Received: 17 December 2020 | Revised: 8 July 2021

Accepted: 9 July 2021

DOI: 10.1111/tgis. 12821

RESEARCH ARTICLE

Transactions @,

in GIS WILEY

Multimodal travel-time maps with formally correct
and schematic isochrones

Axel Forsch

| Youness Dehbi | Benjamin Niedermann |

Johannes Oehrlein | Peter Rottmann | Jan-Henrik Haunert

Institute of Geodesy and Geoinformation,
Working Group Geoinformation, University
of Bonn, Bonn, Germany

Correspondence

University of Bonn, Meckenheimer Allee
172, Bonn 53115, Germany.

Email: forsch@igg.uni-bonn.de

Funding Information

This research was supported by the German
Research Foundation (DFG), grant 5451/7-
1, within the DFG priority program, grant
1894

Abstract

The automatic generation of travel-time maps is a prerequi-
site for many fields of application such as tourist assistance
and spatial decision support systems, for example to analyze
the accessibility of health and social facilities. The task is to
determine outlines of zones that are reachable from a user’s
location in a given amount of time. In this work we focus on
travel-time maps with a formally guaranteed SEPARATION
PROPERTY in the sense that a zone exactly contains the part
of the road network that is reachable within a pre-defined
time from a given starting point and start time. In contrast
to other automated methods that create travel-time maps,
our approach generates schematized travel-time maps that
reduce the visual complexity by representing each zone by
an octilinear polygon, that is, the edges of the polygons use
only eight pre-defined orientations. We aim for octilinear
polygons with a small number of bends to further optimize
the legibility of the map. The reachable parts of the road
network are determined by the integration of timetable in-
formation for different modes of public transportation, for
example buses, trains or ferries, and pedestrian walkways
based on a multimodal time-expanded network. Moreover,
the travel-time maps generated visualize multiple travel

times using a map overlay of different time zones and taking

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial

purposes.

© 2021 The Authors. Transactions in GIS published by John Wiley & Sons Ltd.

Transactions in GIS. 2021;25:3233-3256.

wileyonlinelibrary.com/journal/tgis 3233

www.wileyonlinelibrary.com/journal/tgis
mailto:﻿￼
http://orcid.org/0000-0002-3849-4865
http://creativecommons.org/licenses/by-nc/4.0/
mailto:forsch@igg.uni-bonn.de

FORSCH ET AL.

3234 WI LEy_Transactions @

in GIS

natural barriers such as rivers into account. In experiments
on real-world data we compare our schematic visualizations
to travel-time maps created with other visualization tech-
niques with respect to simple but robust quality measures

such as the number of bends and the perimeter of the zones.

1 | INTRODUCTION

Travel-time maps provide the user with an easily comprehensible visualization of areas that are reachable from
a selected location within a prescribed amount of time. The boundaries of such areas are commonly referred to
as isochrones. We present a new method for generating schematic travel-time maps automatically - a preview of
some results generated with our method is provided in Figure 1. The motivation for using a schematic visualiza-
tion is to avoid the high graphical complexity that can occur with existing solutions, which we review in detail in
Section 2. However, we aim not only for a low graphical complexity but also for a visualization inducing a formally
correct classification of the transport network into reachable and unreachable parts.

Before giving a formal definition of the property ensured by our method, we discuss a classical approach (in
the following referred to as time buffering) and its possible flaws. An early map of Melbourne generated with time

buffering is shown in Figure 2. The approach consists of two steps.

1. Travel times are estimated from a selected point to all stations in the transport network (in the map of
Melbourne the tram and railway network).

2. To visualize the area reachable within some amount of time z, a disk is drawn around each reachable station s
such that the disk’s radius equals the available amount of time 7 — z, (where 7 is the travel time to s) multiplied

by a constant (which may correspond to the assumed walking speed outside the transport network).

Travel times: [l 7:30 min @@ 15:00 min 00 22:30 min 30:00 min
Public transportation:

A .
start point

bus = = tram N railway oo oo ferry

FIGURE 1 Travel-time maps generated for the city of Bonn, Germany. The maps show the accessibility of the
road network starting from the same location for different start times in the morning (left) and during the night
(right) of a work day

FORSCH ET AL. Transactions 3235
in GIS _Wl LEY

Usually, as in the example of Figure 2, this approach is repeated with multiple different values for 7, resulting in
multiple areas (in the following referred to as time zones). Furthermore, the time-buffering approach can easily be
generalized to situations where in Step 1 accurate travel times are estimated not only for a discrete set of stations
but also for the continuous set of all points in a geometric graph - an example we generated ourselves using public
transportation timetable data and road data is shown in Figure 3a. We observe that many points in the network that
in Step 1 were classified as unreachable (dashed lines) fall into the area highlighted as reachable (red region). We

FIGURE 2 An early travel-time map of Melbourne rail transport travel times, 1910-1922. The public
transportation is taken into account: for each reachable station the remaining travel time is visualized by
concentric circles. Source: Melbourne and Metropolitan Tramways Board—State Library of Victoria

FIGURE 3 Asingle time zone of 15 minutes starting at the flag. Unreachable roads are dashed. (a) Time zone
created by buffering the remaining travel time for each point of the road network. (D)-2) The time zone covers
unreachable roads. (3 Time zone has ramified outgrowths. (b) Time zone created by our approach. (D)-2) Time
zone only covers reachable roads. 3) SCHEMATIZATION simplifies the visualization

FORSCH ET AL.

3236 Wl LEy_Transactions @,

in GIS

consider this inappropriate, since there is no evidence that the empty space between the roads is traversable. More
precisely, the assumed constant walking speed for areas outside the network lacks a good justification. We do not
make this assumption and keep the classification of points in the network as it results from Step 1. Still, we would
like to use areas to visualize the reachable part of the network. We argue that schematic polygons are particularly
well suited for this, because they keep the graphical complexity low. The travel-time map created with our ap-
proach is shown in Figure 3b. Aside from the LOW VISUAL COMPLEXITY, another advantage of schematized time
zones is that SCHEMATIZATION is widely applied for the visualizations of transport networks, such as metro maps.
Since schematic metro maps are so commonly applied in practice, it can be assumed that most people understand
that the geometric information provided with schematic polygons needs to be taken with a grain of salt (i.e., not
all points of the map plane contained in a time zone we display are actually reachable) yet qualitative information
displayed for the transport network, such as the classification into reachable and unreachable parts, is correct.

We formalize the correct classification of the transport network into reachable and unreachable parts as fol-
lows. A location t in a road network £ is reachable from the user’s location s in time if there is a route r from s to
t using footpaths in % and connections in the public transportation network such that it takes at most time z to
travel alongr; all other locations of &% are unreachable. Due to the possibly disconnected structure of the reachable
subnetwork, we describe its outline, the time zone of temporal extent z, not by a single polygon, but rather by a
set of polygons whose boundaries do not intersect; we explicitly allow holes in the polygons modeling unreach-
able parts contained in reachable parts of the network. We consider a time zone formally correct if it satisfies the
following SEPARATION PROPERTY.

Definition 1 (SEPARATION PROPERTY). The time zone Z satisfies the SEPARATION PROPERTY if each reachable

location of R is contained in one of the polygons of Z and each unreachable location of R is not.

In contrast to previous work (Baum, Blasius, Gemsa, Rutter, & Wegner, 2018; Gamper, Bohlen, Cometti, &
Innerebner, 2011; Krismer, Specht, & Gamper, 2017), we follow the idea of schematic mapping to use only octilin-
ear orientations for the edges of the time zone, that is, they are either horizontal, vertical or diagonal. To that end,
we discretize the solution space by an octilinear grid. In the exceptional case that our algorithm does not find a
strictly octilinear polygon that separates the reachable and unreachable nodes, we allow non-octilinear lines. To
keep the visual complexity low, we heuristically minimize the number of bends of the polygons.

