
1.  Introduction
Intrusion of magma through the host rock or into an existing magma chamber deforms the Earth's crust and 
also changes the surface gravity field. The intrusion mass is a key parameter for characterizing the nature of the 
activity and its future evolution. Joint analyses of the measured surface displacements and gravity changes can 
constrain the intrusion mass, beside the other parameters of the deformation source, that is, its location, shape, 
spatial orientation, and some strength parameter (pressure or volume change; Battaglia et al., 1999, 2003; Okubo 
et al., 1991).

Both the mass transport and the ensuing country-rock deformations contribute to the gravity changes (Bonafede 
& Mazzanti, 1998; Hagiwara, 1977; Lisowski, 2007; Walsh & Rice, 1979). Such deformation-induced effects 
may be substantial for nonspherical sources, as shown through numerical models based on the finite element 
method (FEM; see Currenti, 2014; Currenti et al., 2007, 2008; Trasatti & Bonafede, 2008). The deformation 
effects caused by tabular sources such as dikes and sills can be estimated through the Okubo  (1992) analyt-
ical solutions. There are no analytical solutions for other source geometries, such as ellipsoids, yet rigorous 
joint inversions of surface displacements and gravity changes demand models accounting for the source shape 
(Amoruso et al., 2008).

A source model composed of three orthogonal tensile dislocations can simulate the deformation field associated 
with triaxial sources (Amoruso & Crescentini, 2013; Bonafede & Ferrari, 2009; Lisowski et al., 2008). Based 
on this concept, Nikkhoo et al. (2017) developed the point Compound Dislocation Model (point CDM), which 
represents the far-field deformation of generic triaxial sources. This source model spans a wider parameter space 
than ellipsoids (Ferrari et al., 2015) while retaining the simplicity of the Mogi (1958) model.
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In this study, we use the Okubo (1991) expressions to derive analytical solutions for the gravity changes asso-
ciated with the point CDM. We show how gravity changes due to point and finite ellipsoidal sources can be 
calculated by using the point CDM. We compare the point CDM gravity changes with the Hagiwara (1977) and 
Trasatti and Bonafede (2008) solutions. Finally, we elaborate on the potential of the model for coupled inversions 
of surface displacements and gravity changes.

2.  Methods
Deformation-induced gravity changes are usually expressed as the sum of contributions due to deformation in 
the source region and country rocks and the surface uplift. Here, we adopt a decomposition scheme compatible 
with the point CDM formulation. We assume a homogeneous, isotropic elastic half-space as a model for the 
Earth's crust. We denote the Poisson's ratio, shear modulus, and bulk modulus in the medium by ν, μ, and K, 
respectively. We adopt a right-handed xyz Cartesian coordinate system with the origin at the free surface and the 
z axis pointing upward. By “gravity change” we refer to the change in the absolute value of the gravity vector's z 
component. Thus, a positive mass change (mass increase) below a gravimeter leads to a positive gravity change 
(gravity increase).

2.1.  Gravity Changes Caused by Magma Chamber Pressurization

As an example, suppose that magma degassing pressurizes a magma chamber (Figure  1). We assume that 
the exsolved gases all gather at the interface between the chamber walls and the degassed magma, forming a 

Figure 1.  Schematic mass redistribution and surface uplift caused by chamber pressurization. Compressed magma (red) is 
surrounded by the interface cavity. The dashed ellipse depicts chamber walls prior to pressurization and separates the δVm and 
δVc portions of the interface cavity (see Equation 1). The country rocks are subjected to positive dilatation/density decrease 
(light gray and white contours) and negative dilatation/density increase (dark gray and black contours). Thick black contour 
marks zero dilatation. The gravity station (black triangle) has been subjected to gravity change δg and vertical displacement uv.
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shell-shaped cavity. The outward expansion of the chamber walls and inward compression of the magma lead 
to the oppositely signed chamber volume change, δVc, and magma volume change, δVm, respectively. The total 
volume created by the expansion-compression process—namely the interface volume change, ΔVint—is given by

