
1.  Introduction
Vegetation cover and hydroclimate are of great importance for the world's water supply, agriculture, and biolog-
ical diversity. Accurate projections of their response to future emission scenarios are required to design effective 
mitigation and adaptation strategies. However, the response of hydroclimate and vegetation to radiative forcing 
variations is far less understood and more uncertain than temperature changes (Stocker et al., 2013). Paleocli-
mate proxies from natural archives, which extend far beyond instrumental records, facilitate the evaluation of 
Earth System Models under climate conditions different from present-day (Braconnot et al., 2012). Thereby, they 
provide guidance for improved representations of the hydrosphere and biosphere in complex numerical mod-
els and contribute to tighter constraints on future projections of moisture availability and land cover (Harrison 
et al., 2015).

Abstract  During the last deglaciation (∼19–11 ka before present), the global mean temperature increased 
by 3–8 K. The concurrent hydroclimate and land cover changes are not well constrained. Here, we use a pollen 
database to quantify global-scale vegetation changes during this transitional period at orbital (∼104 years) and 
millennial timescales (∼103 years). We focus on the proportion of tree and shrub pollen, the arboreal pollen 
(AP) fraction. Temporal similarities over long distances are identified by a paleoclimate network approach. At 
the orbital scale, we find coherent AP variations in the low and mid-latitudes which we attribute to the global 
climate forcing. While AP fractions predominantly increased through the deglaciation, we identify regions 
where AP fractions decreased. For millennial timescales, we do not observe spatially coherent similarity 
structures. We compare our results with networks computed from three deglacial climate simulations with the 
CCSM3, HadCM3, and LOVECLIM models. Networks based on simulated precipitation patterns reproduce 
the characteristics of the AP network. Sensitivity experiments with statistical emulators indicate that, indeed, 
precipitation variations explain the diagnosed patterns of vegetation change better than temperature and CO2 
variations. Our findings support previous interpretations of deglacial forest evolution in the mid-latitudes being 
the result of atmospheric circulation changes. The network analysis identifies differences in the vegetation-
climate-CO2 relationship simulated by CCSM3 and HadCM3. We conclude that network analyses are a 
promising tool to benchmark transient climate simulations with dynamical vegetation changes. This may result 
in stronger constraints of future hydroclimate and land cover changes.

Plain Language Summary  We do not understand changes in rainfall and plant cover since the last 
ice age as good as temperature changes. Pollen is widely used to study which plants grew under which climate 
in the past. We check how many tree and shrub pollen, versus how many from herbs and grasses can be found 
in many locations. This shows how similar plant cover changes were in different regions. We find that plant 
cover changed similarly across all continents from the last ice age to the current warm period. During this 
transition, tree and shrub pollen increased while herbs and grasses decreased. However, we identify distinct 
regions where the change is the other way around. To understand this better, we use data from three climate 
models. The vegetation components of the climate models calculate how Earth's plant cover changed. By 
comparing the model results to pollen data, we find that the tree and shrub cover changes since the last ice age 
are better explained by rainfall than by temperature and carbon dioxide in the low and mid-latitudes. Comparing 
the pollen data and model results in this way can help us to understand how well climate models simulate plant 
cover and rainfall changes.

ADAM ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Identifying Global-Scale Patterns of Vegetation Change 
During the Last Deglaciation From Paleoclimate Networks
Moritz Adam1 , Nils Weitzel1 , and Kira Rehfeld1,2 

1Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany, 2Geo- und 
Umweltforschungszentrum, Eberhard Karls Universität Tübingen, Tübingen, Germany

Key Points:
•	 �An analysis of arboreal pollen 

networks shows largely coherent 
vegetation changes in the low and mid-
latitudes during the last deglaciation

•	 �A comparison with climate 
simulations suggests that hydroclimate 
changes explain regionally anti-
correlated vegetation variations best

•	 �Our work is a promising step 
toward process-based benchmarking 
of vegetation and hydroclimate 
in transient simulations of the 
deglaciation

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
N. Weitzel and M. Adam,
nweitzel@iup.uni-heidelberg.de;
madam@iup.uni-heidelberg.de

Citation:
Adam, M., Weitzel, N., & Rehfeld, K. 
(2021). Identifying global-scale patterns 
of vegetation change during the last 
deglaciation from paleoclimate networks. 
Paleoceanography and Paleoclimatology, 
36, e2021PA004265. https://doi.
org/10.1029/2021PA004265

Received 25 MAR 2021
Accepted 3 DEC 2021

10.1029/2021PA004265
RESEARCH ARTICLE

1 of 21

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8794-958X
https://orcid.org/0000-0002-2735-2992
https://orcid.org/0000-0002-9442-5362
https://doi.org/10.1029/2021PA004265
https://doi.org/10.1029/2021PA004265
https://doi.org/10.1029/2021PA004265
https://doi.org/10.1029/2021PA004265
https://doi.org/10.1029/2021PA004265


Paleoceanography and Paleoclimatology

ADAM ET AL.

10.1029/2021PA004265

2 of 21

The last deglaciation, approximately from 19 to 11 ka before present (BP), is the transition from the Last Glacial 
Maximum (LGM, ∼21 ka BP) to the current warm period, the Holocene (starting at 11.7 ka BP). It is the most 
recent period with large natural changes in radiative forcing (Figure 1a) and thus suitable to benchmark the abil-
ity of Earth System Models to simulate the response to such changes. The deglaciation is externally forced by a 
spatial and seasonal redistribution of solar radiation due to the varying orbital configuration of the Earth (Berg-
er, 1978). This orbital forcing is amplified by responses of the Earth system, in particular, a rise in the carbon 
dioxide (CO2) concentration from roughly 185 ppm to around 280 ppm (Köhler et al., 2017), the melting of large 
ice sheets, and changes in the distribution of land, ice, and ocean (Ivanovic et al., 2016).

Resulting environmental changes include an increase in temperature (Shakun et al., 2012; Snyder, 2016), a pre-
dominant increase in precipitation amounts (Clark et al., 2012; McGee, 2020), and an expansion of forests (Bin-
ney et al., 2017; Prentice et al., 2000; Tian et al., 2018). The non-linear warming trend of the deglaciation, which 
started earlier in the Southern than in the Northern Hemisphere (Shakun et al., 2012), was modulated by abrupt 
events that occur on millennial timescales. Notable events were the Bølling-Allerød-age warming (14.7–12.9 ka 
BP) and the Younger Dryas-stadial cooling (12.9–11.7 ka BP) in the North Atlantic region, and the Antarctic cold 
reversal which proceeded out-of-phase with the North Atlantic events (Clark et al., 2012). In this study, we distin-
guish between the trends, which characterize the glacial-interglacial transition, and the collection of events that 
deviate from the trends and last a few millennia at most. We call the former orbital-scale variations, because the 
(slower) glacial-interglacial transition occurs on the order of 104 years, and the latter millennial-scale variations, 
as the individual (faster) events are on the order of 103 years.

While temperature increased by 3–8 K in the global mean and almost everywhere on the globe since the LGM 
(Cleator et  al., 2020; MARGO Project Members, 2009; Shakun et  al., 2012; Snyder, 2016), reconstructed as 
well as simulated spatio-temporal patterns of precipitation change are more heterogeneous (Clark et al., 2012; 
Cleator et al., 2020; Kageyama et al., 2021; McGee, 2020). Globally averaged, precipitation and temperature 
are consistently positively correlated in simulations with typically 2% of precipitation increase per Kelvin of 
temperature rise (Allen & Ingram, 2002; Held & Soden, 2006; G. Li et  al.,  2013; Rehfeld et  al.,  2020). For 

Figure 1.  (a) Insolation anomaly at 45°N in June and 45°S in December (ΔS0; Berger, 1978), CO2 concentration (Köhler et al., 2017), and simulated decadal-average 
anomalies with respect to 6 ka BP of global mean surface air temperature (ΔGMST) and global mean annual precipitation (ΔGMPR) from TraCE, HadCM3, and 
LOVECLIM. (b) Geographical location and shape-coded median inter-sample range (ISR) of ACER AP records and EPICA Dome C (EDC, EPICA Community 
Members, 2004) and NGRIP (NGRIP members, 2004) ice cores. The explained variance of the ACER AP signal is color-coded for records that are used in our analysis. 
The background layer shows the Last Glacial Maximum (21 ka BP) land-sea-ice-mask from the ICE-5G ice sheet history (Peltier, 2004), interpolated to the TraCE 
horizontal grid. Modern coastlines are displayed in black. Exemplary time series of ACER AP, and TraCE tree and shrub fraction (TSF), annual precipitation (PR), and 
mean annual surface air temperature (TS) box-aggregated to the time axis of ACER records are displayed as insets (see Section 2.2 for processing of model output). 
Time series labels correspond to the respective site ID of the ACER database. Displayed records are Toushe Basin (4), Kohuora (15), Lake Masoko (21), Monticchio 
(37), Potato Lake (39), and ODP1234 (69).
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glacial-interglacial transitions, a positive global temperature-to-precipitation correlation is supported by recon-
structions (Clark et al., 2012; G. Li et al., 2013). In contrast, the local temperature-to-precipitation relationship 
is spatially heterogeneous, seasonally varying, and timescale-dependent (Rehfeld & Laepple, 2016). In addition, 
mismatches between proxies and simulations have been diagnosed for Asia (Rehfeld & Laepple, 2016) and Eu-
rope (Ljungqvist et al., 2019).

Vegetation is an interactive component of the Earth system, which responds to atmospheric forcing but also serves 
as boundary condition for the atmosphere, leading to land-atmosphere feedbacks (e.g., Crucifix et  al.,  2005; 
Davies-Barnard et al., 2017; Kubatzki & Claussen, 1998; O’Ishi & Abe-Ouchi, 2013). In this study, we focus on 
the coupling from the atmosphere to the vegetation and how vegetation composition responds to climate changes. 
Major climatic factors which limit vegetation growth are moisture availability, growing season length and tem-
perature, winter temperature, radiation, and CO2 concentration (e.g., Crucifix et al., 2005; Harrison et al., 2010; 
Seddon et al., 2016). Globally aggregated, changes of these factors led to an expansion of forests during the last 
deglaciation (Prentice et al., 2000, 2011). However, the existence of areas with decreasing tree cover has been 
noted on a local level (e.g., Heusser, Heusser, Mix, et al., 2006; Jiménez-Moreno et al., 2010). Modeling studies 
show that the importance of the limiting factors vary in space and time, depending on the local climate state (e.g., 
Claussen et al., 2013; Crucifix et al., 2005; O’Ishi & Abe-Ouchi, 2013; Woillez et al., 2011).

The listed bioclimatic factors have a direct mechanistic effect on plant growth. In turn, they are influenced by oth-
er climate variables. For example, moisture availability depends on precipitation and evaporation, with increased 
precipitation leading to a higher moisture availability and increased evaporation to a lower moisture availability. 
As evaporation is higher for higher temperatures, increased temperatures can have a positive or negative influ-
ence on plant growth depending on the local environment. Statistical analyses of limiting factors are additionally 
hampered by the correlation between different bioclimatic variables in space and time. The explanatory value of 
the indirect limiting factors mean annual temperature and precipitation has been shown by observational as well 
as modeling studies (e.g., Brovkin et al., 1997; O’Ishi & Abe-Ouchi, 2013).