Altogether, the core contribution of this article is an algorithm for creating a high-quality, schematized travel-

time zone for a starting location given a start time and maximum travel times. It fulfills the following requirements:

1. MULTIMODAL NETWORKS. The travel-time map is based on a multimodal transportation network taking
public transport and pedestrian movement into account.

2. LOW VISUAL COMPLEXITY. The travel-time map has LOW VISUAL COMPLEXITY without ramified structures.

3. SEPARATION PROPERTY. The travel-time map is formally correct and represents reachable and unreachable
locations in the road network accurately.

4. SCHEMATIZATION. The travel-time map is schematized such that the shape of each of its time zones is restricted

to a fixed number of edge directions.

We have developed our method particularly for users roaming through a city, for example, tourists exploring dif-
ferent sightseeing spots distributed all over the city. In that scenario, typically the user gets around on foot and uses
public transportation to bridge larger distances. Hence, to determine the reachable part of the road network in Step 1,
we consider both public transportation and all parts of the road network that are accessible on foot. Taking public
transportation into account poses additional challenges when creating travel-time maps. Firstly, when determining
the reachable part of the road network in Step 1, the underlying routing component needs to support integrated path-
finding in the road and public transportation network. To that end, we utilize the time-expanded model introduced

FORSCH €T AL. Transactions @ —Wl LEY 3237

in GIS

v
& \\ f start point

roads

Travel times:
I 5 min
10 min

Public transp.:

bus

ooo.ferry

(b)

FIGURE 4 Incorporating natural barriers. (a) Time zones without cutting natural barriers. (b) Time zones after
cutting natural barrier

by Pyrga, Schulz, Wagner, and Zaroliagis (2008) for routing in public transportation networks with timetables, and
connect it with the road network. This enables us to compute realistic routes whose travel times depend on the cur-
rent timetable. Secondly, a time zone is not necessarily a single component, but may consist of multiple components
each possibly containing holes representing unreachable parts. This needs to be taken into account in Step 2.
Additionally we show how to embed this algorithm in a holistic framework for creating travel-time maps with

multiple, correctly nested travel-time zones. To that end, we introduce the following extensions.

1. Multiple travel times. Time zones of different travel times are overlaid. To avoid cluttered maps, the
algorithm is adapted such that the time zones are correctly nested.

2. Clipping. A post-processing step incorporates natural barriers such as rivers that cannot be overcome on foot.
Overlaying them with time zones may lead to the wrong impression that a region is easily accessible on foot; see
Figure 4a. We therefore clip time zones to natural barriers; see Figure 4b.

3. Polishing. To enhance the visualization a morphological closing operation borrowed from image processing is
adapted on graph structures and applied to resolve small artifacts.

4. Multiple zoom levels. In a generalization step the time zone is adapted to multiple zoom levels showing different
levels of detail.

The article is organized as follows. In Section 2 we discuss related work. In Section 3 we give a high-level overview
of the components of our approach, which we explain in greater detail in Sections 4-6. In Section 7 we describe possi-
ble extensions. In Section 8 we present our experiments on real-world data and their evaluation. Section 9 concludes.

The source code can be downloaded at https://www.geoinfo.uni-bonn.de/travel-time-maps.

2 | RELATED WORK

Two basic algorithmic problems lie at the core of the process of creating travel-time maps. The first is about deter-
mining the reachable part of the transportation network. The result is a possibly disconnected set of components
of the network that describe the reachable subnetwork for a given travel time. For our scenario, it needs to fulfill
the requirement of supporting MULTIMODAL NETWORKS. The second algorithmic problem is then about the visu-
alization of the obtained components. This problem is related to our requirements of LOW VISUAL COMPLEXITY,
SEPARATION PROPERTY and SCHEMATIZATION.

For computing the reachable part of the transportation network, previous work has considered various
types of networks and routing algorithms that were specially engineered for solving this task in real-time ap-
plications. Bauer, Gamper, Loperfido, Profanter, Putzer, and Timko (2008) presented a simple routing algorithm
that takes both a road network as well as a bus network into account. Gamper et al. (2011) proposed a formal

https://www.geoinfo.uni-bonn.de/travel-time-maps

FORSCH ET AL.

3238 Wl LEy_Transactions @

in GIS

(a) outline of network (b) minimal bends (c) schematic

FIGURE 5 Sketches of different methods for creating travel-time maps. (a) Outline of network. (b) Minimal
bends. (c) Schematic

definition which describes an isochrone as the (possibly disconnected) subgraph of a transportation network
that can be reached from a given starting point in a specific time. Based on Dijkstra’s algorithm for finding
shortest paths in graphs, they presented an algorithm for computing isochrones in MULTIMODAL NETWORKS.
Gamper, Bohlen and Innerebner (2012) and Krismer et al. (2017) improved that algorithm with respect to its
running time and memory consumption. Moreover, Krismer, Specht and Gamper (2014) considered the compu-
tation of multiple isochrones for different travel times but the same starting point. Baum, Buchhold, Dibbelt,
and Wagner (2019) adapted customized route planning to computing isochrones in dynamic road networks.
They specially engineered their algorithms to deploy them in interactive scenarios taking large networks (i.e.,
spanning entire continents) into account.

When it comes to the visualization of isochrones less research has been conducted so far. O’'Sullivan, Morrison and
Shearer (2000) proposed an approach deployed in a geoinformation system for visualizing isochrones that take public
transportation into account. They suggested computing the remaining walking time for each station and visualizing the
possible pedestrian movement either by concentric circles around the stations or more complex regions modeling the
area that is accessible on foot. These regions are joined and inaccessible parts are cut out. However, their approach
does not enforce the SEPARATION PROPERTY as the concentric circles can overlap unreachable areas. Krajzewicz
and Heinrichs (2016) split the map into cells and computed for each cell the required travel time for a given starting
point and multimodal transportation. They used this information to aggregate and color the cells with respect to the
required travel time. However, based on the cells this easily yields structures with branched outgrowths in the visual-
ization. Marciuska and Gamper (2010) presented two approaches for visualizing isochrones in road networks. The first
creates a buffer with user-specific size around each reachable edge in the road network, and the second (see Figure 5a)
constructs a single polygon enclosing the reachable part which is then enlarged by buffering. Neither approach en-
forces the SEPARATION PROPERTY, but when choosing a small buffer size the time zones only contain a small number
of unreachable roads. Baum et al. (2018) presented an approach for visualizing isochrones in road networks with a
strong focus on algorithm engineering. They represented the isochrones by polygons that minimize the number of
bends and satisfy the SEPARATION PROPERTY; see Figure 5b. Their approach consists of the following steps:

1. Determine the reachable and unreachable part of the road network.

2. Planarize the road network resolving bridges and tunnels.

3. Determine the faces in the planarization that separate the reachable parts from the unreachable part. These
faces are merged to one face separating reachable and unreachable regions.

4. For each reachable region compute a polygon that encloses that region and separates the unreachable from the

reachable part. All of these polygons combined form the time zone.

In our approach we apply similar steps in a slightly different order. We planarize the road network only once

and reuse this information for multiple queries. Further, we consider multimodal transportation and represent the

FORSCH €T AL Transactions 7= 3239
nsactions g5\ py-| 2

TABLE 1 Overview of different methods for creating isochrones towards fulfilling our requirements

MULTIMODAL LOW VISUAL SEPARATION
NETWORKS COMPLEXITY PROPERTY SCHEMATIZATION

Melbourne (1910) No No No circles
QO’Sullivan et al. (2000) Yes No No No
Bauer et al. (2008) Yes - Yes -
Marciuska and Gamper (2010) No No No No
Krajzewicz and Heinrichs (2016) Yes No No No

Baum et al. (2018) No min. bends Yes No

Our approach Yes min. bends Yes octilinear

isochrones by schematized polygons; see Figure 5c. An overview of related work for creating travel-time maps is
given in Table 1 by categorizing the methods towards fulfilling the requirements introduced in Section 1.

