations 
per domain shape.

Table 4 
Quality of the Empirical-Fit Metrics for the Area of the Exchange Zone
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All curves shown in Figure 7 closely resemble Beta-distributions that are scaled in t-direction. Hence, we 
chose to fit the cumulative distribution functions with the Beta-distribution, in which the dimensionless 
time t is scaled by the maximum time maxt :

max
; ,

( ) ,
(1, , )

tB
t

F t
B

 

 

 
 
 




� (48)

where B t t( / , , ) 
max    is the incomplete beta function, whereas   and   are two shape parameters.

As a result of the fit, we obtain one set of values of  ,  , and maxt  for each simulation. Figures 7b, 7 and 7f 
show how these three fitted parameters depend on the dimensionless exchange flux exQ . Comparing the 
results of the three different shapes, it is remarkable that all shapes have the same parameter values for 
small dimensionless exchange fluxes, namely max 2t    , implying a symmetric distribution with 
max mean2t t  and a standard deviation of tmean / 5. This is probably related to the fact that small values of 

exQ  indicate a large separation between the river and the northern boundary, where the specific shape of the 
boundary loses importance due to the diffusive nature of the groundwater flow equation. With increasing 
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Figure 7.  Travel-time distributions (a, c, and e) and coefficients of fitted beta distributions (b, d, and f) for the three 
shapes.
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values of exQ  the fitted parameters begin to differ among the three different shapes. For the “cosinusoidal” 
case, the parameters barely change across the full range of the hyporheic exchange flux, whereas the other 
two shapes exhibit distinct trends. With increasing exchange flux, the maximum travel time drops from 
twice the mean travel time to a value of about 1.6t   for both the “bump” and “composite” shape. This 
trend is accompanied by a change of the shape parameters   and  . For the “bump” shape,   and   start to 
deviate from each other with increasing exchange flux, creating an asymmetric travel-time distribution. In 
the “composite” models, asymmetry is also introduced (albeit to a smaller extent, as   and   change in the 
same direction), but the variance of the travel-time distribution decreases as   and   increase. Most likely, 
this is caused by the segment of constant width that the “composite” shape exhibits in the mid-section of 
the floodplain aquifer, as it encourages parallel flow paths in this part of the domain.

Overall however, the dominant behavior does neither depend on the domain shape nor on the magnitude 
of exQ .

3.4.  Simplified Estimation of Hyporheic-Zone Properties for Two Adjacent Valleys

As a result of the previous proxy-model derivations, we propose a simplified estimation of hyporheic-zone 
properties, for a given setup. For illustrative purposes, we include two examples resembling the floodplains 
of the rivers Ammer (I) and Neckar (II) close to Tübingen, in south-western Germany. These two neigh-
boring floodplain aquifers are exposed to similar geomorphological settings (e.g., their aspect ratios, the 
ambient hydraulic gradients and the degree of river channelization are comparable). However, they differ in 
their hydraulic properties and absolute size with the larger Neckar aquifer being dominated by sandy gravel 
resulting in larger transmissivities. The floodplain aquifer located in the adjacent Ammer valley is compa-
rably small and consists of fine-grained material, which results in smaller transmissivities. Figure 8 shows a 
map of the two locations, as well as superimposed model results in the styling of Figure 3.
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Figure 8.  Map of the Ammer (case I, northern part) and Neckar (case II, southern part) floodplains near Tübingen, 
superimposed with example models. The model results are displayed as flow nets and translucent areas, similar to the 
styling of Figure 3. In accordance with that, bedrock deposits are shown in tan and floodplain materials are highlighted 
in light gray.
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Just as stated in the introduction, we are interested in the hyporheic exchange flux, the extent of the associ-
ated exchange zone and the travel times of water parcels passing it. For the evaluation, we use the simplified 
proxy-equations:

1.	 �Determine all geometric and hydraulic parameters. For the examples, we assume the values shown in 
Table 5.

2.	 �Choose one of the three shape types that resembles the real shape best: we assume “bump” for the first 
example and “cosinusoidal” for the second one.

3.	 �Read the coefficient values from Table  3: I
1 5.852a  , I

2 0.355a   and I
3 4.607a  , and II

1 6.242a  , 
II
2 0.434a   and II

3 4.121a  .
4.	 �Evaluate 0Q  with Equation 40: I 5 3

0 5.68 10 m / sQ    and II 2 3
0 5.05 10 m / sQ   .

5.	 �Determine x with Equation 42: I 0.144x   and II 0.173x  .
6.	 �Evaluate northQ  with Equation 44: I

north 1.32Q    and II
north 0.10Q   .

7.	 �Determine exQ  either from Equation 45 or graphically from Figure 5: I
ex 0.308Q   and II

ex 0.577Q  .
8.	 �Find exQ  by multiplying exQ  with 0Q : I 5 3

ex 1.74 10 m / sQ    and II 2 3
ex 2.91 10 m / sQ   .

9.	 �Determine the dimensionless area of the exchange zone either from Equation 47 or graphically from 
Figure 6: I 0.202A   and II 0.551A  .

10.	�Find exA  by multiplying A  with northA : I 5 2
ex 1.55 10 mA    and II 6 2

ex 2.24 10 mA   .

11.	�Obtain the mean travel time by diving the product of  and exA  by exQ : I 9
mean 1.78 10 s 56.5at     and 

II 7
mean 5.76 10 s 1.8at    .

The results of the simplified estimation compare reasonably well with the results of the semi-analytical 
solution (first case: Qex m s  

1 74 10
5 3

. / , 5 2
ex 1.51 10 mA    and 54.0a; second case: Qex m s  

2 89 10
2 3

. / ,  
6 2

ex 2.62 10 mA    and 2.2a). We see, that in both cases the absolute volumetric-exchange flux is small (e.g., 

compared to the discharge of the associated rivers, which is 0 5
3

. /m s  and 7 3
m s/  under base-flow conditions). 