Past vegetation changes can be diagnosed from pollen samples that are extracted from sediment cores or peat 
bogs (Bradley, 2015). In turn, past climatic conditions can be inferred by determining the limiting factors that 
govern the reconstructed vegetation variations (e.g., Birks et al., 2010; Chevalier et al., 2020). The interpretation 
of pollen assemblages is complicated by the complex high-dimensional raw signals as typically tens-to-hundreds 
of different taxa are contained in a pollen assemblage (Bradley, 2015). Therefore, the raw signal is often reduced 
to a low-dimensional or univariate signal using ecological principles and statistical algorithms (e.g., Harrison 
et al., 2010; Legendre & Legendre, 2012; F. Li et al., 2010; Prentice et al., 1996). In this study, we use the arboreal 
pollen fraction (AP), which is the fraction of tree- and shrub-pollen in an assemblage. AP can be extracted from 
numerous pollen records across the globe. It provides an estimate of the tree cover at a given time and location, 
but this estimate is biased by various factors. Pollen samples average signals over space and time but catchment 
areas and temporal averaging scales vary strongly between records, especially when comparing between marine 
and terrestrial sediment cores. Pollen productivity varies between taxa, with anemophilous species typically 
producing orders of magnitude more pollen than zoophilous species (Bradley,  2015). Additionally, dispersal 
efficiency depends on the dispersal agent of the specific taxa. Differences in the geometric characteristics lead 
to different pollen transport ranges for different taxa. These factors make a global-scale comparison of the AP 
fraction challenging as reported metadata is often insufficient to explicitly model record-specific characteristics 
and because correction factors are missing for most taxa and regions. Comparing relative AP changes is more 
promising than comparing absolute differences between locations. This is because relative changes only rely on 
the assumption that the confining factors do not change significantly over time while permitting changes in space. 
Quantitative approaches based on pollen assemblage characteristics are prone to missing important biological 
components because they overlook contributions from rare taxa. Therefore, statistical approaches such as this 
study need to be accompanied by global-scale analyses based on expert elicitation (e.g., Nolan et al., 2018), and 
ideally, the two complement each other.

In this study, we characterize long-distance similarity structures in AP records covering the last deglaciation. We 
extract the records from the ACER pollen and charcoal database (Sánchez Goñi et al., 2017). They are distributed 
over all continents except for Antarctica (Figure 1b). We quantify the temporal similarity of the AP signals with 
a pairwise correlation measure for irregular time series (Rehfeld et al., 2011). To summarize the spatial structure 
of the temporal similarities, we use paleoclimate networks, which are a useful tool to identify spatio-temporal 
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patterns in proxy record compilations (Bühler et al., 2021; Konecky et al., 2014; Oster & Kelley, 2016; Rehfeld 
et  al.,  2013). We assign proxy record locations as nodes of the network. Network links represent significant 
correlations of the proxy fluctuations. Network measures allow to quantify the overall similarity, cross-regional 
similarities, and intra-regional homogeneity of proxy signals (Rehfeld et al., 2013). Here, we focus on long-dis-
tance similarities which are more likely to result from coherent changes in the governing climatic factors. We 
complement the network analysis with a principal component analysis (PCA), which is a more established tech-
nique of multivariate signal analysis.

We compare the AP networks with networks computed from simulations of the last deglaciation generated with 
three Earth System Models of varying complexity (Figure 1): CCSM3 (Liu et al., 2009), HadCM3 (Armstrong 
et al., 2019), and LOVECLIM (Menviel et al., 2011). We exploit similarities between AP and surrogate networks 
to assess how well different climatic factors can explain vegetation variations diagnosed from the AP network. 
The surrogate networks additionally help to analyze the vegetation-climate-CO2 relationship in the deglacial 
simulations. Transient simulations of past climate require new evaluation techniques. Weitzel et al. (2019) called 
for approaches to compare spatio-temporal patterns beyond the classical point-to-point comparison. In this sense, 
our work is a step towards process-based evaluations of transient simulations against proxy record compilations. 
In particular, our results do not rely on a specific realization of internal variability in the simulations.

In the following, we first introduce the pollen database and climate simulations employed in our analysis (Sec-
tion 2). We describe the statistical methods in Section 3. The results based on pollen, simulated climate and 
surrogate vegetation networks are given in Section 4. We discuss limitations and coherency of our results with 
earlier studies in Section 5 and conclude with Section 6.

2.  Data
2.1.  Pollen Records

The ACER pollen and charcoal database (Sánchez Goñi et al., 2017) contains 93 high-resolution pollen records 
which cover parts of the last Glacial cycle (130–0 ka BP). The data set contains ∼20,300 pollen samples with 
∼2,400 distinct taxa. We first extract the records which contain samples in the period 22–6 ka BP. To quantita-
tively analyze millennial-to-orbital-scale features, a sub-millennial resolution is required (Rehfeld et al., 2014). 
Therefore, we select only those records which have a median inter-sample range of less than 500 yrs within the 
period 22–6 ka BP. This excludes very low-resolution records. 63 records in the ACER database with ∼6,100 sam-
ples fulfill this criterion and are therefore chosen for our analyses (see Table S1 in Supporting Information S1).

The locations of the 63 selected records spread from 67°N to 43°S (Figure 1b). The records are distributed over 
all continents except for Antarctica with the highest spatial density in Europe, North America, and Eastern Asia. 
Most records are located in the low and mid-latitudes. Large gaps exist in continental Asia, North Africa, and in 
areas covered by ice sheets during the LGM such that a study of the extension of boreal forests during the deglaci-
ation is not possible. The records stem from 42 terrestrial and 21 marine sediment cores. The median inter-sample 
range averaged over this set during the period 22–6 ka BP is 228 years. In preparing the ACER database, Sánchez 
Goñi et al. (2017) globally harmonized plant species, families, and genera compared to the original publications 
to facilitate comparative analysis of large-scale vegetation characteristics. We harmonize reported taxa counts and 
percentages by computing taxa percentages for all samples.

The ACER database provides original and harmonized chronologies. The original age models employ various 
methods and radiometric calibration curves. Therefore, Sánchez Goñi et al. (2017) constructed harmonized chro-
nologies for 86 of the 93 records with the software package CLAM (Blaauw, 2010); see the Supporting Infor-
mation of Sánchez Goñi et al. (2017) for details. They harmonized radiometric ages to the IntCal13 calibration 
curves (Reimer et al., 2013), while adopting event ages to the GICC05 (Wolff et al., 2010) and AICC2012 (Veres 
et al., 2013) chronologies. Here, we use the harmonized chronologies whenever they are provided and original 
ages for the remaining samples. An update of the chronologies to IntCal20 (Reimer et al., 2020) is desirable for 
future use of the ACER database, but is outside the scope of this study.
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2.2.  Climate Simulation Output

We use output from published simulations with three Earth System Models of various complexity for comparison 
with the pollen records: The TraCE transient deglaciation simulation with CCSM3, a series of concatenated time 
slice simulations with HadCM3, and a transient deglaciation simulation with LOVECLIM.

The TraCE simulation is a transient simulation of the last 22 ka BP with CCSM3 (He, 2011; Liu et al., 2009). 
CCSM3 is a global, coupled ocean-atmosphere-sea ice-land surface model (Collins et al., 2006). The atmospheric 
component CAM3 was run with T31 (𝐴𝐴 ∼ 3.75◦ ) horizontal grid-spacing (Yeager et al., 2006). Vegetation changes 
were modeled dynamically with CLM-DGVM (Levis et al., 2004). The simulation started from an equilibrium 
LGM simulation (Otto-Bliesner et al., 2006). Orbital parameters and greenhouse gas concentrations followed 
Berger (1978) and Joos and Spahni (2008). Ice sheets and topography were updated every 500–1,000 years ac-
cording to the ICE-5G ice sheet history (Peltier, 2004). Ocean freshwater influx was adjusted manually to repro-
duce reconstructions of sea-level rise and ice sheet melting (He, 2011).

Second, we use time slice (snapshot) simulations with the coupled climate model HadCM3 (Armstrong 
et al., 2019; Davies-Barnard et al., 2017; Singarayer & Valdes, 2010). The atmospheric component HadAM3 
has a horizontal grid spacing of 2.5° × 3.75° (Valdes et al., 2017). Vegetation variations were simulated with the 
dynamic vegetation model TRIFFID (Cox, 2001; Cox et al., 1998). Time slice simulations were produced every 1 
Kyr from 22 ka BP to 6 ka BP with insolation, greenhouse gas concentrations, topography, and ice masks adapted 
as described in Armstrong et al. (2019). We create a pseudo-transient simulation by concatenating the time slice 
simulations.

The third simulation stems from the intermediate complexity model LOVECLIM (Menviel et  al.,  2011). The 
atmospheric component ECBilt has a T21 horizontal grid spacing (𝐴𝐴 ∼ 5.6◦ ) and three vertical layers of which 
only the lowest performs moisture storage and transport (Driesschaert et al., 2007; Goosse et al., 2007; Opsteegh 
et al., 1998). The transient simulation was started from an LGM equilibrium run (Menviel et al., 2008; Timm & 
Timmermann, 2007) and continued in transient mode from 18 to 6.2 ka BP. Insolation changes followed Berg-
er (1978), CO2 concentrations followed Monnin et al. (2001), and the ice sheet topography was updated every 
100 years following Peltier (1994). Freshwater pulses were induced in the North Atlantic and Southern oceans to 
reproduce millennial-scale events (Menviel et al., 2011).

We extract mean annual surface air temperature and annual precipitation amount from all simulations for our 
analyses. We use mean annual surface air temperature because seasonal temperatures are highly correlated in 
deglaciation simulations (see Figure S32 in Supporting  Information  S1). Therefore, effects specific to either 
growing season or winter temperature are difficult to isolate. We use precipitation instead of moisture availability 
to separate the temperature and precipitation effects on moisture availability. Because temperature changes tend 
to be better constrained for the deglaciation, quantifying the importance of the less understood precipitation 
changes is beneficial for future model–data comparison efforts. More discussion on the choice of variables is 
provided in the Supplement (Text S18 in Supporting Information S1). For TraCE and HadCM3, output from the 
dynamical vegetation models is publicly available. As a summary measure of the simulated vegetation evolution, 
we compute surrogate tree and shrub fractions (TSF) by combining all simulated plant functional types, which 
contain trees or shrubs. TSF serves as an additional variable for the comparison of TraCE and HadCM3 against 
the pollen records.

3.  Methods
In this section, we introduce the methods used for data processing, constructing paleoclimate networks, and quan-
tifying the similarity of networks. An overview of the main steps of the data processing and analysis workflow 
is given in Figure 2.

3.1.  Extracting Arboreal Pollen Fractions From Pollen Records

To analyze spatio-temporal similarities in the pollen records, we extract AP fractions from all records by sum-
ming up the fractions of tree and shrub taxa contained within each sample. The AP fraction is a univariate and 
ecologically meaningful signal, which is interpretable on a global scale. It is a continuous variable, that is more 
straightforward to employ for quantitative comparisons compared to categorical signals such as the identification 
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of dominant biomes. To semi-automatize the computation of AP fractions, we harmonize the taxa on a coarse 
level (mostly genus), remove very rare taxa, and finally select all arboreal taxa. Over all selected records within 
6–22 ka BP, this approach leaves only 0.6% of pollen counts as unclassified (see Supplement for details of the 
procedure). The resulting time series are in good agreement with original publications and our analysis methods 
are robust to rare misclassifications, which can occur in our automated approach (not shown). Figure S1 in Sup-
porting Information S1 shows the resulting AP fraction time series, which we call the AP signal in the following.

We compute the explained variance of the time series of AP fraction by performing a redundancy analysis (Leg-
endre & Legendre, 2012) for each record (see Supporting Information S1 for details). The univariate AP signal 
explains on average 44% of the variance in the pollen records, with particularly high values in Europe and North 
America (Figure 1b). Lower values cluster in East Asia and Africa. This shows that the AP signal is a good 
representative of the deglacial vegetation evolution in most regions. We apply a probit transform to all AP time 
series, which reduces potential edge effects in the similarity estimates caused by AP fractions near zero and one. 
Our results are not sensitive to this transformation (see Supporting  Information S1). As the AP signal mixes 
information from multiple timescales, we additionally investigate similarity structures of millennial-scale AP 
variations. To this end, we apply a Gaussian band-pass filter suitable for irregularly sampled time series (Rehfeld 
et al., 2011, 2014), which preserves frequencies from 2 to 8 Kyr. The filter removes orbital-scale signals and po-
tential non-climatic high-frequency fluctuations. This facilitates a focused analysis of millennial-scale variations. 
We refer to the resulting time series as “filtered AP signals” in the following.