SCHEMATIZATION has also been investigated in other contexts. Most prominently, SCHEMATIZATION is used to
represent transit networks such as metro systems. The interested reader is referred to surveys on automated layout
methods for transit maps by Néllenburg (2014) and Niedermann, Takahashi, and Nollenburg (2019), Wu, Niedermann,
Takahashi, Roberts, and Néllenburg (2020). Moreover, Buchin, Meulemans, Renssen, and Speckmann (2016) stud-
ied the automated simplification and SCHEMATIZATION of territorial outlines preserving area and topology con-
straints. To capture the shape of arbitrary polygons, Bouts, Kostitsyna, van Kreveld, Meulemans, Sonke, and Verbeek
(2016) presented a mapping to simple grid polygons based on Hausdorff or Fréchet distance. Recently, Bonerath,
Niedermann and Haunert (2019) presented an approach for visualizing points annotated with time-stamps based on
schematized, octilinear a-shapes. In order to construct the octilinear polygons we create a shortcut graph which rep-
resents all candidate edges of the time zone. Similar graph structures are used for line simplification (Imai & Iri, 1988)
and the simplification of footprints of buildings (Haunert & Wolff, 2010).

Empirical evaluations of LOW VISUAL COMPLEXITY have been conducted in the context of graph draw-
ings. Purchase (2000) identify the number of bends and the number of crossings in a graph drawing as the most
significant factors for the usability of graph drawings. Further research on edge crossings showed that not only
should the number of crossings be minimized but also their crossing angle should be maximized (Huang, Hong,
& Eades, 2008). Ware, Purchase, Colpoys, and McGill (2002) highlight the importance of path continuity for
shortest-path perception. We incorporate these findings into our approach by minimizing the number of bends
in our time zones and by using octilinear polygons, which have a fixed smallest opening angle of 22.5° thus
improving path continuity.

We provide travel-time maps at different zoom levels selecting the most important roads in small-scale
maps based on their attributes. Other methods for selective omission in road networks can be applied. Brewer,
Stanislawski, Buttenfield, Sparks, McGilloway, and Howard (2013) presented an automated approach for thin-
ning of road networks by removing features. For network generalization Chimani, van Dijk and Haunert (2014)
introduced an approach that successively deletes the edges preserving the connectivity of the graph. Zhou and Li
(2016) proposed a method for the empirical determination of geometric parameters to decide which roads should

be retained or eliminated at a specific scale.

3 | WORKFLOW

We present a workflow for creating travel-time maps that consists of three components, which can be enhanced
by three extensions; see Figure 6. The input is public transportation data consisting of timetable information and
station coordinates, a road network, an origin within the road network, the start time of the query and a set T of
travel times.

3240 Wl LEy_Transactions 7g) FORSCH ET AL.

in GIS
Component 1: Component 2: Component 3:
Preprocessing Routing Visualization
| OSMdata | | GTFS data | | dilation factor d |
transportation closing clippine
7 2 g
road graph % graph 77
. labeled nodes: octilinear visualization
geometrlc R
. blue/red of time zones
relation

shortest path
algorithm

combined
routing graph ¢

planarization

optional:
generalization

start
time T,

travel
time T

origin s

in %

planarized |
raph #

FIGURE 6 lllustration of workflow. The preprocessing component creates different graph structures that
are used in the routing component and the visualization component. The routing component marks all reachable
nodes blue and all unreachable nodes red. The visualization component creates a time zone for each travel time

3.1 | Preprocessing component

The input data are prepared by preprocessing graph structures that can be reused for multiple travel-time maps
with different origins. Hence, we execute this component only once in advance, investing some computation time
to accelerate queries made by the user. In our experiments we used General Transit Feed Specification (GTFS)
data for public transportation and OpenStreetMap (www.openstreetmap.org, OSM) data for modeling the road
network; other data sources may also be integrated. Applying the time-expanded model by Pyrga et al. (2008), we
build a graph 7 modeling the public transportation. Further, we represent the road network as a geometric graph
R. We merge both graphs into one graph G that is used in the routing component for routing and determining all
reachable nodes of R. Further, we planarize R to obtain a graph R whose embedding is planar, that is, there are
no crossings between two edges. The planarization is explained in detail in Section 4. We only use R in the visu-
alization component for the purpose of computing the visualization polygons, but not for routing in the routing

component. The details are found in Section 4.

3.2 | Routing component

Using a shortest path algorithm on G, we compute the locations in R that are reachable from a given starting point
s and start time 7 within travel time = € T. We subdivide each edge e that is only partly reachable from s by an
additional node at the point with time distance = from s. Hence, afterwards the reachability of R corresponds to
a coloring of the edges: all reachable edges are blue and all unreachable edges are red. The details are found in

Section 5.

3.3 | Visualization component

This component creates the time zones of the travel-time map. It expects the planarized road network R and for

each travel time r € T the edge coloring created by the previous component. For each travel time it creates a set of

http://www.openstreetmap.org

FORSCH €T AL Transactions 7= 3241
nsactions g5\ py-| 2%

schematic polygons containing exactly all reachable edges in R. In the case of multiple travel times, the approach

considers the creation of the time zones in an integrated way. The details are found in Section 6.

3.4 | Extensions

The workflow can be enhanced by three optional extensions. These aim to further simplify the shape of the cre-
ated time zones by removing small holes and taking into account natural boundaries and zoom levels. The details

are found in Section 7.

4 | PREPROCESSING COMPONENT

In this section we explain how the input data are preprocessed to obtain graph structures that we use in the rout-

ing and visualization Components.

4.1 | Road network

We model the road network as a geometric graph R = (Vy, E;,), that is, each node corresponds to a point and each edge
corresponds to a line segment whose end points are the incident nodes of the edge. We assume that the course of a road
between two junctions is described by a path consisting of degree-2 vertices. In order to accelerate routing we can con-
tract degree-2 vertices, but for the visualization component we also need to consider these nodes to maintain the shape
of the network. As we consider pedestrians navigating through the city in a combination of public transportation and
walking we only include paths that are accessible by pedestrians; in particular, we exclude all highways and speedways.
Further, we annotate each edge e € E, with the time that is necessary to traverse it; in our experiments we assumed a
constant walking speed of 5 km/h. Note, however, that we make no assumption outside the road network.

Due to tunnels and bridges the given embedding of the road graph R is not necessarily planar, that is, there
may be edges that cross each other. However, for the visualization component we do not need this additional
information, but we can make the embedding planar by subdividing the edges with additional vertices at their
intersections as similarly done in Baum et al. (2018). The result is a plane graph R, which we utilize for creating the
time zones in the visualization component. We note that for routing, we use the road graph R still containing all

non-planarized bridges and tunnels.

4.2 | Public transportation network

We assume that the timetable for the public transportation network is given. It is described by a set S of stations and
aset T of trips. Each trip t € T is a sequence of stations that are served by a vehicle in chronological order. Hence, we
describe t as a sequence of stops such that each stop is defined by a station ¢ € S and two times, namely the arrival
time and the departure time of the bus or train. Based on this timetable we construct a graph P = (Vp, &) following
the time-expanded model for timetable information presented by Pyrga et al. (2008). As we introduce some problem-
specific adaptions we describe this model for the convenience of the reader; see also Figure 7.