Δ𝑉𝑉int = 𝛿𝛿𝛿𝛿c − 𝛿𝛿𝛿𝛿m,� (1)

or equivalently by

Δ𝑉𝑉int = 𝑉𝑉c − 𝑉𝑉m,� (2)

where Vc = V + δVc and Vm = V + δVm are the chamber volume and magma volume in the deformed state, 
respectively, and V represents both the chamber volume and magma volume in the undeformed state. The cham-
ber expansion also uplifts the surface and generates a strain field, ϵij, in the surrounding rocks. This changes the 
density of the rocks by δρr = −ρrϵkk, where ρr is the rock density in the undeformed state and ϵkk = ϵ11 + ϵ22 + ϵ33 is 
the volumetric strain or dilatation—a positive dilatation reduces the density (see Figure 1). Similarly, the magma 
density change, δρm, due to the compression is related to the magma compressibility, βm, through δρm = ρmβmδp, 
where ρm is the magma density in the undeformed state and δp is the pressure change in the chamber (Rivalta & 
Segall, 2008). Provided that βm and δp are known, we have

𝛿𝛿𝛿𝛿m = 𝑉𝑉 𝑉𝑉m𝛿𝛿𝛿𝛿𝛿� (3)

Since we consider the created volume ΔVint as void, the density change in the δVc and δVm portions is −ρr and 
−ρm, respectively. Similarly, uplift, or subsidence, at the Earth's surface will either fill void space or create a void 
space. So, the other zone of substantial density change is the Earth's surface, where areas of uplift and subsidence 
are subjected to density changes +ρr and −ρr, respectively.

The same deformation-induced density changes exist if instead of exsolved gases, the interface cavity is formed 
by, and filled with, the intrusion of some external fluids. In such case, the interface cavity is filled with a net mass

Δ𝑀𝑀 = 𝜌𝜌intΔ𝑉𝑉int,� (4)

where ρint is the intrusion density.

The magma chamber expansion leads to a vertical displacement, uv, and the following gravity change contribu-
tions for each observation point at the surface:

1.	 �Δgβ, due to density change δρm in the magma volume in the deformed state, Vm,
2.	 �𝐴𝐴 Δ𝑔𝑔𝛿𝛿𝛿𝛿m , due to density change −ρm within the δVm volume,
3.	 �𝐴𝐴 Δ𝑔𝑔𝛿𝛿𝛿𝛿c , due to density change −ρr within the δVc volume,
4.	 �𝐴𝐴 Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 , due to density changes δρr throughout the country rocks,
5.	 �ΔgSM, due to the presence of the displaced surface mass layer with density +ρr,
6.	 �ΔgFA, due to the free air change in gravity associated with uv,
7.	 �ΔgΔM, due to the added intrusion mass ΔM that leads to density change ρint within the interface cavity,

for a total surface gravity change of

𝛿𝛿𝛿𝛿 = Δ𝑔𝑔𝛽𝛽 + Δ𝑔𝑔𝛿𝛿𝛿𝛿m + Δ𝑔𝑔𝛿𝛿𝛿𝛿c + Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 + Δ𝑔𝑔SM + Δ𝑔𝑔FA + Δ𝑔𝑔Δ𝑀𝑀.� (5)

ΔgΔM, also known as residual gravity, can be used to constrain ΔM (see Battaglia et al., 2008). However, this 
requires all the other terms in Equation 5 to be quantified first. At each station, δg and uv can be determined 
through repeated gravity and deformation measurements, respectively. Then we have

Δ𝑔𝑔FA = 𝛾𝛾𝛾𝛾𝑣𝑣,� (6)

where γ ≃ −0.3086 mGal/m is the free air gradient, and

Δ𝑔𝑔SM = 2𝜋𝜋𝜋𝜋𝜋𝜋r𝑢𝑢𝑣𝑣,� (7)

where G is the gravitational constant. Note that Equation 7 uses the Bouguer plate approximation and is valid 
for flat topographies. The other terms in Equation 5 can be estimated only by using a deformation model for the 
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chamber pressurization. Note that Equation 5 is valid for sources both in the near field and the far field. In the 
following, we first introduce an analytical point-source model, which can be applied to sources in the far field, 
and show that in this case Equation 5 can be simplified. Next, we present a semi-analytical finite-source solution 
and elaborate on the issues that may limit its applicability to near-field problems.