Comparing the results to the reported collection of surface-water/groundwater interaction fluxes reviewed 
by Cranswick and Cook (2015), the flux is basically negligible in the first case, while in the second case 
it operates at the lower end of the exchange-flux spectrum reported for rivers of similar discharge. In the 
first case (Ammer), the exchange-zone area is also relatively small. For the second case (Neckar), however, 
a large portion of the aquifer is taken up by the exchange zone. Both cases exhibit average travel times on 
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Parameter Symbol Example I Example II Unit

Shape – Bump Cosinusoidal –

Domain length L 33.00 10 36.50 10 m

Maximum width maxw 26.00 10 31.75 10 m

Minimum width minw 21.75 10 25.00 10 m

Fixed heat at inlet 1h 23.49 10 23.45 10 m

Fixed head at outlet 2h 23.41 10 23.24 10 m

Transmissivity x yT T 55.00 10 21.25 10 m s
2

/

Northern influx Northq 82.50 10  77.50 10  m s
2

/

Depth-integrated porosity  12.00 10 17.50 10 m

Average width meanw 24.31 10 31.12 10 m

Northern area northA 57.69 10 64.06 10 2m

Table 5 
Geometric and Hydraulic Parameters Used for the Two Example Calculations
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the order of years, which might be enough time for the infiltrated river water to lose its chemical signature 
and become very similar or indistinguishable from “true” groundwater (at least on the longer flow-paths).

Our proxy-equations require a value for the northern influx rate northq , which might not be readily available 
for a specific site. For such cases, the following substitution might be helpful: northq  can be approximated by 
the length hsL  [ ]L  of the connected hillslope and an estimated average groundwater recharge rate Rq  [ / ]L T  
stemming from a water balance of a vertical two-dimensional hillslope slice:

north hs .Rq L q � (49)

A schematic sketch illustrating this estimation is given in Text S7.

4.  Conclusions
The widening and narrowing of river valleys due to varying bedrock geology, produces large-scale vari-
ations in the geometry of floodplain aquifers, which subsequently induce valley-scale lateral hyporheic 
exchange even for straight river reaches (see Figure 1). Estimating the size of the hyporheic exchange zone, 
the exchange flux, and the hyporheic travel-time distribution is relevant for groundwater management, riv-
er-water quality, and ecology. We have computed these properties by a semi-analytical modeling approach 
for idealized shapes of the floodplain aquifer. We found simple proxy-equations to decently approximate 
the geometry-driven steady-state exchange flux between floodplain aquifers and connected rivers, as well 
as the area covered by this hyporheic-exchange zone. The equations involve three empirical coefficients, 
which we have fitted for three different shapes of the floodplain aquifer. Our semi-analytical solution for the 
described problem provides the hydraulic-head, specific-discharge, and stream-function values throughout 
the domain. This information can be used to determine fluxes between different points, to construct divid-
ing streamlines, to highlight zones of different hydrological origin and destination, and to determine travel 
times.

Our main conclusions from investigating the behavior of valley-scale lateral hyporheic exchange across the 
geometric and hydraulic parameter space are:

1.	 �The maximum width-difference, the ambient hydraulic gradient, and the longitudinal transmissivity of 
the floodplain aquifer exert a linear control on the potential maximum exchange flux 0Q  between the 
river and the floodplain.

2.	 �The ratio of the actual exchange flux exQ  to 0Q  depends non-linearly on the aspect ratio of the domain  
(w Lmean / ), which is the ratio of the floodplain width to the channel length. Large aspect ratios lead to 
less hyporheic exchange.

3.	 �Horizontal hydraulic anisotropy ( x yT T ) can act as a scaling factor for the aspect ratio of the domain, 
controlling the ease of which water can be drawn from the river.

4.	 �Groundwater influx from the hillslope northq  exerts a strong control on the size of the exchange zone, 
where increasing northq  effectively pushes it toward the river while also reducing its longitudinal extent.

5.	 �Travel-time distributions of hyporheic exchange water approximately follow Beta-distributions.

The applicability of the presented model to real case studies is of course limited: Real systems are affect-
ed by transient forcings and are subject to three-dimensional heterogeneity. Furthermore, our model only 
considers two-dimensional divergence-free groundwater flow and thereby assumes that the aquifer and the 
river are connected across the full aquifer depth, which is often not the case in real systems. Nonetheless, 
our expressions are useful for quick estimations of the lateral exchange flux in cases with little known infor-
mation. For example, our results can be used to decide which of several sites is most promising for targeted 
measurements of hyporheic exchange if budget restrictions limit field investigations to one site. Actual field 
data might then be used to calibrate and validate flow models (the presented one, or a more complex model) 
in order to simulate and quantify the hyporheic exchange more accurately.

Other relevant questions, for example, whether the groundwater sampling point at a given location lies 
within the hyporheic-exchange zone can be answered by the semi-analytical method, but we have not de-
veloped proxy models for them. Future work may expand on that. Furthermore, it might be interesting to 
extend the semi-analytical solution to account for river meanders or non-uniform slopes. It might also be 
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worthwhile to analyze the effects of asymmetric northern boundaries/influxes (i.e., ( )Bf x  and north ( )q x ) on 
the hyporheic exchange zone.

Data Availability Statement
The model source code used to generate all data of this study is available in form of a repository at https://
osf.io/fykr9/ (Allgeier et al., 2021). It comes in a command-line interface Matlab version and an interactive 
Python Bokeh application (Bokeh Development Team, 2021). The authors provide this interactive tool also 
as a free online service (https://jonasallgeier.github.io/fpsimple) that can be accessed and executed in all 
common web browsers.
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