For each stop h of each trip we introduce two nodes u and v that represent the arrival and departure of the
means of transportation at a certain station o, respectively. We call u the arrival node and v the departure node of

the stop, and annotate u with its arrival time r, and v with its departure timez,. Further, we insert a directed edge

FORSCH ET AL.

3242 Wl LEy_Transactions @

in GIS

("station E / Public Transport Station A \

. (o
arrival transfer departure

station D

\9_\

| [station C

= Y)

(ctation R)
station B

(ctation B)
station F

connection to the “~———~/

road network

FIGURE 7 Time-expanded model for an example station A. Four trips occur at the station: two starting in
station A and two passing through. The change of a connection is modeled by transfer nodes. The connection to
the road network is marked in blue

from u to v. For each trip, each pair of consecutive stops h, h’ are concatenated by adding an edge from the depar-
ture node of h to the arrival node of h'.

In order to model transfers from one trip to another, we introduce a transfer nodew for each stop h of each
trip. We annotate w with a transfer timer,, that is equal to the departure time of h. We introduce a directed edge
from w to v, modeling the access to a trip. Finally, we connect the transfer nodes of the same station with each
other. To that end, let H, be the set of all stops at a station 6. We sort H_ in increasing order with respect to their
transfer times. We introduce directed edges between each pair of consecutive transfers in H,. These edges model
necessary waiting times at o.

Further, each edge is annotated with the time difference between its target node and its source node. This
difference models the cost for traveling along this edge. The model provides us with the possibility of finding the
best journey through the public transportation network, for example with Dijkstra’s algorithm. Further, it supports

minimal transfer times and a cyclic repetition of the timetable; for more details see Pyrga et al. (2008).

4.3 | Joining road graph and public transportation graph

For the routing component we join the road graph R and the public transportation graph 7 into one graph G as fol-
lows. For each station ¢ we use its geographic location to identify the closest node u in R; we call u an access point
of the public transportation system. To keep the experiments simple we merely used the geographic locations of
the stations, but more sophisticated approaches based on the entrances of the stations could be used to make
the routing more accurate. To model the user leaving the public transportation system, we connect each arrival
node v of ¢ with the access point u via a directed edge from v to u. As each trip has a pre-defined departure time
at each station, we cannot simply insert edges between u and all transfer nodes of ¢ modeling the user entering
the public transportation system. Instead we do this on demand when computing a shortest journey in G in the

following component.

FORSCH €T AL Transactions 7= 3243
nsactions g5\ py-| 22

K

(b) (©)

FIGURE 8 The reachability is modeled by subdividing edges. (a) The node x (y) subdivides the edge (u, v) (u, w)
at the last reachable position. (b) Special case: the nodes u and v are reachable from different directions. (c) The
coloring of R is transferred to R and the nodes (squares) that are introduced for the planarization are colored

5 | ROUTING COMPONENT

To determine all reachable nodes in the road network we make use of the graph ¢ as defined in the previous
component. For a starting point s in the road network of ¢ we use Dijkstra’s algorithm to determine all nodes
that are reachable in time z. From a technical point of view, the algorithm determines for each node u the
smallest journey time that is necessary to reach u. Thus, when routing in the part of G representing the road
network we determine for each node u the earliest time at which we arrive assuming that we are given a start
time for the journey (e.g. Monday 2 p.m.). We call this the earliest arrival time at u. Further, each time the algo-
rithm reaches an access point u of a station ¢ in the public transportation system, it temporarily introduces an
edge to the transfer node of o whose transfer time suits the earliest arrival time of u best; see the dotted blue
arc in Figure 7. With this we obtain for each node of ¢ its earliest arrival time. Using a standard termination
criterion, we let Dijkstra’s algorithm only consider nodes that are actually reachable in time z such that we do
not consider the entire network. We mark all reachable nodes blue and all others red. Further, for each edge
e that is incident to both a blue and a rednode we determine the location on e that is still reachable from s in
time r; see Figure 8a. At this location we subdivide e by a blue dummy node. A special case occurs when the
sum of the remaining distances at two adjacent, reachable nodes u and v is smaller than the length of edge
e = {u,v}, see Figure 8b. In this case e is subdivided by two additional dummy nodes with the middle part being
colored red. We further transfer the coloring and the newly inserted nodes into the planarized graph R, addi-
tionally coloring the nodes that have been introduced to planarize R; see Figure 8c. Each such node becomes
blue if it subdivides an edge e in R that is only incident to blue nodes; otherwise it becomes red. Altogether,
we obtain a coloring of R defining all nodes either blue or red. Due to the insertion of the dummy nodes, this
node coloring induces an edge coloring: edges that are incident to two reachable nodes are also reachable and

all other edges are unreachable.

6 | VISUALIZATION COMPONENT

In this section we describe how to compute the time zones of the travel-time map based on the coloring of the
previous step (Section 5). We first explain this for a single travel time and then for multiple travel times.

6.1 | Single Travel Time

In this subsection we assume a single travel time. Thus, we are given the planarized road network R and a coloring

such that each edge and each node are either blue (reachable) or red(unreachable). Further, we assume that the

FORSCH ET AL.

3244 Wl LEY_Trm nsactions @

in GIS

outer face only consists of rednodes but no blue nodes; we can always insert an unreachable bounding box and
connect it to the road network.

We first observe that R has faces that have both redand blue edges; see Figure 9. We call an edge that is inci-
dent to both a blue and a rednode a gate. Further, we call the reachable node of a gate its port. Removing the gates
from R decomposes the graph into a set of components Cj, ..., C, such that each component is either completely
blueor red. We call these the colored components of R.

6.1.1 | Base case

We first consider the case that C,, ...,C, have the same color, but C; has the opposite color; see Figure 10a. We
describe a procedure that creates a single octilinear polygon such that C; lies inside and C,, ..., C, lie outside the
polygon. Without loss of generality we assume that C, is blue and the other components are red. Let v, ..., v, be
the ports of R on the boundary of C, in the order in which we encounter them when going along the boundary of
C,; we choose an arbitrary starting point and define v, .,: = v4. We observe that any two consecutive ports v, v;, 4
are incident to the same face of ﬁ, which we denote by f;.

The base case consists of three steps; see Figure 10. In the first step we create for each pair v;, v;,; of consecu-
tive ports an octilinear grid G; contained inf;. In the second step, we fuse these grids to one large grid G. In the final
step, we use G to determine an octilinear polygon by finding an optimal path through G.

Step 1. For each pair v;, v;, 1 of consecutive ports with 1 < i < k we first compute an octilinear grid G; that is con-
tained in f;and connects v;and v, ;; see Figure 11. To that end, we shoot from both ports octilinear rays and compute
the line-segment arrangement L of these rays restricted to the face f; see Figure 11a. If £ forms one component, we
use it as grid G;. Otherwise, we refine L as follows. We uniformly subdivide the bounding box of f; by further nodes
from which we shoot additional octilinear rays; see Figure 11b. We insert these into £, restricting them to f. We call
the number of nodes on the bounding box the degree of refinement d. We double the degree of refinement until £ is
connected or a threshold d,,,,, is exceeded; see Figure 11c. In the latter case we also insert the boundary of f; into £
to guarantee that £ is connected. Later on, when creating the octilinear polygon we only use the boundary edges of
f;if necessary.

Step 2. In the following we interpret each grid G; as a geometric graph such that the grid points are the nodes of
the graph and the segments connecting the grid points are the edges of the graph. We union these graphs into one
large graph G. More precisely, G is the graph that contains all nodes and edges of the grids G, ..., G. In particular,
each port v; is represented by two nodes x; and y; in G such that x; stems from G;_; and y; stems from G;; fori=1
we define x; = v,. We connect two grids G;,_; and G; in G by introducing the directed edge (x;,y;) in G for2 <i <k.