2.1.1.  The Far Field Approximations

The far field gravity changes caused by the intruded fluid mass can be calculated through a point-mass approx-
imation as

Δ𝑔𝑔Δ𝑀𝑀 = 𝐺𝐺Δ𝑀𝑀
𝑑𝑑

𝑟𝑟3
,� (8)

where d is the depth to the center of the chamber and r is the distance between the center of the chamber and the 
surface observation point. This approximation can also be applied to the far field gravity changes caused by the 
other density changes in the chamber as

Δ�� = ���m�m
�
�3
,

Δ���m = ��m��m
�
�3
,

Δ���c = −��r��c
�
�3
,

Δ�Δ�int = −��rΔ�int
�
�3
.

� (9)

The conservation of the initial magma mass in the chamber implies δρmVm = −ρmδVm, which together with Equa-
tion 9 yields

Δ𝑔𝑔𝛽𝛽 + Δ𝑔𝑔𝛿𝛿𝛿𝛿m = 0.� (10)

Note that for shallow finite sources Equation 10 does not necessarily hold, as mass redistribution within the 
chamber may lead to measurable gravity changes. The far field form of Equation 5 can now be written as

𝛿𝛿𝛿𝛿 = Δ𝑔𝑔𝛿𝛿𝛿𝛿c + Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 + Δ𝑔𝑔SM + Δ𝑔𝑔FA + Δ𝑔𝑔Δ𝑀𝑀,� (11)

which expresses the surface gravity changes associated with a deep pressurized chamber as the sum of contribu-
tions due to displaced mass at the chamber walls 𝐴𝐴

(

Δ𝑔𝑔𝛿𝛿𝛿𝛿c

)

 , volumetric strain in the host rocks 𝐴𝐴
(

Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘

)

 , displaced 
mass at the Earth's surface (ΔgSM), and the vertical displacement of gravity stations (ΔgFA), superimposed on the 
mass change contribution (ΔgΔM).

Note that Equations 1–11 hold for any chamber shape and boundary conditions on the chamber walls.

2.2.  Gravity Changes Caused by the Point CDM

The point CDM represents the far field of triaxial sources of expansion with arbitrary spatial orientations 
(Nikkhoo et al., 2017). The point CDM is composed of three mutually orthogonal point tensile dislocations (see 
Figure 2a) constrained to either expand or contract together. The strength of each point tensile dislocation is 
determined by its potency, defined as the product of dislocation surface area and opening (Aki & Richards, 2002; 
Nikkhoo et al., 2017, see also Appendix A). The point CDM has 10 parameters: three location coordinates, three 
rotation angles, three potencies specifying the expansion intensity along the three principal axes of the source, 
and Poisson's ratio, ν. The total potency of the point CDM, denoted by ΔV, is the sum of the three potencies. ΔV 
has the units of volume but it is not a physical quantity. Rather, it is a measure of the source strength and it holds 
ΔV = ΔVint, provided that Km = K, where Km = 1/βm is the bulk modulus of magma.

Triaxial sources of differing shapes, but identical far field deformation, have the same point CDM representation 
and thus, the same ΔV. However, in order to have the same δVc, these sources must also have identical shapes 
(except for ν = 0.5, which leads to ΔV = δVc). For example, the uniformly pressurized cuboidal and ellipsoidal 
chambers in Figure 2 have the same potencies but their volume changes are different. Analytical expressions 
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relating ΔV to δVc are available for ellipsoidal sources from Eshelby (1957). For uniformly pressurized ellipsoids, 
we have (Nikkhoo et al., 2017):

Δ𝑉𝑉
Ell

= 𝛿𝛿𝛿𝛿
Ell

c +
𝑉𝑉 𝑉𝑉𝑉𝑉

𝐾𝐾
.� (12)

Recalling that 𝐴𝐴 𝐴𝐴 =
2𝜇𝜇(1+𝜈𝜈)

3(1−2𝜈𝜈)
 and that for a spherical source of radius a the total volume and volume change are 