3.2.  Extracting Surrogate Time Series From Model Simulations

To compare climate simulation output and pollen records, we create surrogate records for each of the real-world 
pollen records. Therefore, we first extract the time series of all selected variables (temperature and precipitation 

Figure 2.  Main steps of the data processing and analysis workflow. Steps that are unique to the ACER records (green), the 
statistical null model (blue), or the Earth System Model simulations (orange) are colored. Common steps in the workflow are 
depicted in black.
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for TraCE, HadCM3, and LOVECLIM, TSF for TraCE and HadCM3) at the nearest grid box of the pollen records. 
For marine sediment cores, we choose the closest terrestrial grid box. This approach guarantees consistency be-
tween simulated precipitation, temperature, and TSF. Then, we block-sample the time series to the resolution of 
the respective pollen record to imitate the limited resolution, irregular sampling, and integrated nature of the AP 
signals. This means that we cut each time series into non-overlapping slices determined by the midpoints between 
sample ages, average the signal contained in each slice, and assign this average to the date of the corresponding 
sample. For the analysis of millennial-scale signals in the simulations, we apply a Gaussian band-pass filter to the 
surrogate TraCE and LOVECLIM time series similar to the AP signals. We do not include HadCM3 in the mil-
lennial-scale analysis. The individual “snapshot” equilibrium simulations cannot show realistic millennial-scale 
events when concatenated (see Section 2.2). We therefore only assess the orbital trend here.

To study the effects of precipitation, temperature, and CO2 on TSF more directly, we additionally train a statisti-
cal emulator to the simulation output of TraCE and one to HadCM3 output. Similar to Wei et al. (2020), we use 
generalized additive models (Wood, 2017), which are non-parametric, non-linear statistical models, in which TSF 
is the response variable and mean annual temperature, annual precipitation, and CO2 concentration are predictors. 
The emulators explain the major vegetation changes over the deglaciation as simulated by TraCE and HadCM3. 
We simulate sets of surrogate TSF time series using transient climate forcing by all three variables (EM ALL), 
and only by precipitation (EM PR), by temperature (EM TS), and by CO2 (EM CO2). More information on the 
emulators are given in Text S5 in Supporting Information S1.

3.3.  Construction of Paleoclimate Networks

Paleoclimate networks are a tool to analyze spatio-temporal similarities between proxy records (Rehfeld 
et al., 2013, 2014). They consist of nodes, which in our case are the locations of the pollen records, and links 
between them. Unweighted links are assigned based on classifying the value and sign of the pairwise similarity of 
time series. We gather the set of links in an adjacency matrix (Rehfeld et al., 2014). It is used to compute network 
measures that characterize the structure of the network (Rehfeld et al., 2014). We examine the similarity of the 
time series described in Sections 3.1 and 3.2 to create networks for the unfiltered as well as the millennial-scale 
AP signals, and each of the surrogate signals.

We estimate the similarity of two time series using Gaussian kernel correlation (Rehfeld et al., 2011). This is 
a weighted moving-window technique that is directly applicable to irregular time series. Samples are weighted 
proportional to the time difference from the window mean. The aggregation of all windows results in the final 
correlation estimate. Following Rehfeld et al. (2011), we choose the kernel width h = Δt/4, with Δt being the 
larger of the mean inter-sample ranges of the compared time series. Gaussian kernel correlation was shown to be 
more accurate than similarity estimators based on a priori interpolation and requires fewer samples than non-lin-
ear measures such as Mutual Information (Rehfeld & Kurths, 2014). The estimator returns NA if the overlap of 
the two time series is insufficient to accurately estimate the similarity. Here, we choose the minimal overlap to be 
10 samples in both time series. This removes 5 of the 63 previously selected records because they do not overlap 
sufficiently with other records to result in a valid similarity estimate. Gaussian kernel correlation compares cen-
tered and standardized time series. Thus, it measures the similarity of relative fluctuations from the mean of the 
respective record. This means that it assesses the synchronicity between periods of relatively high and low AP 
concentrations compared to the mean in the respective time series.

To test the significance of the estimated correlations, we compare the values against a statistical null model, 
which consists of regionally homogeneous and temporally auto-correlated vegetation variations. We choose the 
null model parameters such that the temporal decorrelation length roughly replicates the time needed by vegeta-
tion to adapt after perturbations (e.g., Reick et al., 2013). We select the spatial decorrelation length in line with 
estimates from multi-millennial climate simulations without strong globally synchronous temperature changes 
(Reschke et al., 2019) (see Supporting Information S1 for a detailed description of the null model and signifi-
cance test). In accordance with the aims of this study, our null model enables the identification of long-distance 
coherent vegetation variations. The signals described in Sections 3.1 and 3.2 can be positively or negatively 
correlated while the null model only exhibits positive correlations. Therefore, we consider a correlation estimate 
for a pair of time series as significant if the absolute correlation ranks above the 95% percentile of the null model. 
We call a correlation estimate significantly positive if the correlation is significant and above zero, significantly 
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negative if the correlation is significant and below zero, and insignificant otherwise. We categorize these correla-
tion estimates in an adjacency matrix to create the paleoclimate network. Adjacency matrix entries are set to −1 
if the records are significantly negative (negative links), 0 if they are insignificant, and +1 if they are significantly 
positive (positive links). We further investigate sub-networks, which consist of a subset of nodes (e.g., all records 
in South America) and the links between these nodes, as well as links between two sub-networks (e.g., all links 
between South American and European records).

We visualize paleoclimate networks in two ways: as a complete link-by-link visualization, which shows the full 
geographical structure of the network, and in an aggregated view focusing on inter-continental similarity patterns. 
The network visualizations are based on the tidygraph (Pedersen, 2019b) and ggraph (Pedersen, 2019a) packages 
within the statistical programming language R (R Core Team, 2020). The link-by-link rendering builds upon hier-
archical link bundling (e.g., Holten, 2006). For the aggregated view on inter-continental links, we count positive 
and negative site-to-site links between pairs of continents and represent links as an undirected graph. Definitions 
of aggregated regions, locations of continent-level nodes, and strength of link bundling can be adapted manually. 
Technical details are provided in Text S8 in Supporting Information S1 and in the code stack provided in support 
of our study.

3.4.  Network Measures

To quantitatively study and compare the network characteristics, we use three summary measures: link den-
sity, node degrees, and cross-link fractions (CLFs). These have been tested for paleoclimate data in Rehfeld 
et al. (2014) and characterize different aspects of spatio-temporal dynamics. The link density (LD) is the ratio 
of present links (represented by non-zero entries in the adjacency matrix) over the number of links in a network 
where all nodes are connected with each other (fully connected network)

LD = 2
∑

𝑖𝑖𝑖𝑖𝑖 |𝐴𝐴𝑖𝑖𝑖𝑖𝑖|

(𝑁𝑁𝑉𝑉 − 1)𝑁𝑁𝑉𝑉
.� (1)

Here, A is the adjacency matrix of the network and NV is the number of nodes. The link density takes values 
between zero and one, with higher values corresponding to more significant links. The node degree (NDG) of a 
node Vi measures its connectivity. It is given by the sum of all links involving Vi

NDG(𝑉𝑉𝑖𝑖) =
∑

𝑗𝑗𝑗𝑗𝑗≠𝑖𝑖
|𝐴𝐴𝑖𝑖𝑖𝑖𝑖|.� (2)

Node degrees can take values between 0 and NV − 1. Values are high for nodes, which evolve synchronously with 
many other time series, and low for those, which are significantly correlated with only a few other records. CLFs 
quantify the aggregated similarity between two sub-networks, for example, between records in North America, 
which form one sub-network, and records in Africa, which form a second sub-network. To compute CLFs, we 
consider the nodes V1 in the first sub-network and V2 in the second sub-network and compare the number of links 
between those sub-networks with the number of links in a fully connected network

CLF
(

𝑉𝑉 1, 𝑉𝑉 2) =
∑

𝑖𝑖∈𝑉𝑉 1 , 𝑗𝑗∈𝑉𝑉 2 |𝐴𝐴𝑖𝑖𝑖𝑖𝑖|

𝑁𝑁𝑉𝑉 1 ⋅𝑁𝑁𝑉𝑉 2
.� (3)

CLFs take values between 0 and 1. The higher the value, the more similar the time series signals are between two 
sub-networks.

We calculate all three network measures separately for positive and negative links in the adjacency matrix A, and 
for all links combined. Thanks to the linearity of the network measures, the total of any of the measures is the sum 
of the respective positive and negative portions. For interpretation of the network measures, note the integrated 
nature of link densities and CLFs. The link density is proportional to the summation over all node degrees, where-
as a CLF is proportional to the sum of node degrees when only links between two sub-networks are considered.

To quantify the spatial alignment of networks with comparable network measures, we compute Cohen's kappa 
coefficients κ. κ quantifies the agreement of adjacency matrix entries compared to randomized networks with the 
same number of positive and negative links. κ takes values between −1 and +1. Positive values signify that more 
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entries than expected between random networks coincide and negative values mean that less values than in the 
random networks coincide.

3.5.  Principal Component Analysis

PCA is an established method for analyzing correlated multivariate data (Abdi & Williams, 2010). Its goal is 
to represent the information contained in a data set in a basis of orthogonal variables, the principal components 
(PCs). The PCs identify statistically independent modes of variability, which explain the highest fractions of 
variance of the initial multivariate signal (Vidal et al., 2016). We compute PCAs for the ACER AP time series 
and for TraCE temperature, precipitation, and TSF surrogate time series. To compute the PCA, we interpolate the 
records to a common time axis. We standardize all time series which avoids over-representation of records with 
large variability magnitudes. We explain technical details in Supporting Information S1.

Unlike the network analysis, PCA requires interpolation of records to a common time axis which can lead to sta-
tistical artifacts. In addition, all records need to cover the full-time period of interest in the PCA. Due to these dis-
advantages, our PCAs include less records than the network analyses (35 instead of 58 in the networks analysis). 
The network analysis makes it simpler to account for the non-uniform spatial coverage of records as similarity 
of variations is quantified for pairs of records and not for all records simultaneously. Therefore, different spatial 
scales and domains can be separated more easily. An advantage of the PCA is that the common signal of a spatial 
pattern is directly given by the principal component which has the form of a time series.

4.  Results
We aim at identifying spatio-temporal similarity structures in the vegetation evolution during the last deglaciation 
and attributing them to governing climatic factors. In the following, we first present results from the AP network. 
Then, we compare these results with surrogate temperature, precipitation, and vegetation networks from the three 
Earth System Models. We further compare AP and model networks with networks based on the emulated TSF 
response in TraCE and HadCM3 to temperature, precipitation, and CO2 forcing. Finally, we study pollen and 
surrogate networks derived from signals which are filtered to extract millennial-scale fluctuations.

4.1.  Spatio-Temporal Similarity Structures in Deglacial Arboreal Pollen Records

The spatio-temporal similarity structures in the AP records are visualized by the ACER AP network layout (Fig-
ures 3a and 3b, see Supporting Information S1 for description of the visualization) and summarized in the cor-
responding network measures (Figures 4 and 5a). The network features numerous inter-continental links (Fig-
ure 3b). Here, an inter-continental link is defined as a correlation between time series from different continents 
which is significant compared to the null model. The total link density of 0.31 quantifies the high fraction of links 
that are significantly stronger correlated than in the null model (Figure 4). The node degrees, which measure the 
connectivity of a location, and CLFs, which quantify inter-continental similarity structures, further show that 
records across all combinations of continents are linked to each other (Figure 5a). Total node degrees averaged 
over continents are between 15.1 and 24.9 for all continents but Asia (8.4). On average, records outside of Asia 
are linked to 34.8% of all other nodes (note that the maximum node degree is 57, that is, the number of records 
minus the node itself, see Figure 3a). Total CLFs are between 0.31 and 0.60 for all continent combinations not 
involving Asia. The lower number of links connected to Asia might be due to the comparably little explained 
variance of the AP signal in the Asian pollen records (see Figure 1b and Section 5.1).