Step 3. In the following let s: =y, and t: = x;. We compute a path P from s to t in G such that P has minimum
number of bends, that is, there is no other path from s to t that has fewer bends; see Figure 12b. To that end, we
use Dijkstra’s algorithm on the linear dual graph of G, allowing us to penalize bends in the cost function. If that the

-~

] N
T ls j:l K ::I

(a) (b)

FIGURE 9 Reachabilities for a single travel time. (a) The blue nodes and edges form a connected component.
(b) The blue and rednodes and edges form multiple connected components

FORSCH €T AL Transactions 7= 3245
nsactions g5\ py-| 2

(b) (c)

FIGURE 10 Creating an octilinear polygon that encloses the component C, (blue) of all reachable nodes and
edges. (a) The faces fy, ..., f5 surround the component C;. (b) Each face is subdivided by an octilinear grid (Step 1).
Furthermore, these grids are connected to one large grid G that is split by the port between f; and f5 (Step 2). (c)
An octilinear polygon is constructed by computing a bend-minimal path through G

(a) (b) ()

FIGURE 11 The facef, of the example shown in Figure 10 is subdivided by octilinear rays based on vertices
on the bounding box. (a) Shooting octilinear rays from v; and v;,; does not yield a connected line arrangement
(see yellow highlight). (b)-(c) The bounding box of f; is successively refined by vertices shooting octilinear rays
until they connect v;and v;, 4

choice of P is not unique, because there are multiple paths with the same number of bends, we use the geometric
length of the path as a tie-breaker, preferring paths that are shorter. As s and t have the same geometric location,
the path P forms an octilinear polygon O. We note that by using directed edges at the ports, we guarantee that P
crosses the port so that no unreachable component can be enclosed by O; see Figure 12b.

Only if in the second step we could not find a connected octilinear grid for a face do we relax the requirement
that P is octilinear. In that case P might also contain edges of the respective face. In order to minimize the number
of these possibly non-octilinear edges, we penalize them with high costs when searching for P. We note that O is
not necessarily simple, as we calculate each segment between two ports individually. This can lead to two seg-
ments of the same face crossing each other; see Figure 12c. In this exceptional case we transform O into a simple
polygon with holes by joining the overlapping parts. We note that this can change the number of bends in the
polygon’s outline. We consider this appropriate as we do not search for a global optimum solution for the number

of bends, but only the optimal solution in our model.

6.1.2 | General case

If R has multiple reachable and multiple unreachable colored components, we enclose the components in mul-

tiple polygons. To that end, we assign to each component a level that states the degree to which it is nested into

FORSCH ET AL.

3246 Wl LEy_Transactions @

in GIS

V) 0 0

s Y /ﬁ s

(a) (b) ()

FIGURE 12 Routing step. (a)-(b) The polygon O must not contain unreachable parts. For the routing step the
edges incident to ports are directed accordingly. (c) The path O is not necessarily simple

N)

(a) (b)

FIGURE 13 Thereachable (blue) and unreachable (red) parts of the road graph consist of multiple
components. (a) Each component has a level. (b) Each internal component is enclosed by a schematized polygon

other components; see Figure 13a. The idea is that blue components of odd level and redcomponents of even
level are enclosed by time zones. For the assignment of the levels, consider the graph R’ that we obtain from R
by removing its gates. A component that lies in the outer face of R’ has level 0. A component C that lies in the
internal face of another component C’ with level i gets assigned to level i + 1. For each blue component with even
level and each red component with odd level a time zone is computed respectively; see Figure 13b. Hence, we
obtain a time zone such that blue and red edges and nodes of R are separated. Further, time zones of different
levels are either disjoint or nested. However, time zones of the same level might partly intersect. We resolve this
by simply computing the union of all time zones enclosing components of the same level. Then the resulting set

of time zones is this union.

6.2 | Multiple travel times

For multiple travel times we compute the time zones of the travel times in decreasing order. However, we cannot just
simply combine them, as routing through the octilinear grids of the different travel times may result in time zones that
partly intersect. We observe that the edges and nodes of R are correctly separated for each travel time, but the map
may contain unnecessary overlaps between time zones. We therefore proceed as follows. Let 4, ..., 7, be the travel
times in increasing order, that is, 7, < - < 7. For 7, we compute the set Z, of time zones as described in Section 6.1.
For z; with i < # we slightly adapt the procedure of Section 6.1. When computing the grid graph G of a single colored
component we restrict the graph to the union of the time zones contained in Z;, ;. More specifically, we intersect its ge-

ometric embedding with the union of the time zones in Z;, ;. The result is a smaller grid graph G’ that we use for routing

FORSCH €T AL Transactions 7= 3247
nsactions g5\ py-| 27

t t
(a) (b)

FIGURE 14 Closing operation. (a) A small group of unreachable (red) nodes in the bluearea. (b) After the
closing operation the hole is filled

and computing the time zone enclosing the corresponding component. Altogether, we obtain a set of time zones for all

travel times. We draw them in the order as their area decreases and color each time zone with a different color.

7 | EXTENSIONS

In this section we briefly describe three extensions that we use to enhance the visualization. The first one can
be plugged into the routing component and the second and third ones can be plugged into the visualization

component.

7.1 | Closing

Initial experiments showed that the routing component typically returns a colored graph that consists of a few
large colored components and a variety of small colored components. For example, due to the choice of the
travel time it may happen that a few nodes and edges are unreachable while all others nearby are reachable;
see Figure 14. These small unreachable islands produce unpleasant-looking “ruptures” in the time zones. To im-
prove the visualization the closing extension removes these holes. A time zone created with this extension thus
does not strictly fulfill the SEPARATION PROPERTY any more! Nonetheless, we deem it reasonable to fill these
small holes, as the time zones depend on the assumption that the user has a walking speed of exactly 5 km/h,
which introduces an exaggerated accuracy. To that end, we utilize the technique of morphological closing applied in
image processing to suppress small patches of noise (Serra, 1983). The idea is to first extend the area of interest,
which removes the holes (dilation) and then to reduce the area to restore the original outer boundaries (erosion).
We adapt this method for our problem as follows. For dilation, we mark every node that is reachable in time zin
blue; see also Figure 14. Then we use an increased time 4 = 7 - (1 + d) with d > O to calculate a buffer region, that
is, we compute all nodes that are reachable in time 7, and mark all nodes in yellow that are not already colored blue;
we call d the dilation factor of the closing operation. All remaining uncolored nodes become red. For erosion, we
determine for every yellow node that is adjacent to a red node the yellow component that contains that node. We
color all nodes in that component red. Thus, the original boundaries of the blue components are restored, while
the nodes in small holes of the blue components remain yellow. Finally, we color the remaining yellow nodes blue,
which closes the holes. The greater the chosen value of d, the larger is the hole that is closed by this operation.

7.2 | Travel-time maps at different zoom levels

Depending on the concrete zoom level, digital maps typically show different levels of detail. For example, while in
large-scale maps all roads are shown, in small-scale maps only the most important roads are displayed to the user. We

FORSCH ET AL.

in GIS

3248 WI LEY_Tra nsactions @

FIGURE 15 Generalization of time zones for different zoom levels. (a) Small streets yield an octilinear
polygon with many bends. (b) Minor roads are ignored resulting in a SCHEMATIZATION with fewer bends

implement this concept in travel-time maps as follows. While for large-scale maps we aim for an outline of the time
zone that clearly separates the reachable from the unreachable part of the road network, for small-scale maps we
deem a rough outline to be preferable showing the most important features of the time zone. More specifically, we
compute all reachable and unreachable parts of the road network once at the beginning. When creating the time zone
for a single zoom level, we then remove all roads that are not displayed for this particular zoom level and construct the
time zone based on the remaining roads. Hence, the SEPARATION PROPERTY still holds for all drawn roads, but it may
be violated for the removed roads. Further, the time zone directly adapts to the current selection of roads.