𝐴𝐴 𝐴𝐴 Sph
=

4

3
𝜋𝜋𝜋𝜋3 and 𝐴𝐴 𝐴𝐴𝐴𝐴

Sph

c
=

𝜋𝜋

𝜇𝜇
𝑎𝑎3𝛿𝛿𝛿𝛿 , respectively, Equation 12 becomes

Δ𝑉𝑉
Sph

=
3 (1 − 𝜈𝜈)

(1 + 𝜈𝜈)
𝛿𝛿𝛿𝛿

Sph

c ,� (13)

which for ν = 0.25 leads to 𝐴𝐴 Δ𝑉𝑉 Sph
= 1.8𝛿𝛿𝛿𝛿

Sph

c  (see also Aki & Richards, 2002; Bonafede & Ferrari, 2009; Ichi-
hara et al., 2016).

Figure 2.  Triaxial volumetric sources. (a) A point Compound Dislocation Model (point CDM) with potencies ΔVx (yellow), 
ΔVy (green), and ΔVz (blue), where ΔVx = ΔVy > ΔVz. Inset shows the equivalent CDM (see Nikkhoo et al., 2017). (b) A 
uniformly pressurized cuboidal source with Km = K. The two interface cavity portions 𝐴𝐴 𝐴𝐴𝐴𝐴 Cub

c
 and 𝐴𝐴 𝐴𝐴𝐴𝐴 Cub

m
 are indicated, where 

𝐴𝐴 Δ𝑉𝑉 Cub
= 𝛿𝛿𝛿𝛿 Cub

c + 𝛿𝛿𝛿𝛿 Cub

m  . (c) Same as (b), but for a uniformly pressurized ellipsoidal source. The interface cavity portions are 
𝐴𝐴 𝐴𝐴𝐴𝐴 Ell

c
 and 𝐴𝐴 𝐴𝐴𝐴𝐴 Ell

m
 , with 𝐴𝐴 Δ𝑉𝑉 Ell

= 𝛿𝛿𝛿𝛿 Ell

c + 𝛿𝛿𝛿𝛿 Ell

m  . Note that 𝐴𝐴 𝐴𝐴𝐴𝐴 Cub

c
≠ 𝛿𝛿𝛿𝛿 Ell

c
 and 𝐴𝐴 𝐴𝐴𝐴𝐴 Cub

m
≠ 𝛿𝛿𝛿𝛿 Ell

m
 but ΔV Cub = ΔV Ell. (d) A set of N 

point CDMs uniformly distributed within the ellipsoidal cavity in (c). The point CDM in (a) represents the far field of all the 
finite sources in (b–d). Provided N → ∞, the near fields of (c and d) are equivalent. For the models in (b and c) ν = 0.25.
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Gravity changes caused by point tensile dislocations can be calculated through the Okubo  (1991) analytical 
expressions (Appendix A). By superimposing the gravity changes associated with three mutually orthogonal 
point dislocations (Equation A1), we derive the analytical gravity changes associated with the point CDM as

𝛿𝛿𝛿𝛿 = Δ𝑔𝑔Δ𝑉𝑉 + Δ𝑔𝑔MD + Δ𝑔𝑔SM + Δ𝑔𝑔FA + Δ𝑔𝑔Δ𝑀𝑀,� (14)

where ΔgΔV is the interface cavity contribution (white space in Figures 2b and 2c) and ΔgMD is the contribution 
due to the medium dilatation both inside and outside the source (gray space in Figures 2b and 2c). Noting that 

𝐴𝐴 Δ𝑔𝑔Δ𝑉𝑉 = Δ𝑔𝑔𝛿𝛿𝛿𝛿c + Δ𝑔𝑔𝛿𝛿𝛿𝛿m and 𝐴𝐴 Δ𝑔𝑔MD = Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 + Δ𝑔𝑔𝛽𝛽 and using Equation 10 we have

Δ𝑔𝑔Δ𝑉𝑉 + Δ𝑔𝑔MD = Δ𝑔𝑔𝛿𝛿𝛿𝛿c + Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 ,� (15)

from which it follows that the δg from Equation 14 and the δg from Equation 11 are equivalent. Therefore, the 
point CDM can be used to compute the effects of deformation on gravity change and thus estimate the mass 
change ΔM.