Notably, the sign of the links, corresponding to significantly positive or negative correlation estimates, varies 
with 54.9% positive and 45.1% negative links (Figure 4a). This shows that regionally heterogeneous AP vari-
ability patterns exist. All CLFs and average node degrees feature a substantial portion of positive and negative 
links (Figure 5a), which indicates that regions with opposing variability patterns exist on most continents. The 
existence of such regions is supported by the PCA (Figure 5b). The first principal component explains 48% of the 
variance in the AP records and consists of a monotonic trend starting around 17.5 ka BP. However, the direction 
of this dominant mode varies regionally with 54.3% of the records having a positive and 45.7% a negative loading 
(as described in Section 3.5, only 35 records are included in the PCA). For both signs, records with high loadings 
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exist. A positive loading implies an increasing AP trend and a negative loading implies a decreasing AP trend 
over the deglaciation.

The network analysis and PCA complement each other. Both show a coherent deglacial AP evolution across the 
low and mid-latitudes as quantified by the high total link densities and explained variance of the first principal 
component. We attribute this coherence to the dependence of vegetation on the deglacial climate evolution. How-
ever, a majority of records with increasing AP trends are accompanied by regions with negative AP trends on 
most continents. These anti-correlated AP trends manifest in the substantial fraction of negative inter-continental 
links and the opposite sign of first principal component loadings. In particular, mid-latitude western edges of 
continents feature anti-correlated behavior compared to the predominant AP evolution with sharp geographic 
transitions along the west coasts of South and North America (Figure 5b).

4.2.  Comparison of Arboreal Pollen and Surrogate Networks

To attribute the AP similarity structures to climatic factors, we compare the ACER AP network with the surro-
gate networks. Additionally, this comparison provides insights into the degree of realism of the climate-vegeta-
tion-CO2 relationships of the dynamical vegetation models incorporated in CCSM3 and HadCM3. Figures 3c–3e 
show the inter-continental links of the TraCE TSF, precipitation, and temperature networks. The HadCM3 and 
LOVECLIM networks are visualized in Supporting Information S1. Link densities of all surrogate networks are 
given in Figures 4a and 4b. Figure 5 shows CLFs and average node degrees of TraCE TSF, precipitation, and 
temperature, and we provide analogous figures for the other networks in Supporting Information S1.

Figure 3.  Deglacial networks based on the ACER AP fraction ((a) and (b)), TraCE tree and shrub fraction (TSF, (c)), TraCE precipitation (PR, (d)), and TraCE 
temperature (TS, (e)) time series. Pair-wise significant correlations (a) and continent-wise aggregated links ((b)–(e)) are color-coded, node degrees are size-coded, and 
availability of data in the interval 22–6 ka BP is shape-coded. Edge widths of links in the aggregated networks correspond to the number of links between continents.
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Comparing the surrogate temperature and precipitation networks, we find similarities between the three models. In 
all models, the link densities in the temperature networks (TraCE: LD = 0.76, HadCM3: LD = 0.80, LOVECLIM: 
LD = 0.67) are higher than in the precipitation networks (TraCE: LD = 0.42, HadCM3: LD = 0.16, LOVECLIM: 
LD = 0.24) (Figure 4a). The links in the temperature networks are almost exclusively positive (94.3% positive 
links in TraCE, 100% in HadCM3, and 99.8% in LOVECLIM), whereas around half of the links are negative in 
the precipitation networks (56.9% positive links in TraCE, 44.4% in HadCM3, and 46.1% in LOVECLIM). The 
continent-averaged node degrees are predominantly higher in networks with higher link densities (Figure 5a for 
TraCE, Figure S21 for HadCM3, Figure S22 for LOVECLIM in Supporting Information S1). This shows that the 
additional links are distributed relatively uniform in space. The CLFs, which tend to be highest in temperature 
networks across most continent combinations (Figures 5a, S9, and S10 in Supporting Information S1), support 
this interpretation. For several individual CLFs, the ratio of positive to negative links is less balanced in the 
TraCE precipitation than in the ACER AP network (Figure 5a). All 15 CLFs of the ACER AP network have a 
negative link portion of at least 1/3, but only 12 do so for TraCE precipitation, 12 for HadCM3 precipitation, and 
8 for LOVECLIM precipitation. This suggests spatially more clustered regions of anti-correlated signals in the 
precipitation networks compared to the AP network. We note that the three precipitation networks are spatially 
not well-aligned as the κ-coefficients between each of them are below 0.1 (not shown). Due to these inter-model 
differences, an exact spatial alignment of simulated and observed networks cannot be expected and we have to 
rely on statistics of large-scale properties such as the network measures.

Strong differences exist between the TraCE and HadCM3 TSF networks. With 0.23 compared to 0.55, the link 
density is much lower in TraCE. Additionally, 43.3% of the links in the TraCE TSF network are positive, whereas 
91.3% are positive in the HadCM3 TSF network. Thus, the TraCE TSF network characteristics are similar to the 
precipitation networks. In contrast, structures of the HadCM3 TSF network follow the temperature networks. To 
study if these differences originate from deviating vegetation-climate-CO2 relationships in the simulations, we 
compare the simulated TSF networks with the networks based on the emulated TSF response. The emulated TSF 
networks with temperature forcing have characteristics that are more similar to the emulated TSF networks with 
precipitation forcing, the precipitation networks, and the TraCE TSF network. In particular, all these networks 
feature a negative link percentage of around 50%. In contrast, the emulated TSF networks with CO2 forcing 

Figure 4.  Link densities (LD) of networks based on unfiltered signals (RAW, (a)), on emulated TSF responses in TraCE and HadCM3 (RAW EM, (b)), and on time 
series filtered for millennial timescales (MIL, (c)). Surrogate time series are based on TSF, precipitation (PR), and temperature (TS) from the simulations. In (b), ALL 
denotes the emulated TSF response to climate forcing by CO2, precipitation, and temperature, whereas CO2, PR, and TS denote the TSF responses to single variable 
forcing. The 𝐴𝐴 𝖫𝖫𝖫𝖫 = 0.025 line indicates the link density expected by chance.



Paleoceanography and Paleoclimatology

ADAM ET AL.

10.1029/2021PA004265

12 of 21

feature similar network characteristics as the temperature networks and the HadCM3 TSF network with a very 
high percentage of positive links (EM CO2 TraCE: 76.2% positive links, EM CO2 HadCM3: 99.9%). Thus, the 
emulated TSF networks with CO2 forcing are the only ones with characteristics similar to the HadCM3 TSF net-
work. This suggests that CO2 is the best predictor of TSF in HadCM3, whereas it does not have a dominant influ-
ence on the TraCE TSF network characteristics. While the emulator results indicate that the differences between 
TSF networks in HadCM3 and TraCE can be explained by a varying response to climate factors, it should be 
noted that the experimental design of the two simulations is differing substantially (see Section 2.2). This could 
contribute to the apparent differences in the TSF variation patterns (see Text S19 in Supporting Information S1, 
for further discussion).

To further disentangle the temperature and precipitation effects in TraCE, we compute κ-coefficients to compare 
the similarity of the adjacency matrices of simulated TraCE TSF and emulated TraCE TSF with precipitation or 
temperature forcing only. As we assume perfect spatial alignment for different variables within one simulation, 
κ-coefficients provide good evidence whether temperature or precipitation is a better predictor of TSF in TraCE. 
We find that the agreement of the emulated TSF network with temperature forcing with the simulated TSF net-
work is almost indistinguishable from the agreement random networks with the same number of positive and 
negative links would have (κ = 0.04). In contrast, TraCE TSF has a significant spatial agreement with emulated 
TraCE TSF with precipitation forcing (κ = 0.19, see Figure S25 in Supporting Information S1). The κ-coefficient 
increases to κ = 0.35 when insignificant entries are removed from the adjacency matrices (Figure S25 in Sup-
porting Information S1). Thus, precipitation explains the TraCE TSF variations better than temperature and CO2, 
as it matches the network characteristics more closely than the emulated TSF with CO2 forcing and because its 
spatial agreement with TSF is superior to the agreement with emulated TSF forced by temperature. A substantial 
part of the variability in the surrogate TraCE TSF time series is not explained by the emulated joint response to 

Figure 5.  (a) Cross-link fractions (CLFs) between continents and average node degrees (NDG) of each continent for networks of ACER AP and of TraCE TSF, 
precipitation (PR), and temperature (TS). Continent-averaged node degrees (NDG) are shown on the diagonal axis of the cross-link fraction matrices. The proportion of 
positive and negative links is color-coded. The size of symbols corresponds to total cross-link fractions and node degrees. (b) First principal component (PC1, as time 
series insets) of ACER AP records and TraCE TSF surrogate records and loading of this component.
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temperature, precipitation, and CO2 (κ = 0.17). This could be due to internal variability that is not modeled by the 
statistical emulator or confounding variables.

The similar characteristics of the precipitation and ACER AP networks make precipitation a candidate to explain 
the diagnosed AP variability patterns through a monotonic relationship. In contrast, temperature network meas-
ures deviate strongly from the ACER AP network such that the large-scale AP characteristics cannot be explained 
through a monotonic relationship with temperature. However, a more complex relationship due to the negative 
effects of temperature on moisture availability cannot be studied by this direct comparison. For this, we turn to 
the TSF networks. With the high percentage of positive links, the HadCM3 TSF network differs strongly from 
the ACER AP network. The characteristics of the TraCE TSF network are more similar to the ACER AP network. 
The dominant mode of variability in the TraCE TSF PCA is a monotonic trend over the deglaciation as it is in 
the ACER AP network, although the locations of decreasing TSF and AP trends do not always coincide (Fig-
ure 5b). Assuming that the AP patterns are representative for tree cover changes (see Section 5.1 for a discussion 
of confining factors), TraCE TSF reproduces the diagnosed deglacial vegetation changes more realistically than 
HadCM3 TSF. Combined with the results of the emulated TSF networks presented above, this indicates that 
precipitation changes explain the diagnosed patterns of AP changes better than changes in temperature and CO2.

4.3.  Millennial-Scale Similarity Structures in Arboreal Pollen and Surrogate Networks

As we expect that the similarity structures in the networks presented in Sections 4.1 and 4.2 are predominantly 
the result of orbital-scale variations, we additionally study networks with signals filtered to extract millennial 
timescales. We note that the link densities of all millennial-scale networks except for LOVECLIM precipitation 
are much lower than in the respective unfiltered networks (Figure 4). This shows that the spatial coherence of 
millennial-scale fluctuations during the deglaciation was much weaker than the overall coherence. Meanwhile, 
the fraction of positive to negative links is on the same order as in the respective unfiltered network in all millen-
nial-scale networks. The link density of the millennial-scale ACER AP network is around the level (LD ≤ 0.05) 
that would be expected by chance if the statistical null model was true. Thus, we cannot confidently diagnose the 
existence of coherent vegetation structures from this network.

Comparing the millennial-scale TraCE networks, we find the most spatial coherence for surrogate temperatures, 
followed by precipitation and TSF (Figure 4). However, this hierarchy is absent in LOVECLIM, where the co-
herence of signals is similar for temperature and precipitation. The inter-continental coherence, as quantified by 
the CLFs, are mostly unstructured for ACER AP, TraCE TSF, and TraCE precipitation (Figure S20 in Supporting 
Information S1). A clearer pattern can be identified for TraCE temperature. Links are predominantly positive 
between Northern Hemispheric records but mostly negative between Oceania and the Northern Hemisphere.