Figure 15 shows an example for a travel-time map for two zoom levels. In Figure 15a two areas with a large
number of bends are highlighted. The first one shows a graveyard with small footpaths, while the second one
shows a field path parallel to a residential road. In both cases, a detailed outline with a large number of bends is
necessary to satisfy the SEPARATION PROPERTY. Figure 15b shows the generalized time zones of the same ex-
ample. The visualization for both marked regions is simplified and the octilinear structure of the polygons is easily
recognizable. In the given example, the blue area remains almost unchanged as no roads have been generalized
here. In particular, the improvement of the SCHEMATIZATION relies on a good selection of roads to be removed.

7.3 | Clipping

We observe that time zones may overlay important natural barriers such as rivers and lakes; see Figure 4. However,
this easily creates the impression that the region is easily accessible on foot. Furthermore, schematizing the out-
line of these natural barriers may compromise the “mental map” a user has of the area. We therefore clip the time
zones by subtracting important natural barriers. Sometimes, this creates small scratches of the polygon on the
wrong side of the river, in areas where no roads are present. As we do not have information about accessibility for
regions without roads, we remove these shreds. With this, we obtain an appearance of the time map that blends
in with the natural features of the map.

8 | EXPERIMENTS

In this section we describe our experiments on real-world data. In Section 8.1 we present the experimental setup.
In Section 8.2 we discuss results based on a single travel time, comparing them to other visualization approaches for

FORSCH €T AL Transactions 7= 3249
nsactions g5\ py-| 2

travel-time maps. Finally, in Section 8.3, we present a small case study featuring a travel-time map with multiple time

zones.

8.1 | Experimental setup

We have created travel-time maps for the metropolitan area of Cologne and Bonn, Germany. The area has a
densely developed public transportation network that consists of local, regional and long-distance transport.
Moreover, the Rhine, which is a major waterway in central Europe, passes through the region and separates it into
an eastern and western part. Both parts are connected by 11 bridges and six ferries spread out over a length of
60 km along the river. Thus, the river constitutes a major barrier for accessibility.

Our input data stem from two sources: for the road network we use OSM data® extracted by Geofabrik (www.
geofabrik.de). The extent of the data used is approximately 40 km from north to south and 60 km from east to
west, centered on the metropolitan area of Cologne and Bonn. The public transportation network data are taken
from OpenData VRS (www.vrs.de) in the GTFS format and contain 2018-2019 timetable information for local
transportation as well as regional trains. Further, for our experiments we inserted data about ferries crossing the
river Rhine.

For our evaluation we applied the algorithm for 20 different starting locations dispersed around the experi-
mental region. We used Monday 9 a.m. as starting time and computed travel-time maps for eight travel times (in
minutes), namely T = {5, 10, 15, 20, 25, 30, 35, 40}.

The implementation was written in Java and the experiments were performed on an AMD EPYC™ 7402P
processor clocked at 2.8 GHz with 128 GB RAM. The planarization of the graph took 62 seconds and creating the
remaining travel-time map took 18 seconds on average.

In order to decide on a suitable value for the maximum degree d,,, of refinement we conducted initial exper-
iments. To this end, we calculated time zones for three different travel times with d,,., varying from d,,.,, = 4 to
dinax = 128; see Figure 16.

The higher the maximum degree of refinement is, the finer the octilinear grid gets. Hence, the share of the
=32
over 99 % of all edges are octilinear; see Figure 16a. Moreover, for d,,,, = 32 the running time is increased by a

octilinear edges of the resulting polygon increases with increasing maximum degree of refinement. For d,,,
factor of at most 1.56 compared to d,,,, = 4; see Figure 16b. Thus, for the experiments we have chosen d,,, = 32

as a suitable compromise between accuracy and running time.

8.2 | Evaluation

We evaluate the results of our approach by comparing them with the results of other visualization techniques
for travel-time maps. Specifically, the techniques we compare our approach to are the time-buffered visualization
inspired by our initial example for the city of Melbourne (see Figure 2); the arboreal visualization as presented by
Marciuska and Gamper (2010) using a very small buffer size to best ensure the SEPARATION PROPERTY; and the
minimum-perimeter visualization which is a slight adaptation of the technique introduced by Baum et al. (2018),
minimizing the perimeter instead of the number of bends. Note, however, that we are using our own implementa-
tions of the respective works, and results can differ from results generated by the original solution. We discuss
the results with respect to their basic properties as well as the visual complexity. As simple measures for the
visual complexity of a polygon we use its perimeter, area, the type of angles (acute or obtuse) and the directions
of its edges. These measures are a common tool to assess the complexity of geometric shapes (Chen & Sundaram,
2005).

http://www.geofabrik.de
http://www.geofabrik.de
http://www.vrs.de

FORSCH ET AL.

3250 Wl LEy_Transactions @

in GIS
100.00% 6
54
98.00%
44
96.00%- N
94.00%- 2]
T T T T T T 1+
4 8 16 32 64 128 4
dmax dmax
(a) octilinearity (b) running Time

FIGURE 16 Evaluation of the maximum degree of refinement d,,,. (a) Share of the boundary’s length that is

visualized octilinearly. (b) Running time compared to the running time using the lowest d,,,,

8.2.1 | Octilinear visualization versus time-buffered visualization

First, we compare the octilinear visualizations with time-buffered visualizations. At the core of this visualization
technique is a constant off-road speed, which is assumed to be lower than the walking speed on roads. For each
point of the road network (no matter whether it is a node or a point on an edge) the remaining travel time at
this point is visualized by a buffer computed by means of the off-road speed; see Figure 17b. Consequently, the
SEPARATION PROPERTY is not enforced by this visualization technique. While reachable parts of the road net-
work are guaranteed to be contained in the time zone, unreachable parts may also be covered by the zone, violat-
ing our SEPARATION PROPERTY requirement, as seen in Figure 3a. Another example is shown in Figure 17b (1)
and (2 where parts of the road network that are not reachable are covered by the zone. Similar examples are easily
found all along the zone’s boundary. For the given example, in total 72 nodes of the road network are wrongly
represented as reachable. In contrast, the octilinear time zone shown in Figure 17a precisely separates the roads,
as required in our algorithm. Moreover, the time-buffered visualization tends to become frayed at the boundary
as highlighted in Figure 17b (2), also violating our LOW VISUAL COMPLEXITY requirement.

We insist on the SEPARATION PROPERTY as the main requirement for the travel-time maps. In the following
we therefore only evaluate approaches that fulfill this requirement.

8.2.2 | Octilinear visualization versus arboreal visualization

The second approach visualizes the outer boundary of the reachable zone, which we call arboreal visualization due
to the ramified shape of the time zones; see Figure 17c. We emphasize that this representation gets cluttered along
the boundaries of the zone, since the last reachable roads form tree-like dangles attached to a polygon. Hence,
in contrast to our approach, this kind of visualization tends to substantially larger perimeters; see Figure 18a. We
observe that especially for larger travel times the perimeter differs from our approach; for example, for a travel
time of 30 min the perimeter is increased by a factor of 2.9.

To analyze the types of the angles and the direction of the time zones’ edges we create a histogram of the
outer angles of the polygons; see Figure 19. To that end, we split the angle interval [0, 27] into 16 equal-sized bins
such that the ith bin is defined by the interval I; = [(2i — 3)z/16,(2i — 1)z /16), for 1 <i < 16. With this definition
the octilinear directions do not form the boundaries of these intervals, but split them into equal-sized subintervals.
For each bin i we count how many bends of the polygon have an outer angle that lies in ;.