2.2.1.  Gravity Changes Caused by Point and Finite Pressurized Ellipsoidal Cavities

For any point ellipsoidal model after Davis (1986), there is an equivalent point CDM related to the elastic param-
eters of the medium and the ellipsoid semi-axes and pressure change through the Eshelby  (1957) tensor (see 
Nikkhoo et al., 2017). Thus, Equation 14 also holds for point ellipsoidal sources. By calculating δVc for ellipsoi-
dal cavities 𝐴𝐴 Δ𝑔𝑔𝛿𝛿𝛿𝛿c (Equation 9) and thus, 𝐴𝐴 Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 (Equation 15) can be determined for ellipsoidal sources.

Assume that a point CDM with potencies 𝐴𝐴 (Δ𝑉𝑉𝑎𝑎,Δ𝑉𝑉𝑏𝑏,Δ𝑉𝑉𝑐𝑐) represents the far field of a pressurized ellipsoidal 
cavity with semi-axes 𝐴𝐴 (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎) . Then, a set of N point CDMs with potencies 𝐴𝐴 (Δ𝑉𝑉𝑎𝑎∕𝑁𝑁𝑁Δ𝑉𝑉𝑏𝑏∕𝑁𝑁𝑁Δ𝑉𝑉𝑐𝑐∕𝑁𝑁) , uniformly 
distributed within the ellipsoid (see Figure  2d), approximates the near field deformations of the pressurized 
cavity (Amoruso & Crescentini, 2011; Amoruso et al., 2008; Davis, 1986; Eshelby, 1957; Segall, 2010; Yang 
et al., 1988). Provided that N → ∞, this procedure leads to an accurate solution, unless the cavity is immediately 
below the free surface (Amoruso & Crescentini, 2011; Segall, 2010; Yang et al., 1988). Similar accuracies can 
be achieved by using the finite Ellipsoidal Cavity Model (finite ECM) after Nikkhoo and Rivalta (2022), which 
uses a smaller number of point sources with depth-dependent spacing and strengths. By incorporating the expres-
sions for the point CDM gravity changes in these configurations, we derive new solutions for the gravity changes 
caused by a finite pressurized ellipsoidal cavity. While the finite ECM is more accurate than the point CDM in 
modeling shallow pressurized ellipsoidal cavities, it is still an approximate solution for both deformation and 
gravity change calculations. Similar to the Yang et al. (1988) solution, the finite ECM provides excellent accu-
racies in the limit that the source dimensions are small compared to its depth (see Nikkhoo & Rivalta, 2022, for 
further details).

3.  Results
3.1.  Comparisons With Other Gravity Change Solutions

Hagiwara (1977) derived closed-form expressions for the gravity change contributions caused by the Mogi (1958) 
source, later used to validate analytical (Okubo, 1991) and numerical solutions (Currenti et al., 2007, 2008; Tras-
atti & Bonafede, 2008).

An isotropic point CDM is equivalent to the Mogi (1958) model (Bonafede & Ferrari, 2009). Assuming potency 
ΔV Sph and depth d for such a point CDM, Equation A1 yields:

Δ�Sph
MD = 1

3
��r (1 − 2�) Δ� Sph �

�3
,

Δ�Sph
SM = 2

3
��r (1 + �) Δ� Sph �

�3
,

Δ�Sph
Δ� = −��rΔ� Sph �

�3
.

� (16)

By using Equations 9, 13, and 15, we rewrite Equation 16 in terms of 𝐴𝐴 𝐴𝐴𝐴𝐴
Sph

c
 :
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Δ�Sph
��� = −��r (1 − 2�) �� Sph

c
�
�3
,

Δ�Sph
SM = 2��r (1 − �) �� Sph

c
�
�3
,

Δ�Sph
��c

= −��r�� Sph
c

�
�3
,

� (17)

which are equivalent to the Hagiwara  (1977) expressions (see 
also Okubo, 1991; Rundle, 1978; Savage, 1984; Walsh & Rice, 1979). This 
validates the gravity change solution for the point CDM in the case of point 
spherical cavities. As proved by Walsh and Rice (1979), the sum of the three 
terms in each set of Equations 16 and 17 vanishes. Note also that, for any 
point CDM, if ν = 0.5 then 𝐴𝐴 Δ𝑔𝑔MD = Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 = 0 .