The δ18O oxygen isotopic records from the Greenland ice core NGRIP (NGRIP members, 2004) and the Antarctic 
ice core EPICA Dome C (EPICA Community Members, 2004) feature distinct high-resolution signals of millen-
nial-scale variations in both hemispheres during the deglaciation (Figure 6). We test for synchronous millenni-
al-scale fluctuations at different nodes with either of these records to further characterize the network layouts. To 
this end, we enhance the millennial-scale networks by adding the δ18O records from NGRIP and EPICA Dome C 
as external nodes and their significant correlations with AP records as links. Similarly, we append the nodes and 
links resulting from simulated temperature and precipitation variations at the ice core locations to the respective 
surrogate networks. For ACER AP (Figure 6a), we cannot identify homogeneous patterns, which additionally 
underlines the notion that the links could appear by random chance. For TraCE precipitation (Figure 6b), mostly 
positive links between Greenland and Europe as well as Alaska are found. The links from Antarctica to Europe, 
Greenland, and Alaska are negative. Additionally, negative links between Greenland and the west coast of North 
America are found. For TraCE temperature (Figure 6c), the Northern Hemisphere is mostly positively correlated 
to Greenland, whereas Oceania and extra-tropical South America are positively correlated to Antarctica. For 
tropical locations, the structures are more heterogeneous.

In contrast to the strong spatial coherence of AP signals on orbital timescales (Section  4.1), the absence of 
coherent patterns in the millennial-scale ACER AP network hints at predominant local processes on millennial 
timescales. However, other archive-specific factors could also play a role as discussed in Section 5.3. In contrast, 
surrogate temperature and, less pronounced, precipitation networks exhibit spatially homogeneous variations of 
extra-tropical locations with a distinct hemispheric signature.
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5.  Discussion
Our paleoclimate network approach reveals a coherent deglacial AP evolution in the low and mid-latitudes, but 
with regionally anti-correlated trends. In this section, we first evaluate the impact of record quality on these find-
ings. Since the comparison against surrogate networks suggests that the identified structures are better explained 
by precipitation than temperature and CO2 variations, we subsequently compare our findings to previous liter-
ature on the deglacial vegetation and climate evolution. In contrast to the analysis of the unfiltered signals, our 
focused study of millennial-scale AP fluctuations does not feature spatially homogeneous structures. We discuss 
potential reasons for the absence of such structures in the final part of this section.

5.1.  Influence of Record Quality and Site Type on the Network Measures

The network layouts and measures depend on several factors: the spatio-temporal similarity of the governing 
climate and vegetation variations, the representativeness of the AP signal for the vegetation evolution at a given 
location, site type (marine vs. terrestrial provenance of records), pollination mechanism, pollen productivity and 
transport, taphonomic processes, the period covered by a record, the temporal resolution of records, the precision 
of an archive's age-depth model, and the spatial distribution of proxy locations. To understand the implications of 
our results for the spatio-temporal vegetation evolution and the governing climatic processes, we need to evaluate 
the importance of these influencing factors. As link density and CLFs derive from summations of node degrees 
(see Section 3.4), we focus on the relationship between the mentioned influencing factors and node degrees.

The impact of some influencing factors can be quantified by comparing the node degrees in the ACER AP network 
with the respective factors in the records (Figure 7a). We find that the period covered by a record (R2 = 0.213) 
and the explained variance of the AP signal (R2 = 0.110) have a minor impact on the total node degree. Here, the 
coefficient of determination R2 quantifies how well node degrees can be predicted from an influencing factor. 
The impacts of temporal resolution (median inter-sample range), chronological precision (mean uncertainty of 

Figure 6.  Network links originating from the EPICA Dome C (EDC) and NGRIP (NGP) nodes in networks of time series filtered for millennial timescales. The 
networks are from AP at ACER locations and δ18O from EDC and NGP (a), TraCE precipitation (PR, (b)), and TraCE temperature (TS, (c)). Pair-wise correlations are 
color-coded, node degrees are size-coded and correspond to the respective full networks, and availability of data in the interval 22–6 ka BP is shape-coded. (d) shows 
band-pass filtered time series of δ18O, TraCE temperature, and TraCE precipitation at the EPICA Dome C and NGRIP locations.
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the CLAM age models where available), and spatial layout (mean distance from other records) are negligible 
(Figure 7a). None of the tested measures has a substantial impact on the fraction of positive compared to negative 
node degrees (Figure 7a). Based on these results, we conclude that the network measures are mainly a result of the 
spatio-temporal coherence of the underlying climate and vegetation variations. Only the comparably low number 
of links connected to Asia might originate from the lower explained variance of AP (Figure 1b). The records, 
which cover shorter periods, are not clustered in a particular region (Figure S26 in Supporting Information S1). 
Thus, this factor is unlikely to bias CLFs and continent-averaged node degrees substantially.

Our methodology does not explicitly account for differences in the spatial and temporal averaging scales between 
records, as they occur particularly between marine and terrestrial sites. To study these effect, we analyze two 
AP sub-networks containing only marine or only terrestrial records. The absolute link densities of marine and 
terrestrial networks are very similar (marine: LD = 0.32, terrestrial: LD = 0.31), which means that the degree of 
large-scale similarity between the records in the two sub-networks is almost equal (Figure 7b). This suggests that 
the imprint of the large-scale climate changes on the AP fraction is stronger on the long timescales, which we 
consider, than the effects from varying temporal and spatial averaging scales of the records. The percentage of 
negative links is larger in the marine (53.3%) than in the terrestrial network (35.5%). As the spatial distribution 
of the records in the two sub-networks is different with most marine records being located along mid-latitude 
western edges of continents, we compare the differences against randomized networks and find that none of the 
positive or negative link densities in the sub-networks is outside the 5th or 95th percentile of the randomized net-
works (see Supporting Information S1 for details). While we cannot preclude that the spatio-temporal averaging 
scale of a record has a substantial influence on the fraction of negative links in a network, these significance tests 
indicate that other factors such as the spatial distribution of the records have a stronger effect than the classifica-
tion into marine and terrestrial records.

Differences in pollen productivity and dispersal efficiency between taxa, particularly due to varying pollination 
mechanisms, and taphonomic processes could additionally influence the ACER AP network. However, we ob-
serve a decrease of link density from the TraCE temperature and precipitation networks to the TraCE TSF net-
work, which features realistic network characteristics and is not influenced by pollen-specific processes. There-
fore, the complex non-climatic processes that influence vegetation could be sufficient to explain smaller link 
densities for AP compared to temperature or precipitation networks. Accounting for varying pollen productivity 
between taxa and spatio-temporal averaging scales of records is desirable for future research to confirm that the 
diagnosed AP change patterns are indeed reflecting tree cover variations. This step requires the development of 
pollen productivity estimates for more taxa and continents.

Figure 7.  Dependence of ACER AP node degrees (NDG, (a) top row) and fractions of positive node degree ((a) bottom row) on record statistics for all archives 
with at least one significant link in the AP network, and dependence of the network's link density (LD) on the site type (marine or terrestrial, (b)). The statistics 
are (columns from left to right) median inter-sample range (ISR), explained variance of the AP signal, mean uncertainty of CLAM age models (where available), 
length of the covered time period, and mean distance to other records. The coefficient of determination R2 of each quantity is given in the top right corners. All 
statistics are computed for the interval 22–6 ka BP. For link densities, black dots and bars indicate median, 5% and 95% percentiles of randomized networks (see 
Supporting Information S1). The link density of the combined network as in Figure 4 (ALL) is shown for comparison.
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5.2.  Implications for the Deglacial Vegetation and Climate Evolution

The significant inter-continental coherence diagnosed from the ACER AP network (Section 4.1) results mainly 
from synchronous orbital-scale variations. These are likely driven by the concurrent global climate changes. A 
monotonic trend is the dominant mode of AP variability throughout the deglaciation. A similar trend was also 
found for temperature and precipitation across all studied regions by Clark et al. (2012). Similar to the global 
precipitation PCA by Clark et al. (2012), the direction of the trend in the AP network varies between regions, 
whereas it is consistently increasing in the global temperature PCA in Clark et al. (2012), see Text S20 in Sup-
porting Information S1 for further discussion. However, temperature increases can lead to decreasing AP through 
increased evaporation and thus decreased moisture availability. Therefore, this difference alone does not preclude 
an explanatory value of temperature for the deglacial vegetation evolution (see Section 4.2). It should be noted 
that, except for the Western United States, the regions of negative precipitation trends in the PCA analysis by 
Clark et al. (2012) do not coincide with the regions of decreasing AP trends in our analysis. We do not find an 
anti-phased monsoon signal in the AP records between Northern and Southern Hemisphere monsoon systems, 
as it was diagnosed by Cheng et al. (2012) from speleothems. This is likely due to the spatial distribution of AP 
records, which are mostly located outside the core monsoon regions. In addition, a monsoon signal would require 
precipitation to be a limiting factor in the respective regions and several modeling studies found that the ecophys-
iological CO2 effect is the main driver of increased tree cover in the South American monsoon region (Claussen 
et al., 2013; Crucifix et al., 2005; O’Ishi & Abe-Ouchi, 2013).

The increased global mean precipitation and temperature led to a wetting trend in many terrestrial areas (Cleator 
et al., 2020; Prentice et al., 2000). As a consequence, tree vegetation predominantly increased from the LGM to 
the early Holocene (Binney et al., 2017; Prentice et al., 2011). As our analysis indicates that precipitation changes 
are likely a better predictor of AP variations in the low and mid-latitudes than temperature or CO2 concentration 
changes (see Section 4.2), we attribute most negative links in the network to the existence of regions where pre-
cipitation decreased through the deglaciation. This led to reduced moisture availability. For records in Chile, at 
the west coast of North America, and in Southeastern Africa, this interpretation is in concordance with previous 
findings from individual records (e.g., DeBusk, 1998; Heusser, 1998; Heusser, Heusser, & Pisias, 2006; Vincens 
et al., 2007). As an explanation of the anti-correlated patterns along the American Pacific coast, pole-ward shifts 
of westerly wind systems during the deglaciation have been proposed (Thompson et al., 1993; Heusser, 1998; 
Heusser, Heusser, Mix, et al., 2006). The spatial patterns of anti-correlated AP signals, which we find on all conti-
nents, suggest that similar atmospheric and oceanic circulation shifts are an important driver of the distribution of 
positive to negative links in the ACER AP network. Inter-model and model–data differences of the regions, where 
precipitation decreased over the deglaciation, can be used to investigate potential model biases in future research. 
Better harmonized simulation protocols as they were proposed by the PMIP4 last deglaciation working group 
(Ivanovic et al., 2016) would improve the comparability of simulations to preclude that inter-model differences 
result from varying experimental designs.