We observe that the number of acute angles (three backward-facing bins, outer angle smaller than 33.75° or
greater than 326.25°) is significantly higher for the arboreal visualization than for the octilinear visualizations;

FORSCH €T AL.

T - 3251
et @ -WILEY--

(c) arboreal

(d) minimum perimeter

FIGURE 17 Single time zone for r = 15 minutes for different visualization types. and show areas where

the SEPARATION PROPERTY is violated in (a) and (b); highlights a hole which is hard to recognize using some
visualizations such as (c)

300+
E —— octilinear g 401 —— octilinear
3200- —— arboreal = —— arboreal
‘g —— min. perimeter % 301 — min. perimeter
= o
5 S 201
; 1004 5
E © 104

01 0-

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
travel time [min] travel time [min]
(a) perimeter (b) area

FIGURE 18 (a) Perimeter and (b) area for different visualization types

see Figure 19b. The share of acute angles int the total number of angles is 12.2 %, while for our approach it is only

0.07 %. This supports the visual impression of Figure 17 that the complexity for arboreal visualizations is much
higher than for octilinear visualizations.

3252 T ti FORSCH ET AL.
22 | WiLEy-Trepsactions

(a) octilinear (b) arboreal (¢) minimum perimeter

FIGURE 19 Histogram of the time zone's outer angles, averaged over all starting points for a travel time of
7 = 30 min. Orange bins relate to acute angles. The number per bin is proportional to the bin’s area

8.2.3 | Octilinear visualization versus minimum-perimeter visualization

Finally, we compare our approach with visualizations that minimize the perimeter of the travel-time zones; see
Figure 17d. The approach that is presented by Baum et al. (2018) yields visually similar results. We first observe
that the minimum-perimeter and octilinear visualizations lead to similar perimeters; see Figure 18a. For our ap-
proach the perimeters are on average 11% longer and at most 23 % longer. Moreover, the area covered by the time
zones is comparable in each case, which indicates relatively small differences between the time zones. However,
evaluating the distribution of the outer angles, the effect of the SCHEMATIZATION in our approach becomes
evident; see Figure 19. Over 98.5 % of all outer angles lie in bins corresponding to the octilinear directions. In par-
ticular, the vast majority (83.7 %) lie in the bin that represents the two obtuse angles 225° and 135°. In contrast, for
the minimum-perimeter visualization the angles are spread across the whole histogram, leading to a higher visual
complexity with regard to this criterion.

Similarly to the arboreal visualization, the number of acute angles is higher for the minimum-perimeter vi-
sualization than for the octilinear visualization. The share of acute angles is over nine times higher than for our
approach. These acute angles can create artifacts in the visualization, where parts of the polygon are hard to spot.
In Figure 17d the time zone has a hole at, but as it is visualized with a thin polygon having acute angles at its bends,
it can hardly be spotted. In contrast, the hole is clearly visible in the octilinear time zone; see Figure 17a.

The analysis shows that the octilinear visualization has a lower visual complexity than the minimum-perimeter
visualization. This coincides with the visual impression of the maps shown in Figure 17. Nevertheless, there may
be cases where the octilinear visualization suffers from stair-shaped lines in graph faces with unfavorable geom-
etry. An example is given in Figure 20. These unfavorable geometries occur for long stretched faces whose main
direction is not one of the octilinear directions. In contrast, the minimum-perimeter visualization has one straight
edge at this location. A combination of the two visualization approaches thus could lead to an even better result.
For example, we could check if the number of bends in an octilinear face exceeds a threshold k and then fall back
to the minimum-perimeter visualization for this face. An investigation of the combination of both algorithms is left

to future work.

8.3 | Case study

We conclude the evaluation with a small case study highlighting the important steps for creating travel-time
map with multiple time zones; see Figures 21 and 22. To that end, we used a starting location in Wesseling, sit-
uated between Cologne and Bonn, to obtain four time zones. Creating each time zone separately might cause

FORSCH €T AL. T ti 3253
s € —-WI LEYJ—

(b)

FIGURE 20 In rare cases (a) the octilinear visualization has a step-like outline, while (b)the minimum-
perimeter visualization does not suffer from this

FIGURE 21 Case study. The travel-time map is created for four time zones with T = {5, 10, 15, 20} minutes
and start time Monday 11 a.m. (a) Independently generated time zones. (b) Time zones nested in the next bigger
time zone. (c) Clipping to the river. (d) Result after applying the closing operation

inner time zones overlapping the outer ones if their boundaries share the same graph faces, see Figure 21a.
To eliminate this issue, the outer time zones are used as a spatial limit for the inner ones. With this the inner
zones strictly lie inside the outer ones, which leads to a less cluttered map; see Figure 21b. Nonetheless, it
remains non-intuitive that time zones are differentiated on the Rhine. To remove this issue we deploy our
clipping extension (see Section 7.3) in which we remove all parts of the time zones covering such natural

FORSCH ET AL.

in GIS

3254 Wl LEy_Transactions @

FIGURE 22 Continuation of the case study. (a) Travel times with start time Monday 6 p.m. (b) Travel times
with start time Tuesday 2 a.m.

boundaries. As a result, the time zones represent the topography better and thus become more comprehen-
sible; see Figure 21c.

As a last processing step, we apply the closing extension (see Section 7.1) to eliminate small holes in the time
zones; see Figure 21d. We have used a dilation factor of 10 %, that is, a hole is closed if it is completely covered by a
travel time increased by 10 % of the original travel time. This further reduces the visual complexity of the resulting
travel-time map. In the context of public transportation, this closing operation can be interpreted as a modeled
vagueness in the travel-time map due to delays or varying walking speeds.

Thanks to the integration of timetable information of the public transportation, the travel-time map can not
only be generated for different starting points and travel times, but also for different starting times. Examples of

the variation in travel-time zones depending on the time of the day are shown in Figure 22.

9 | CONCLUSIONS

This article presented an automatic approach for the generation of schematic travel-time maps. From a user lo-
cation, outlines of reachable regions are generated for a certain travel time. Following the spirit of schematized
metro maps, our method generates octilinear polygonal zones. This reduces the visual complexity and leads to a
higher map legibility attributed to an optimization of the number of polygon bends.

We conclude that the computation of schematic travel-time maps can be modeled as a search for a
minimum-weight path in an appropriately defined graph. In particular, using the line graph of a graph obtained
from augmenting a regular octilinear grid with additional segments through ports (i.e., points where the un-
reachable and reachable part of a network meet) allowed us to heuristically minimize the number of bends
of the isochrones.

We further showed how to apply this approach to generate travel-time maps for multiple travel times and
showed its feasibility through a case study. The evaluation of the results has shown that the different visual-
ization approaches for travel-time maps have their own advantages and disadvantages. Future research should
involve the combination of these approaches to benefit from these respective advantages. For example, one could
combine our approach with the approach by Baum et al. (2018) to reduce sawtooth patterns in the visualization.
Moreover, we deem the combination of our approach with schematized networks maps as fruitful. For example,
one may use our approach to create schematized fare zones in schematized metro maps.

FORSCH €T AL Transactions 7= 3255
nsactions g5\ py-| 2

ORCID
Axel Forsch http://orcid.org/0000-0002-3849-4865

ENDNOTE
1 ©OpenStreetMap contributors.

REFERENCES

Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., & Timko, I. (2008). Computing isochrones in multi-modal,
schedule-based transport networks. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, Irvine, CA (pp. 1-2). New York, NY: ACM. https://doi.org/10.1145/1463434.1463524.