We now show that the gravity change solutions for the point CDM also 
provide a basis for rigorous benchmarking of numerical solutions. We use 
the point CDM and the finite ECM to calculate the surface displacements 
(Figure 3a) and gravity changes (Figure 3b) associated with the Trasatti and 
Bonafede (2008) FEM solution for a pressurized vertical prolate spheroidal 
cavity. In the far field, the point CDM and the finite ECM displacements 
are indistinguishable. The FEM solution shows a small deviation that can be 
attributed to the finite domain of the model. In the near field, the finite ECM 
and FEM displacements show a very good agreement. The maximum ∼9% 
difference between the finite ECM and point CDM reflects the difference 
between a point-source and a finite-source solution.

There is also a good agreement between the gravity changes from all 
approaches (Figure  3b). The maximum differences between 𝐴𝐴 Δ𝑔𝑔𝛿𝛿𝛿𝛿c , 𝐴𝐴 Δ𝑔𝑔𝜖𝜖𝑘𝑘𝑘𝑘 , 
ΔgSM, and Δg from the finite ECM and point CDM are ∼6%, ∼9%, ∼9%, 
and ∼6%, respectively. Since the cavity in this example is relatively deep, 
the finite ECM calculations are very accurate. Thus, in this particular case, 
the subtle differences between the finite ECM and the FEM gravity change 
contributions mostly reflect the errors in the FEM vertical displacements 
and cavity volume change. The largest difference between the Trasatti and 
Bonafede (2008) and the other solutions is slightly above 1 μGal, which is 
more than double the error that Trasatti and Bonafede (2008) estimated by 
comparison with Hagiwara (1977). This suggests that comparing numerical 
models with the solution for spherical cavities alone may lead to underesti-
mated errors for the numerical models.

3.2.  Implications for the Retrieval of Deformation Source Parameters

Dieterich and Decker (1975) showed that different source shapes produce almost indistinguishable uplift patterns 
if the source depths are appropriately adjusted. However, the associated horizontal displacements will be 
completely different. The implication is that in order to constrain all source parameters reliably, horizontal and 
vertical displacement data must be inverted together. Similar to horizontal and vertical surface displacements, the 
deformation-induced gravity changes depend on the deformation source parameters. Thus, gravity changes can 
potentially help better constrain them (Trasatti & Bonafede, 2008).

We use the point CDM to simulate the radial and vertical displacements and the gravity changes associated with 
three different axially symmetric deformation sources: a horizontal sill, an isotropic source, and a prolate source 
(see Figure 4). For all sources, ΔM = 0. The source depths in Figure 4a lead to similar vertical displacements 
(Figure 4c) but distinct horizontal displacements (Figure 4d) and distinct gravity changes (free air contribution 
removed; Figure 4b). Adjusting the source depths differently (Figure 4e) such that the horizontal displacements 
match (Figure 4h), leads to distinct vertical displacements (Figure 4f) and distinct gravity changes (Figure 4g). 
This implies that, from a theoretical perspective, gravity changes may also help to better constrain the deformation 

Figure 3.  Comparing the finite Ellipsoidal Cavity Model (finite ECM) with 
the Trasatti and Bonafede (2008) finite element method solution for a vertical 
prolate spheroidal cavity with semi-major axes 1.842 km, aspect ratio 0.4, 
and depth to the center 5 km. (a) Radial (ur) and vertical (uv) displacements, 
normalized by the maximum vertical displacement of the finite ECM solution. 
(b) Gravity change contributions, normalized by the maximum ΔgSM of the 
finite ECM solution.
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Figure 4.  Gravity changes (Δg = δg − ΔgFA), vertical displacements (uv), and radial displacements (ur) for point sources 
of different aspect ratios and depths. Top block: The sources illustrated in (a) give rise to different Δg (b), similar uv (c), 
and different ur (d). Bottom block: The sources in (e) cause different Δg (f), similar ur (h), and different uv (g). The potency 
vectors of the point spherical source, point prolate source, and point sill in both (a and e) may be any positive multiple of 