The spatial distribution of the ACER records restricts our findings to the low and mid-latitudes. Therefore, our 
analysis does not cover the northward shift of boreal forests, for which previous studies found strong impacts 
of the CO2 and temperature increase (Harrison & Prentice,  2003; O’Ishi & Abe-Ouchi,  2013). Additionally, 
only a few ACER records are located in regions with tropical rain forests. Therefore, our results do not contra-
dict the dominant impact of ecophysiological CO2 effects for the expansion of tropical forests (O’Ishi & Abe-
Ouchi,  2013; Prentice et  al.,  2011). Unlike previous modeling studies, our approach is not decomposing the 
total simulated vegetation changes into responses to different factors. Instead, we identify which of the three 
studied predictors can explain the diagnosed network structures best. Therefore, our results do not directly con-
tradict the found strong ecophysiological CO2 impacts on simulated vegetation changes in different Earth system 
models (Claussen et al., 2013; O’Ishi & Abe-Ouchi, 2013; Woillez et al., 2011), including HadCM3 (Crucifix 
et al., 2005). For example, the rise of CO2 concentrations could drive or amplify increasing AP trends in regions 
with increasing precipitation through the deglaciation. On the other hand, increasing evaporation from increasing 
temperature can amplify decreasing AP trends in regions with decreasing precipitation. Our conclusions rely on 
the assumption that the large-scale AP characteristics are representative of the TSF evolution despite the confin-
ing factors discussed in Section 5.1. This assumption needs to be tested in future research.
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5.3.  Potential Reasons for Inconsistent Patterns on Millennial Scales

As shown in Section 4.3, millennial-scale coherence of AP and surrogate signals is weaker than the respective un-
filtered signals, which are dominated by orbital-scale variations. This is in agreement with the general notion that 
climate (and vegetation) fluctuations are spatially more coherent with increasing timescales. However, the im-
print of events such as the Bølling-Allerød-age warming and Younger Dryas-stadial cooling has been identified in 
proxy records covering large parts of the globe (e.g., Clark et al., 2012; Renssen et al., 2018), which suggests that 
millennial-scale fluctuations occurred synchronously on inter-continental scales, albeit not globally homogene-
ous (Clark et al., 2012). As complex non-climatic processes influence the vegetation cover, it is possible that the 
used proxy records of vegetation composition do not reflect millennial-scale climate fluctuations as prominently. 
The surrogate networks support this explanation given that temperature networks feature the spatially most coher-
ent patterns, followed by precipitation and TSF (Figure 4c). Indeed, the link density in the millennial-scale TraCE 
TSF network is close to the AP network. Millennial-scale vegetation changes could also be more subtle than on 
orbital scales and therefore not be recorded by the AP signal. However, the AP signal still explains more than 25% 
of the variance for most band-pass filtered records (Figure S13 in Supporting Information S1).

Another potential cause for undetected synchronous millennial-scale fluctuations is the limited temporal reso-
lution and dating precision of records. We do not find systematic influences of the record quality on the node 
degree in the millennial-scale ACER AP network (Figure S27 in Supporting  Information  S1). However, this 
could be because there are too few records in the database with high temporal resolution and small dating uncer-
tainties, since both records need a sufficient quality to identify synchronous fluctuations with Gaussian kernel 
correlations. Therefore, alternative similarity measures that require a lower record quality might be more suitable 
to study millennial-scale structures. More high-resolution sediment cores and less uncertain chronologies could 
potentially resolve these questions. A re-calibration to IntCal20 could reduce age uncertainties and biases as it is 
substantially more detailed during the deglaciation than IntCal13 (Reimer et al., 2020), see Text S21 in Support-
ing Information S1 for more details. However, this is only the case if sufficient radiometric dates are available. 
Additional multi-proxy studies could help to understand if the non-existing inter-continental coherence of millen-
nial-scale fluctuations diagnosed in this study is a result of the spatial heterogeneity of millennial-scale climate 
variations or of local non-climatic processes.

6.  Conclusions
We studied the global-scale vegetation evolution during the last deglaciation as recorded by AP fractions in 
sediment cores. A paleoclimate network approach quantifies spatio-temporal similarity patterns in the record set. 
We find a strong coherence in the low and mid-latitudes, which likely results from orbital-scale variations that 
respond to the global climate evolution. Complementing our results with a PCA, we identify two anti-correlated 
patterns: On the one hand, the predominant temporal evolution is characterized by increasing AP fractions during 
the deglaciation. On the other hand, distinct areas where AP fractions decreased exist on each continent. The pro-
nounced geographical contrasts between these regions indicate that they are the result of shifts in the atmospheric 
and oceanic circulation, as previously proposed for the west coasts of South and North America (Heusser, 1998; 
Heusser, Heusser, Mix, et al., 2006) and diagnosed in model simulations of the Last Glacial Maximum (Bracon-
not et al., 2012; Kageyama et al., 2021).

Our analysis does not detect spatially coherent millennial-scale structures in the AP records. This could be due to 
a lack of synchronicity in tree cover variations on millennial timescales, as suggested by results from surrogate 
networks constructed from the TraCE simulation. Alternatively, the temporal resolution and dating precision 
could be insufficient to identify similarity structures with our quantitative comparison method. Future work is 
required to resolve these issues, for example, by testing alternative similarity measures and constructing networks 
from multi-proxy compilations.

We compare the AP network with surrogate tree and shrub fraction networks from simulations with two Earth 
System Models. While the TraCE tree and shrub fraction network reproduces the pollen network well, the char-
acteristics of the HadCM3 network deviate. Sensitivity experiments with statistical emulators indicate that these 
discrepancies are mostly due to differences in response to deglacial CO2 changes. Our results suggest that our 
paleoclimate network approach could be a promising tool for benchmarking vegetation models under strongly 
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varying climate conditions. Network and principal component analyses complement each other due to different 
strengths and weaknesses.

Surrogate precipitation and temperature networks from simulations with three Earth System Models, and sen-
sitivity experiments with statistical emulators of tree and shrub fraction forced by precipitation, temperature, 
and CO2 indicate that precipitation variations explain the diagnosed vegetation change patterns in the low and 
mid-latitudes better than temperature and CO2. We find consistent temperature and precipitation network proper-
ties between the three simulations, indicating that our results are representative for a large range of Earth System 
Models. For future research, we recommend to reassess our statistical emulation results using sensitivity experi-
ments with dynamical vegetation models and by repeating the analysis with more transient Earth System Model 
simulations of the last deglaciation as they become available. Developing methods which account for varying 
pollen productivity of different taxa and spatio-temporal averaging scales of records is necessary to confirm that 
the diagnosed patterns of AP variations are indeed reflecting tree cover variations. Our study indicates that net-
work analyses can identify spatio-temporal hydroclimate and vegetation variations on orbital timescales, which 
provides opportunities for the evaluation of simulations with transient boundary conditions.

Data Availability Statement
R code for data processing and to reproduce all analyses from this study is archived on zenodo (DOI: https://doi.
org/10.5281/zenodo.5742817). All data sets used in this study are available in public repositories. The ACER 
pollen and charcoal database is available on PANGAEA: Sánchez Goñi, Desprat, Daniau, Bassinot, Polan-
co-Martínez, Harrison, and Yamamoto (2017) (last access: 04.10.2021). The TraCE simulation was downloaded 
from https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm.trace.html (last access: 04.10.2021). The HadCM3 
simulations were downloaded from https://www.paleo.bristol.ac.uk/ummodel/scripts/html_bridge/bbc_all_triff_
rev_dyn04.html (last access: 04.10.2021), and the LOVECLIM simulation was downloaded from http://apdrc.
soest.hawaii.edu/las/v6/dataset?catitem=17819 (last access: 04.10.2021).

References
Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/

wics.101
Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 228–232. https://

doi.org/10.1038/nature01092
Armstrong, E., Hopcroft, P. O., & Valdes, P. J. (2019). A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. 

Scientific Data, 6(1), 1–16. https://doi.org/10.1038/s41597-019-0277-1
Berger, A. L. (1978). Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35, 2362–

2367. https://doi.org/10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2
Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J. O., et al. (2017). Vegetation of Eurasia from the last glacial 

maximum to present: Key biogeographic patterns. Quaternary Science Reviews, 157, 80–97. https://doi.org/10.1016/j.quascirev.2016.11.022
Birks, H. J. B., Heiri, O., Seppä, H., & Bjune, A. E. (2010). Strengths and weaknesses of quantitative climate reconstructions based on late-qua-

ternary biological proxies. The Open Ecology Journal, 3, 68–110. https://doi.org/10.2174/1874213001003020068
Blaauw, M. (2010). Methods and code for ’classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512–518. https://

doi.org/10.1016/j.quageo.2010.01.002
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., et al. (2012). Evaluation of climate models 

using palaeoclimatic data. Nature Climate Change, 2(6), 417–424. https://doi.org/10.1038/nclimate1456
Bradley, R. S. (2015). Chapter 12 – Pollen. In R. S. Bradley (Ed.), Paleoclimatology (3rd ed., pp. 405–451). San Diego: Academic Press. https://

doi.org/10.1016/B978-0-12-386913-5.00012-0
Brovkin, V., Ganopolski, A., & Svirezhev, Y. (1997). A continuous climate-vegetation classification for use in climate-biosphere studies. Ecolog-

ical Modelling, 101(2–3), 251–261. https://doi.org/10.1016/S0304-3800(97)00049-5
Bühler, J. C., Roesch, C., Kirschner, M., Sime, L., Holloway, M. D., & Rehfeld, K. (2021). Comparison of the oxygen isotope signatures in 

speleothem records and iHadCM3 model simulations for the last millennium. Climate of the Past, 17(3), 985–1004. https://doi.org/10.5194/
cp-17-985-2021

Cheng, H., Sinha, A., Wang, X., Cruz, F. W., & Edwards, R. L. (2012). The Global Paleomonsoon as seen through speleothem records from Asia 
and the Americas. Climate Dynamics, 39, 1045–1062. https://doi.org/10.1007/s00382-012-1363-7

Chevalier, M., Davis, B. A., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., et al. (2020). Pollen-based climate reconstruction techniques for 
late Quaternary studies. Earth-Science Reviews, 210. 103384. https://doi.org/10.1016/j.earscirev.2020.103384

Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., et al. (2012). Global climate evolution during the last deglaci-
ation. Proceedings of the National Academy of Sciences of the United States of America, 109(19), E1134–E1142. https://doi.org/10.1073/
pnas.1116619109

Claussen, M., Selent, K., Brovkin, V., Raddatz, T., & Gayler, V. (2013). Impact of CO2 and climate on Last Glacial maximum vegetation—A 
factor separation. Biogeosciences, 10(6), 3593–3604. https://doi.org/10.5194/bg-10-3593-2013

Cleator, S. F., Harrison, S. P., Nichols, N. K., Prentice, I. C., & Roulstone, I. (2020). A new multivariable benchmark for Last Glacial Maximum 
climate simulations. Climate of the Past, 16(2), 699–712. https://doi.org/10.5194/cp-16-699-2020

Acknowledgments
This research has been funded by the 
Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation), 
project no. 395 588 486, and contributes 
to the PalMod project (www.palmod.de), 
subproject no. 01LP1926C. The authors 
acknowledge the Heidelberg Center for 
the Environment for providing a venue 
for discussion. The authors thank the as-
sociate editor, Carlos Jaramillo, and three 
anonymous reviewers for constructive 
feedback to improve our manuscript. The 
authors thank Martina Stebich for support 
with the arboreal pollen classification and 
insightful discussions. The authors thank 
Beatrice Ellerhoff for helpful comments 
on the manuscript. The authors thank the 
ACER project members for compiling 
and providing the ACER pollen and 
charcoal database. The authors thank the 
modeling groups for providing the TraCE, 
HadCM3, and LOVECLIM simulations, in 
particular, Paul Valdes for assisting with 
the HadCM3 simulation output. Open 
access funding enabled and organized by 
Projekt DEAL.

https://doi.org/10.5281/zenodo.5742817
https://doi.org/10.5281/zenodo.5742817
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm.trace.html
https://www.paleo.bristol.ac.uk/ummodel/scripts/html_bridge/bbc_all_triff_rev_dyn04.html
https://www.paleo.bristol.ac.uk/ummodel/scripts/html_bridge/bbc_all_triff_rev_dyn04.html
http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=17819
http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=17819
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1038/nature01092
https://doi.org/10.1038/nature01092
https://doi.org/10.1038/s41597-019-0277-1
https://doi.org/10.1175/1520-0469(1978)035%3C2362:ltvodi%3E2.0.co;2
https://doi.org/10.1016/j.quascirev.2016.11.022
https://doi.org/10.2174/1874213001003020068
https://doi.org/10.1016/j.quageo.2010.01.002
https://doi.org/10.1016/j.quageo.2010.01.002
https://doi.org/10.1038/nclimate1456
https://doi.org/10.1016/B978-0-12-386913-5.00012-0
https://doi.org/10.1016/B978-0-12-386913-5.00012-0
https://doi.org/10.1016/S0304-3800(97)00049-5
https://doi.org/10.5194/cp-17-985-2021
https://doi.org/10.5194/cp-17-985-2021
https://doi.org/10.1007/s00382-012-1363-7
https://doi.org/10.1016/j.earscirev.2020.103384
https://doi.org/10.1073/pnas.1116619109
https://doi.org/10.1073/pnas.1116619109
https://doi.org/10.5194/bg-10-3593-2013
https://doi.org/10.5194/cp-16-699-2020


Paleoceanography and Paleoclimatology

ADAM ET AL.