Baum, M., Blasius, T., Gemsa, A., Rutter, |., & Wegner, F. (2018). Scalable exact visualization of isocontours in road net-
works via minimum-link paths. Journal of Computational Geometry, 9, 24-70. https://doi.org/10.20382/jocg.v9ila2

Baum, M., Buchhold, V., Dibbelt, J., & Wagner, D. (2019). Fast exact computation of isocontours in road networks. ACM
Journal of Experimental Algorithmics, 24, 1-18. https://doi.org/10.1145/3355514

Bonerath, A., Niedermann, B., & Haunert, J. H. (2019). Retrieving alpha-shapes and schematic polygonal approxi-
mations for sets of points within queried temporal ranges. Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, Chicago, IL (pp. 249-258). New York, NY: ACM. https://doi.
org/10.1145/3347146.3359087.

Bouts, Q. W., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sonke, W., & Verbeek, K. (2016). Mapping polygons to
the grid with small Hausdorff and Fréchet distance. In P. Sankowski, & C. Zaroliagis (Eds.), Proceedings of the 24th
Annual European Symposium on Algorithms (pp. 22:1-22:16). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum
fir Informatik. https://doi.org/10.4230/LIPlcs.ESA.2016.22

Brewer, C. A, Stanislawski, L. V., Buttenfield, B. P., Sparks, K. A., McGilloway, J., & Howard, M. A. (2013). Automated
thinning of road networks and road labels for multiscale design of the national map of the United States. Cartography
and Geographic Information Science, 40, 259-270. https://doi.org/10.1080/15230406.2013.799735

Buchin, K., Meulemans, W., Renssen, A. V., & Speckmann, B. (2016). Area-preserving simplification and schematization of
polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2(1), 2. https://doi.org/10.1145/2818373

Chen, Y., & Sundaram, H. (2005). Estimating complexity of 2D shapes. In Proceedings of the Seventh IEEE Workshop on
Multimedia Signal Processing, Shanghai, China (pp. 1-4). Piscataway, NJ: IEEE.

Chimani, M., van Dijk, T. C., & Haunert, J. H. (2014). How to eat a graph: Computing selection sequences for the continu-
ous generalization of road networks. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, Dallas, TX (pp. 243-252). New York, NY: ACM. https://doi.org/10.1145/26663
10.2666414

Gamper, J., Béhlen, M., Cometti, W., & Innerebner, M. (2011). Defining isochrones in multimodal spatial networks. In
Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK (pp.
2381-2384). New York, NY: ACM. https://doi.org/10.1145/2063576.2063972

Gamper, J., Béhlen, M. H., & Innerebner, M. (2012). Scalable computation of isochrones with network expiration. In A.
Ailamaki, & S. Bowers (Eds.), Scientific and statistical database management: SSDBM 2012 (Lecture Notes in Computer
Science, Vol. 7338, pp. 526-543). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-31235-9_35.

Haunert, J. H., & Wolff, A. (2010). Optimal and topologically safe simplification of building footprints. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA (pp. 192-201).
New York, NY: ACM. https://doi.org/10.1145/1869790.1869819

Huang, W., Hong, S. H., & Eades, P. (2008). Effects of crossing angles. In Proceedings of the 2008 IEEE Pacific Visualization
Symposium, Kyoto, Japan (pp. 41-46). Piscataway, NJ: IEEE. https://doi.org/10.1109/PACIFICVIS5.2008.4475457

Imai, H., & Iri, M. (1988). Polygonal approximations of a curve-formulations and algorithms. Machine Intelligence and
Pattern Recognition, 6, 71-86. https://doi.org/10.1016/B978-0-444-70467-2.50011-4

Krajzewicz, D., & Heinrichs, D. (2016). UrMo accessibility computer—A tool for computing contour accessibility measures.
In Proceedings of the Eighth International Conference on Advances in System Simulation, Rome, Italy (pp. 56-60).

Krismer, N., Silbernagl, D., Specht, G., & Gamper, J. (2017). Computing isochrones in multimodal spatial networks using
tile regions. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management,
Chicago, IL (pp. 1-6). New York, NY: ACM. https://doi.org/10.1145/3085504.3085538

Krismer, N., Specht, G., & Gamper, J. (2014). Incremental calculation of isochrones regarding duration. In Proceedings of
the 26th GIWorkshop on Foundations of Databases, Bozen, Italy (pp. 41-45).

http://orcid.org/0000-0002-3849-4865
https://doi.org/10.1145/1463434.1463524
https://doi.org/10.20382/jocg.v9i1a2
https://doi.org/10.1145/3355514
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.4230/LIPIcs.ESA.2016.22
https://doi.org/10.1080/15230406.2013.799735
https://doi.org/10.1145/2818373
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1145/2063576.2063972
https://doi.org/10.1007/978-3-642-31235-9_35
https://doi.org/10.1145/1869790.1869819
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1145/3085504.3085538

FORSCH ET AL.

3256 Wl LEy_Transactions @

in GIS

Marciuska, S., & Gamper, J. (2010). Determining objects within isochrones in spatial network databases. In B. Catania, M.
Ivanovi¢, & B. Thalheim (Eds.),Advances in databases and information systems: ADBIS 2010 (Lecture Notes in Computer
Science, Vol. 6295, pp. 392-405). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-15576-5_30

Nollenburg, M. (2014). A survey on automated metro map layout methods. In Proceedings of the 2014 Schematic Mapping
Workshop, Essex, UK (pp. 1-7).

O’Sullivan, D., Morrison, A., & Shearer, J. (2000). Using desktop GIS for the investigation of accessibility by public
transport: An isochrone approach. International Journal of Geographical Information Science, 14, 85-104. https://doi.
org/10.1080/136588100240976

Purchase, H. C.(2000). Effective information visualisation: A study of graph drawing aesthetics and algorithms. Interacting
with Computers, 13, 147-162. https://doi.org/10.1016/50953-5438(00)00032-1

Pyrga, E., Schulz, F., Wagner, D., & Zaroliagis, C. (2008). Efficient models for timetable information in public transporta-
tion systems. ACM Journal of Experimental Algorithmics, 12. https://doi.org/10.1145/1227161.1227166

Serra, J. (1983). Image analysis and mathematical morphology. San Diego, CA: Academic Press.

Ware, C., Purchase, H. C., Colpoys, L., & McGill, M. (2002). Cognitive measurements of graph aesthetics. Information
Visualization, 1, 103-110. https://doi.org/10.1057/palgrave.ivs.2500013

Wu, H. Y., Niedermann, B., Takahashi, S., & Néllenburg, M. (2019). A survey on computing schematic network maps: The
challenge to interactivity. In Proceedings of the Second Schematic Mapping Workshop, Vienna, Austria (pp. 1-7).

Wu, H. Y., Niedermann, B., Takahashi, S., Roberts, M. J., & N6llenburg, M. (2020). A survey on transit map layout - from
design, machine, and human perspectives. Computer Graphics Forum, 39, 619-646. https://doi.org/10.1111/cgf.14030

Zhou, Q., & Li, Z. (2016). Empirical determination of geometric parameters for selective omission in a road net-
work. International Journal of Geographical Information Science, 30, 263-299. https://doi.org/10.1080/13658
816.2015.1085538

How to cite this article: Forsch, A., Dehbi, Y., Niedermann, B., Oehrlein, J., Rottmann, P., & Haunert, J. H.
(2021). Multimodal travel-time maps with formally correct and schematic isochrones. Transactions in GIS,
25, 3233-3256. https://doi.org/10.1111/tgis.12821

https://doi.org/10.1007/978-3-642-15576-5_30
https://doi.org/10.1080/136588100240976
https://doi.org/10.1080/136588100240976
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1080/13658816.2015.1085538
https://doi.org/10.1080/13658816.2015.1085538
https://doi.org/10.1111/tgis.12821