𝐴𝐴 (1, 1, 1) , 𝐴𝐴 (1, 1, 0.44) , and 𝐴𝐴 (0, 0, 1) , respectively. The gravity changes are normalized by the maximum ΔgSM (b and f). The 
displacements are normalized by the maximum vertical displacement (c and d) and the maximum radial displacements (g and 
h). All distances are normalized by the depth of the point spherical source, D.
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source parameters, beside the mass changes. In practice, however, if ΔM ≠ 0, gravity changes may be dominated 
by ΔgΔM and thus, depending on the signal-to-noise ratio of the data, the Δg curves (Figures 4b and 4f) may 
become indistinguishable.

4.  Discussion
Volcanic gravity changes caused by the net mass of intruding magmatic fluids and the induced host rock defor-
mations may have comparable magnitudes to those of hydrological origin, such as changes in the water table. 
Such hydrogravimetric disturbances can be estimated by employing hydrological monitoring and modeling tech-
niques (Battaglia et al., 2003, 2006; Creutzfeldt et al., 2010; Kazama et al., 2015; Lien et al., 2014; Van Camp 
et al., 2010) or by analyzing time-lapse gravity data (Güntner et al., 2017). Thus, the mass of intruding fluids at 
volcanoes can be inferred reliably once such effects are removed.

New generation, low-cost, and accurate gravimeters might soon provide gravity measurements at an unprece-
dented spatiotemporal resolution (Carbone et  al.,  2017, 2020). Permanent networks provide opportunities for 
new insight on magmatic plumbing systems (Battaglia et al., 2008; Carbone et al., 2019). One main challenge 
associated with these developments is to perform both detailed Bayesian inferences for in-depth understanding of 
the volcano, and rapid inversions for hazard assessment and early warning.

The available FEM gravity change models can incorporate various chamber shapes (Currenti, 2014; Currenti 
et al., 2007, 2008; Trasatti & Bonafede, 2008), the Earth's surface topography (Charco et al., 2009; Currenti 
et al., 2007), crustal density and material heterogeneities (Currenti et al., 2007, 2008; Trasatti & Bonafede, 2008; 
Wang et al., 2006), viscoelasticity of the Earth's crust (Currenti, 2018), self-gravitation effects (Charco et al., 2005, 
2006; Fernández et al., 2001, 2005), and magma compressibility (Currenti, 2014). Beside difficulties in imple-
menting the FEM, such as meshing issues, this powerful method is computationally too demanding to be used for 
detailed inverse modeling. In contrast, the point CDM is a half-space model, but has already proven to be suitable 
for exploring the parameter space in both detailed Bayesian inferences (see Lundgren et al., 2017) and rapid and 
unsupervised inversions of deformation data (see Beauducel et al., 2020). The gravity change solutions for the 
point CDM, which we provide here, extend this potential to joint inversions of surface displacements and gravity 
changes. Volcanic deformation sources are often deep or far enough from the observation point to be treated as 
far field sources. The point CDM can provide a first order solution, which can be later improved by more sophis-
ticated numerical models. Some complexities such as layering or viscoelasticity can be accounted for (Amoruso 
et al., 2008) by using appropriate Green's functions for point dislocations (Okubo, 1993; Sun & Okubo, 1993; 
Wang et al., 2006). Besides, theory errors, arising from ignoring real Earth complexities, can be estimated in 
terms of noise covariance matrices within a Bayesian framework (see Duputel et al., 2014; Minson et al., 2013; 
Vasyura-Bathke et al., 2021).

Finite pressurized ellipsoidal cavities can be approximated by a set of point CDMs uniformly distributed in the 
cavity volumes. With a high number of point CDMs, this approach can be used for benchmarking numerical 
models. An alternative solution is the finite ECM after Nikkhoo and Rivalta (2022), which provides comparable 
accuracies for a lesser number of point CDMs. The finite ECM is very fast, and thus, provides a practical way for 
performing coupled inversions of surface displacements and gravity changes.