10.1029/2021PA004265

19 of 21

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., et al. (2006). The Community Climate System Model 
Version 3 (CCSM3). Journal of Climate, 19(11), 2122–2143. https://doi.org/10.1175/JCLI3761.1

Cox, P. M. (2001). Description of the “TRIFFID” dynamic global vegetation model, Hadley Centre. Technical Note 24 (Tech. Rep.).
Cox, P. M., Huntingford, C., & Harding, R. J. (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. 

Journal of Hydrology, 212–213(1–4), 79–94. https://doi.org/10.1016/S0022-1694(98)00203-0
Crucifix, M., Betts, R. A., & Hewitt, C. D. (2005). Pre-industrial-potential and Last Glacial Maximum global vegetation simulated with a coupled 

climate-biosphere model: Diagnosis of bioclimatic relationships. Global and Planetary Change, 45(4), 295–312. https://doi.org/10.1016/j.
gloplacha.2004.10.001

Davies-Barnard, T., Ridgwell, A., Singarayer, J., & Valdes, P. (2017). Quantifying the influence of the terrestrial biosphere on glacial-interglacial 
climate dynamics. Climate of the Past, 13(10), 1381–1401. https://doi.org/10.5194/cp-13-1381-2017

DeBusk, G. H. (1998). A 37,500-year pollen record from Lake Malawi and implications for the biogeography of afromontane forests. Journal of 
Biogeography, 25(3), 479–500. https://doi.org/10.1046/j.1365-2699.1998.2530479.x

Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I., Mouchet, A., et al. (2007). Modeling the influence of Greenland ice sheet 
melting on the Atlantic meridional overturning circulation during the next millennia. Geophysical Research Letters, 34(10), 1–5. https://doi.
org/10.1029/2007GL029516

EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628. https://doi.org/10.1038/nature02599
Goosse, H., Driesschaert, E., Fichefet, T., & Loutre, M.-F. (2007). Information on the early Holocene climate constrains the summer sea ice 

projections for the 21st century. Climate of the Past, 3(4), 999–692. https://doi.org/10.5194/cp-3-683-2007
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., et al. (2015). Evaluation of CMIP5 palaeo-simulations to improve 

climate projections. Nature Climate Change, 5, 735–743. https://doi.org/10.1038/nclimate2649
Harrison, S. P., & Prentice, I. C. (2003). Climate and CO2 controls on global vegetation distribution at the last glacial maximum: Analy-

sis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology, 9(7), 983–1004. https://doi.
org/10.1046/j.1365-2486.2003.00640.x

Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., & Sutra, J. P. (2010). Ecophysiological and bioclimatic foundations for a global 
plant functional classification. Journal of Vegetation Science, 21(2), 300–317. https://doi.org/10.1111/j.1654-1103.2009.01144.x

He, F. (2011). Simulating transient climate evolution of the last deglaciation with CCSM3 (Dissertation), University of Wisconsin-Madison.
Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686–5699. https://

doi.org/10.1175/JCLI3990.1
Heusser, L. E. (1998). Direct correlation of millennial-scale changes in western North American vegetation and climate with changes in the 

California current system over the past 60 kyr. Paleoceanography, 13(3), 252–262. https://doi.org/10.1029/98PA00670
Heusser, L. E., Heusser, C., Mix, A. C., & McManus, J. (2006). Chilean and Southeast Pacific paleoclimate variations during the last glacial 

cycle: Directly correlated pollen and δ18O records from ODP Site 1234. Quaternary Science Reviews, 25(23–24), 3404–3415. https://doi.
org/10.1016/j.quascirev.2006.03.011

Heusser, L. E., Heusser, C., & Pisias, N. (2006). Vegetation and climate dynamics of southern Chile during the past 50,000 years: Results of ODP 
Site 1233 pollen analysis. Quaternary Science Reviews, 25(5–6), 474–485. https://doi.org/10.1016/j.quascirev.2005.04.009

Holten, D. (2006). Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and 
Computer Graphics, 12(5), 741–748. https://doi.org/10.1109/TVCG.2006.147

Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., & Tarasov, L. (2016). Transient climate simulations of the 
deglaciation 21-9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions. Geoscientific Model 
Development, 8, 9045–9102. https://doi.org/10.5194/gmd-9-2563-2016

Jiménez-Moreno, G., Anderson, R. S., Desprat, S., Grigg, L. D., Grimm, E. C., Heusser, L. E., et al. (2010). Millennial-scale variability during 
the last glacial in vegetation records from North America. Quaternary Science Reviews, 29(21–22), 2865–2881. https://doi.org/10.1016/j.
quascirev.2009.12.013

Joos, F., & Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 105, 1425–1430. https://doi.org/10.1073/pnas.0707386105

Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., et al. (2021). The PMIP4 Last Glacial Maximum 
experiments: Preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 17(3), 1065–1089. https://doi.org/10.5194/
cp-17-1065-2021

Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., & Fischer, H. (2017). A 156 kyr smoothed history of the atmospheric greenhouse gases 
CO2, CH4, and N2O and their radiative forcing. Earth System Science Data, 9, 363–387. https://doi.org/10.5194/essd-9-363-2017

Konecky, B., Russell, J., Vuille, M., & Rehfeld, K. (2014). The Indian Ocean Zonal Mode over the past millennium in observed and modeled 
precipitation isotopes. Quaternary Science Reviews, 103, 1–18. https://doi.org/10.1016/j.quascirev.2014.08.019

Kubatzki, C., & Claussen, M. (1998). Simulation of the global bio-geophysical interactions during the Last Glacial Maximum. Climate Dynamics, 
14(7–8), 461–471. https://doi.org/10.1007/s003820050234

Legendre, P., & Legendre, L. (2012). Numerical ecology (3rd ed.). Elsevier Science.
Levis, S., Bonan, G. B., Vertenstein, M., & Oleson, K. W. (2004). Technical documentation and user’s guide to the community land model’s 

dynamic global vegetation model. (Tech. Rep.)
Li, G., Harrison, S. P., Bartlein, P. J., Izumi, K., & Prentice, I. C. (2013). Precipitation scaling with temperature in warm and cold climates: An 

analysis of CMIP5 simulations. Geophysical Research Letters, 40(15), 4018–4024. https://doi.org/10.1002/grl.50730
Li, F., Sun, J., Zhao, Y., Guo, X., Zhao, W., & Zhang, K. (2010). Ecological significance of common pollen ratios: A review. Frontiers of Earth 

Science in China, 4(3), 253–258. https://doi.org/10.1007/s11707-010-0112-7
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., et al. (2009). Transient simulation of last deglaciation with a new 

mechanism for Bølling-Allerød Warming. Science, 325, 310–314. https://doi.org/10.1126/science.1171041
Ljungqvist, F. C., Seim, A., Krusic, P. J., González-Rouco, J. F., Werner, J. P., Cook, E. R., et al. (2019). European warm-season temperature and 

hydroclimate since 850 CE. Environmental Research Letters, 14(8), 084015. https://doi.org/10.1088/1748-9326/ab2c7e
MARGO Project Members. (2009). Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 

2, 127–132. https://doi.org/10.1038/ngeo411
McGee, D. (2020). Glacial – Interglacial precipitation changes. Annual Review of Marine Science, 12, 525–557. https://doi.org/10.1146/

annurev-marine-010419-010859
Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008). Meridional reorganizations of marine and terrestrial productivity during Hein-

rich events. Paleoceanography, 23(1). https://doi.org/10.1029/2007PA001445

https://doi.org/10.1175/JCLI3761.1
https://doi.org/10.1016/S0022-1694(98)00203-0
https://doi.org/10.1016/j.gloplacha.2004.10.001
https://doi.org/10.1016/j.gloplacha.2004.10.001
https://doi.org/10.5194/cp-13-1381-2017
https://doi.org/10.1046/j.1365-2699.1998.2530479.x
https://doi.org/10.1029/2007GL029516
https://doi.org/10.1029/2007GL029516
https://doi.org/10.1038/nature02599
https://doi.org/10.5194/cp-3-683-2007
https://doi.org/10.1038/nclimate2649
https://doi.org/10.1046/j.1365-2486.2003.00640.x
https://doi.org/10.1046/j.1365-2486.2003.00640.x
https://doi.org/10.1111/j.1654-1103.2009.01144.x
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1029/98PA00670
https://doi.org/10.1016/j.quascirev.2006.03.011
https://doi.org/10.1016/j.quascirev.2006.03.011
https://doi.org/10.1016/j.quascirev.2005.04.009
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.5194/gmd-9-2563-2016
https://doi.org/10.1016/j.quascirev.2009.12.013
https://doi.org/10.1016/j.quascirev.2009.12.013
https://doi.org/10.1073/pnas.0707386105
https://doi.org/10.5194/cp-17-1065-2021
https://doi.org/10.5194/cp-17-1065-2021
https://doi.org/10.5194/essd-9-363-2017
https://doi.org/10.1016/j.quascirev.2014.08.019
https://doi.org/10.1007/s003820050234
https://doi.org/10.1002/grl.50730
https://doi.org/10.1007/s11707-010-0112-7
https://doi.org/10.1126/science.1171041
https://doi.org/10.1088/1748-9326/ab2c7e
https://doi.org/10.1038/ngeo411
https://doi.org/10.1146/annurev-marine-010419-010859
https://doi.org/10.1146/annurev-marine-010419-010859
https://doi.org/10.1029/2007PA001445


Paleoceanography and Paleoclimatology

ADAM ET AL.

10.1029/2021PA004265

20 of 21

Menviel, L., Timmermann, A., Timm, O. E., & Mouchet, A. (2011). Deconstructing the Last Glacial termination: The role of millennial and 
orbital-scale forcings. Quaternary Science Reviews, 30(9–10), 1155–1172. https://doi.org/10.1016/j.quascirev.2011.02.005

Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., et al. (2001). Atmospheric CO2 concentrations over the last 
glacial termination. Science, 291(5501), 112–114. https://doi.org/10.1126/science.291.5501.112

NGRIP members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–
151. https://doi.org/10.1038/nature02805

Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., et al. (2018). Past and future global transformation 
of terrestrial ecosystems under climate change. Science, 361(6405), 920–923. https://doi.org/10.1126/science.aan5360

O’Ishi, R., & Abe-Ouchi, A. (2013). Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maxi-
mum. Climate of the Past, 9(4), 1571–1587. https://doi.org/10.5194/cp-9-1571-2013

Opsteegh, J. D., Haarsma, R. J., Selten, F. M., & Kattenberg, A. (1998). ECBILT: A dynamic alternative to mixed boundary conditions in ocean 
models. Tellus, Series A: Dynamic Meteorology and Oceanography, 50(3), 348–367. https://doi.org/10.3402/tellusa.v50i3.14524

Oster, J. L., & Kelley, N. P. (2016). Tracking regional and global teleconnections recorded by western North American speleothem records. 
Quaternary Science Reviews, 149, 18–33. https://doi.org/10.1016/j.quascirev.2016.07.009

Otto-Bliesner, B., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., & Kothavala, Z. (2006). Last Glacial Maximum and Holocene Climate in 
CCSM3. Journal of Climate, 19, 2526–2544. https://doi.org/10.1175/JCLI3748.1

Pedersen, T. L. (2019a). ggraph: An implementation of grammar of graphics for graphs and networks [Computer software manual]. Retrieved 
from https://CRAN.R-project.org/package=ggraph

Pedersen, T. L. (2019b). tidygraph: A tidy api for graph manipulation[Computer software manual]. Retrieved from https://CRAN.R-project.org/
package=tidygraph

Peltier, W. R. (1994). Ice age paleotopography. Science, 265(5169), 195–201. https://doi.org/10.1126/science.265.5169.195
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth – The ICE-5G(VM 2) model and GRACE. Annual Review of 

Earth and Planetary Sciences, 32(1), 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D., & Cheddadi, R. (1996). Reconstructing biomes from palaeoecological data: A general method and 

its application to European pollen data at 0 and 6 ka. Climate Dynamics, 12(3), 185–194. https://doi.org/10.1007/bf00211617
Prentice, I. C., Harrison, S. P., & Bartlein, P. J. (2011). Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol-

ogist, 189(4), 988–998. https://doi.org/10.1111/j.1469-8137.2010.03620.x
Prentice, I. C., Jolly, D., & BIOME 6000 participants. (2000). Mid-Holocene and glacial-maximum vegetation geography of the northern conti-

nents and Africa. Journal of Biogeography, 27, 507–519. https://doi.org/10.1046/j.1365-2699.2000.00425.x
R Core Team. (2020). R: A language and environment for statistical computing [Computer software manual]. Retrieved from https://www.R-pro-

ject.org/
Rehfeld, K., Hebert, R., Lora, J. M., Lofverstrom, M., & Brierley, C. M. (2020). Variability of surface climate in simulations of past and future. 

Earth System Dynamics, 11(2), 447–468. https://doi.org/10.5194/esd-11-447-2020
Rehfeld, K., & Kurths, J. (2014). Similarity estimators for irregular and age-uncertain time series. Climate of the Past, 10(1), 107–122. https://

doi.org/10.5194/cp-10-107-2014
Rehfeld, K., & Laepple, T. (2016). Warmer and wetter or warmer and dryer? Observed versus simulated covariability of Holocene temperature 

and rainfall in Asia. Earth and Planetary Science Letters, 436, 1–9. https://doi.org/10.1016/j.epsl.2015.12.020
Rehfeld, K., Marwan, N., Breitenbach, S. F., & Kurths, J. (2013). Late Holocene Asian summer monsoon dynamics from small but complex 

networks of paleoclimate data. Climate Dynamics, 41(1), 3–19. https://doi.org/10.1007/s00382-012-1448-3
Rehfeld, K., Marwan, N., Heitzig, J., & Kurths, J. (2011). Comparison of correlation analysis techniques for irregularly sampled time series. 

Nonlinear Processes in Geophysics, 18(3), 389–404. https://doi.org/10.5194/npg-18-389-2011
Rehfeld, K., Molkenthin, N., & Kurths, J. (2014). Testing the detectability of spatio-temporal climate transitions from paleoclimate networks with 

the start model. Nonlinear Processes in Geophysics, 21(3), 691–703. https://doi.org/10.5194/npg-21-691-2014
Reick, C. H., Raddatz, T., Brovkin, V., & Gayler, V. (2013). Representation of natural and anthropogenic land cover change in MPI-ESM. Journal 

of Advances in Modeling Earth Systems, 5(3), 459–482. https://doi.org/10.1002/jame.20022
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., et al. (2020). The IntCal20 Northern Hemisphere radiocar-

bon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., et al. (2013). Intcal13 and Marine13 radiocarbon age calibration 

curves 0–50,000 years Cal Bp. Radiocarbon, 55(4), 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
Renssen, H., Goosse, H., Roche, D. M., & Seppä, H. (2018). The global hydroclimate response during the Younger Dryas event. Quaternary 

Science Reviews, 193, 84–97. https://doi.org/10.1016/j.quascirev.2018.05.033
Reschke, M., Rehfeld, K., & Laepple, T. (2019). Empirical estimate of the signal content of Holocene temperature proxy records. Climate of the 

Past, 15(2), 521–537. https://doi.org/10.5194/cp-15-521-2019
Sánchez Goñi, M. F., Desprat, S., Daniau, A.-L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., & Yamamoto, M. (2017). The ACER 

pollen and charcoal database. PANGAEA. https://doi.org/10.1594/PANGAEA.870867
Sánchez Goñi, M. F., Desprat, S., Daniau, A. L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., et al. (2017). The ACER pollen and 

charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth 
System Science Data, 9(2), 679–695. https://doi.org/10.5194/essd-9-679-2017

Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. 
Nature, 531(7593), 229–232. https://doi.org/10.1038/nature16986

Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., et al. (2012). Global warming preceded by increasing carbon dioxide con-
centrations during the last deglaciation. Nature, 484, 49–54. https://doi.org/10.1038/nature10915

Singarayer, J. S., & Valdes, P. J. (2010). High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quaternary Science Reviews, 
29(1–2), 43–55. https://doi.org/10.1016/j.quascirev.2009.10.011

Snyder, C. W. (2016). Evolution of global temperature over the past two million years. Nature, 538(7624), 226–228. https://doi.org/10.1038/
nature19798

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, P. M. (2013). Climate change 2013: The physical 
science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, 
United Kingdom and New York, USA: Cambridge University Press.

Thompson, R., Whitlock, C., Harrison, S., Spaulding, W., & Bartlein, P. (1993). Vegetation, lake-levels and climate in the western United States. 
In H. E. Wright, J. E. Kutzbach, T. Webb, W. F. Ruddiman, F. A. Street-Perrott, & P. J. Bartlein (Eds.), Global climates since the last glacial 
maximum (pp. 468–513). University of Minnesota Press.

https://doi.org/10.1016/j.quascirev.2011.02.005
https://doi.org/10.1126/science.291.5501.112
https://doi.org/10.1038/nature02805
https://doi.org/10.1126/science.aan5360
https://doi.org/10.5194/cp-9-1571-2013
https://doi.org/10.3402/tellusa.v50i3.14524
https://doi.org/10.1016/j.quascirev.2016.07.009
https://doi.org/10.1175/JCLI3748.1
https://cran.r-project.org/package=ggraph
https://cran.r-project.org/package=tidygraph
https://cran.r-project.org/package=tidygraph
https://doi.org/10.1126/science.265.5169.195
https://doi.org/10.1146/annurev.earth.32.082503.144359
https://doi.org/10.1007/bf00211617
https://doi.org/10.1111/j.1469-8137.2010.03620.x
https://doi.org/10.1046/j.1365-2699.2000.00425.x
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.5194/esd-11-447-2020
https://doi.org/10.5194/cp-10-107-2014
https://doi.org/10.5194/cp-10-107-2014
https://doi.org/10.1016/j.epsl.2015.12.020
https://doi.org/10.1007/s00382-012-1448-3
https://doi.org/10.5194/npg-18-389-2011
https://doi.org/10.5194/npg-21-691-2014
https://doi.org/10.1002/jame.20022
https://doi.org/10.1017/RDC.2020.41
https://doi.org/10.2458/azu_js_rc.55.16947
https://doi.org/10.1016/j.quascirev.2018.05.033
https://doi.org/10.5194/cp-15-521-2019
https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.5194/essd-9-679-2017
https://doi.org/10.1038/nature16986
https://doi.org/10.1038/nature10915
https://doi.org/10.1016/j.quascirev.2009.10.011
https://doi.org/10.1038/nature19798
https://doi.org/10.1038/nature19798


Paleoceanography and Paleoclimatology

ADAM ET AL.

10.1029/2021PA004265

21 of 21

Tian, F., Cao, X., Dallmeyer, A., Lohmannn, G., Zhang, X., Ni, J., et al. (2018). Biome changes and their inferred climatic drivers in northern and 
eastern continental Asia at selected times since 40 cal ka BP. Vegetation History and Archaeobotany, 27, 365–379. https://doi.org/10.1007/
s00334-017-0653-8

Timm, O., & Timmermann, A. (2007). Simulation of the last 21 000 years using accelerated transient boundary conditions. Journal of Climate, 
20(17), 4377–4401. https://doi.org/10.1175/JCLI4237.1

Valdes, P. J., Armstrong, E., Badger, M. P., Bradshaw, C. D., Bragg, F., Crucifix, M., et al. (2017). The BRIDGE HadCM3 family of climate 
models: HadCM3@Bristol v1.0. Geoscientific Model Development, 10(10), 3715–3743. https://doi.org/10.5194/gmd-10-3715-2017

Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., et al. (2013). The Antarctic ice core chronol-
ogy (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 9(4), 
1733–1748. https://doi.org/10.5194/cp-9-1733-2013

Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. In Generalized principal component analysis (pp. 25–62). New York: 
Springer New York. https://doi.org/10.1007/978-0-387-87811-9_2

Vincens, A., Garcin, Y., & Buchet, G. (2007). Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: Pollen 
evidence from Lake Masoko, Tanzania. Journal of Biogeography, 34(7), 1274–1288. https://doi.org/10.1111/j.1365-2699.2007.01698.x

Wei, D., Prentice, I. C., & Harrison, S. P. (2020). The climatic space of European pollen taxa. Ecology, 101(8). https://doi.org/10.1002/ecy.3055 
17864

Weitzel, N., Wagner, S., Sjolte, J., Klockmann, M., Bothe, O., Andres, H., et al. (2019). Diving into the past: A paleo data-model compari-
son workshop on the Late Glacial and Holocene. Bulletin of the American Meteorological Society, 100, 1–ES4. https://doi.org/10.1175/
BAMS-D-18-0169.1

Woillez, M. N., Kageyama, M., Krinner, G., De Noblet-Ducoudré, N., Viovy, N., & Mancip, M. (2011). Impact of CO2 and climate on the 
last glacial maximum vegetation: Results from the ORCHIDEE/IPSL models. Climate of the Past, 7(2), 557–577. https://doi.org/10.5194/
cp-7-557-2011

Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., & Svensson, A. (2010). Millennial-scale variability during the last glacial: The ice 
core record. Quaternary Science Reviews, 29(21–22), 2828–2838. https://doi.org/10.1016/j.quascirev.2009.10.013

Wood, S. (2017). Generalized additive models: An introduction with R (2nd ed., ). Chapman and Hall/CRC
Yeager, S. G., Shields, C. A., Large, W. G., & Hack, J. J. (2006). The low-resolution CCSM3. Journal of Climate, 19, 2545–2566. https://doi.

org/10.1175/JCLI3744.1

https://doi.org/10.1007/s00334-017-0653-8
https://doi.org/10.1007/s00334-017-0653-8
https://doi.org/10.1175/JCLI4237.1
https://doi.org/10.5194/gmd-10-3715-2017
https://doi.org/10.5194/cp-9-1733-2013
https://doi.org/10.1007/978-0-387-87811-9_2
https://doi.org/10.1111/j.1365-2699.2007.01698.x
https://doi.org/10.1002/ecy.3055
https://doi.org/10.1175/BAMS-D-18-0169.1
https://doi.org/10.1175/BAMS-D-18-0169.1
https://doi.org/10.5194/cp-7-557-2011
https://doi.org/10.5194/cp-7-557-2011
https://doi.org/10.1016/j.quascirev.2009.10.013
https://doi.org/10.1175/JCLI3744.1
https://doi.org/10.1175/JCLI3744.1

	Identifying Global-Scale Patterns of Vegetation Change During the Last Deglaciation From Paleoclimate Networks
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data
	2.1. Pollen Records
	2.2. Climate Simulation Output

	3. Methods
	3.1. Extracting Arboreal Pollen Fractions From Pollen Records
	3.2. Extracting Surrogate Time Series From Model Simulations
	3.3. Construction of Paleoclimate Networks
	3.4. Network Measures
	3.5. Principal Component Analysis

	4. Results
	4.1. Spatio-Temporal Similarity Structures in Deglacial Arboreal Pollen Records
	4.2. Comparison of Arboreal Pollen and Surrogate Networks
	4.3. Millennial-Scale Similarity Structures in Arboreal Pollen and Surrogate Networks

	5. Discussion
	5.1. Influence of Record Quality and Site Type on the Network Measures
	5.2. Implications for the Deglacial Vegetation and Climate Evolution
	5.3. Potential Reasons for Inconsistent Patterns on Millennial Scales

	6. Conclusions
	Data Availability Statement
	References