It is important to recall that for ellipsoidal deformation models in the half-space, including the finite ECM and the 
Yang et al. (1988) spheroid, the full-space expressions are used to calculate δVc (Amoruso & Crescentini, 2009). 
While this approximation may often be acceptable for deformation studies, it may lead to large errors in gravity 
change calculations involving shallow finite sources. This warrants future systematic comparisons with numeri-
cal models in order to quantify the associated error.

Deformation-induced gravity changes may be substantial (see Figure 3b) and should be accounted for in joint 
inversions of surface displacements and gravity changes. Provided that coupled models are employed for such 
inversions, the gravity changes may be exploited to better constrain the deformation source parameters besides 
the mass change. How practical this may be, depends on the observation uncertainties and the signal-to-noise 
ratio. We will explore this feature in future studies.

Coupled inversions of surface displacements and gravity changes constrain the deformation source parameters 
and the intrusion mass without making any assumption on the properties of the intruding fluid. The intrusion 
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density can be estimated from the inferred mass only if the interface volume change, ΔVint, is known (ΔVint should 
not be mistaken for the chamber volume change δVc). It can be shown from Equations 2 and 3 that the determina-
tion of ΔVint requires knowledge of the fluid compressibility. This shows that unlike mass change estimates, the 
estimates of the intrusion density are prone to large uncertainties.

5.  Conclusions
1.	 �Surface gravity changes are sensitive to both the intruding fluid mass and the deformation-induced surface 

uplift (subsidence) and country rock dilatation. Due to this coupling between the gravity changes and host 
rock deformations, gravity changes can also be used to constrain deformation source parameters, namely the 
location, spatial orientation, and potency of triaxial source models for expanding reservoirs.

2.	 �We provide analytical solutions and MATLAB codes for surface displacements and gravity changes caused 
by both the point CDMs, a model for triaxial sources of expansion and the finite ECM, a model for ellipsoidal 
sources of uniform pressurization.

3.	 �While modeling gravity changes caused by shallow sources, it may be necessary to account for the mass redis-
tribution within the source. This issue and also the inherent error in δVc for half-space solutions may limit the 
applicability of the finite ECM.

4.	 �The analytical solutions presented here can be used to validate new numerical gravity change models. Such 
validations should ideally consider various source depths and aspect ratios.

5.	 �By using the point CDM and the finite ECM, coupled inversions of surface displacements and gravity changes 
can now be performed.

Appendix A:  Gravity Changes Caused by Point Tensile Dislocations
Following the conventions in Section 2 and Okubo (1991), a point tensile dislocation below the origin with depth 
d, azimuth 0, dip angle θ, potency ΔV, and filled with an intrusion mass ΔM, causes the following gravity change 
contributions at 𝐴𝐴 (𝑥𝑥𝑥 𝑥𝑥𝑥 0)

Δ�Δ� = −��rΔ�
�
�3
,

Δ�MD = ��rΔ� (1 − 2�)
[

�
�3

− 1
�(� + �)

+
�2(2� + �)
�3(� + �)2

]

sin2�,

Δ�SM = 2���r��,

Δ�FA = ���,

Δ�Δ� = �Δ� �
�3
,

� (A1)

where ΔgΔV, ΔgMD, ΔgSM, ΔgFA, and ΔgΔM are the contributions due to dislocation cavity, medium dilatation, 
displaced surface mass, free air effect, and intruded mass, respectively, 𝐴𝐴 𝐴𝐴 =

(

𝑥𝑥2
+ 𝑦𝑦2 + 𝑑𝑑2

)1∕2 and uv is the surface 
uplift (see Okada, 1985; Okubo, 1991). Note that for ν = 0.5 and also, for horizontal tensile cracks (θ = 0) we 
have ΔgMD = 0.

Data Availability Statement
Data were not used, nor created for this research. The MATLAB codes for computations are available to down-
load at https://volcanodeformation.com/onewebmedia/pCDMgravity.zip. Further details about the dislocation 
models can be found under https://www.volcanodeformation.com/.
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