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Abstract

High wind speed (U) is one of the most dangerous natural hazards in North

America and Europe. As a result, spatially explicit, statistical estimation of

extreme U is of particular relevance for many sectors. However, the most com-

mon sources of wind speed data such as reanalysis data and in situ measure-

ments are limited for this purpose due to their coarse spatial resolution and

low representativeness. Thus, the main goal was to develop a high spatial reso-

lution (250 m � 250 m) model (GloWiSMo-X) for monthly mapping of the

maximum hourly U for a 10-year return period (U10yr) in North America and

Europe. The multistep development of GloWiSMo-X is based on 2544 hourly U

time series available from the integrated surface global hourly meteorological

data set (UNCEI), U time series from ERA5 (UERA5), and mean wind speed from

the Global Wind Speed Model (UGloWiSMo). Firstly, the block maxima method

was applied to estimate monthly wind speed for a 10-year return period for

both UNCEI (U10yr,NCEI) and UERA5 (U10yr,ERA5). Secondly, the least squares boo-

sting approach was used to predict the target variable U10yr,NCEI yielding the

predictions bU10yr. The predictor variables U10yr,ERA5, UGloWiSMo, continent, and

month were used as input. It was found that the highest monthly continental

means of bU10yr (U10yr) in January are 16.4m/s in North America and 16.3m/s

in Europe. U10yr dropped to 13.4m/s and 12.5m/s in August. The annual cycle

of U10yr is more pronounced in Europe than in North America. The central

parts of the USA and Western Europe were identified as intracontinental

regions with the highest U10yr. GloWiSMo-X proves to be very broadly applica-

ble as it covers two different continents and all months. The model validation

by the mean squared error (MSE) demonstrates its improved predictive power

compared to ERA5.
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1 | INTRODUCTION

Catastrophic storms are one of the most damaging natu-
ral hazards. In Europe, synoptic-scale storms frequently
occur in winter (Feser et al., 2015), while in summer,
they are mostly limited to local or regional convective
events (Groenemeijer et al., 2017). Among the costliest
European storms in recent decades were the winter
storms Lothar (year: 1999, total damage: 11,200 US$m),
Kyrill (2007, 8700 US$m), and Daria (1990, 7000 US$m)
(Munich RE, 2019). Hurricanes (Murakami et al., 2016)
and tornadoes (Taszarek, Allen, et al., 2020) are much
more relevant in North America than in Europe. For
instance, the most damaging hurricane, Katrina, caused
125,000 US$m total damage (Munich RE, 2019).

Regardless of continent, season, and storm type, one
important damage-triggering feature during storms are
the associated high wind speed (U) values. As a conse-
quence of their potential for damage formation, spatially
explicit knowledge of extreme U is of particular relevance
for many sectors, including forestry (Forzieri et al., 2020),
insurance (Schwierz et al., 2010), construction (Hay
et al., 2019), wind energy (Jung et al., 2017), waterways
transport (Valverde & Convertino, 2019), nature conser-
vation (Maxwell et al., 2019), and air traffic (Taszarek,
Kendzierski, & Pilguj, 2020).

Estimating extreme U is complex because each
storm's track is unique. Identifying recurring storm field
patterns may assist in the statistical assessment of
extreme wind speed occurrence probabilities. Related to
this, long-term, representative U measurements fitted to
theoretical distributions are frequently used for estimat-
ing statistical U return values for periods ≥10 years.

For instance, the Gumbel distribution was used to esti-
mate extreme U at 42 Brazilian sites (Pes et al., 2017). Var-
ious theoretical distributions were applied to assess their
capability to mimic North American, extreme
U distributions (Morgan et al., 2011). At five globally dis-
tributed sites, the inverse Burr distribution was applied for
predicting extreme U values (Chiodo & De Falco, 2016). In
another study, the five-parameter Wakeby (Wak) distribu-
tion and three-parameter generalized extreme value
(GEV) distributions were identified as theoretical distribu-
tions providing high-fitting accuracy. In that study, return
values for 30, 50, and 100 years were estimated on a
1.00� � 1.00� horizontal resolution global grid using ERA-
interim reanalysis data (Jung et al., 2017). In a recent
study, global estimates of extreme wind speed at a hori-
zontal resolution of 0.25� � 0.25� were developed from
ERA5 reanalysis data (Pryor & Barthelmie, 2021).

Typically, storm-related damage varies on more
minor spatial scales than those of reanalysis data
(Koks & Haer, 2020). Thus, modeling extreme U at finer

grids is required. A combination of a statistical and
dynamical downscaling approach was developed to
derive extreme U for Europe between 1989 and 2010
(Haas & Pinto, 2012). Extreme U was also simulated in
Switzerland on a 50 m � 50 m horizontal resolution grid
(Etienne et al., 2010).

Previous studies reveal that the most common
U sources such as reanalysis data and in situ measure-
ments are of limited use for high spatial resolution map-
ping of extreme U since they are either coarsely resolved
or not representative. The existing high spatial resolution
models refer to regional scales or are only available for
average U conditions. Consequently, the validity for con-
sistent inter- and intracontinental comparison of the spa-
tiotemporal U10yr pattern is limited. Thus, the goals of
this study are (1) to develop a new high spatial resolution
(250 m � 250 m) model (GloWiSMo-X) for monthly map-
ping of maximum hourly U for a 10-year return period
(U10yr) in North America and Europe, (2) to compare the
spatiotemporal U10yr patterns in North America and
Europe, and (3) to quantify the improvement of the pre-
dictive power of GloWiSMo-X compared to assessments
based on reanalysis data.

2 | MATERIAL AND METHODS

2.1 | Wind speed data

The development of GloWiSMo-X is based on three differ-
ent U data sets available at 10 m above ground level. All
data sets cover U data in the period from at least January
01, 1989 to December 31, 2018 in North America and
Europe. A consecutive period of 30 years is defined as cli-
mate normal by the World Meteorological
Organization (2021) and is considered long enough to
describe the climate variability (Azorin-Molina et al., 2014).

The first U data set consists of measured hourly
U time series from the integrated surface global hourly
meteorological data set (UNCEI) archived at NOAA's
National Centers for Environmental Information
(NCEI, 2019). All time series were subdivided monthly.
An essential prerequisite was the completeness of the
UNCEI time series. Only monthly UNCEI time series with
data availability of at least 90% were considered further.
As a result, 9854 sites were sorted out. Monthly UNCEI

time series of a total of 2544 sites were further used. An
extension of NCEI in situ measurements before 1989 was
avoided to not further reduce the number of measure-
ment sites. Of all monthly time series, 37.2% are located
in Europe and 62.8% in North America.

The second U data set was available from the ERA5
reanalysis project (Hersbach et al., 2020). It consists of
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gridded U (UERA5) calculated from hourly horizontal
wind vector components. The horizontal resolution of
ERA5 is 0.25� � 0.25�. Analogous to UNCEI, UERA5 was
subdivided into monthly time series.

The third U data set was obtained from the Global
Wind Speed Model (GloWiSMo) which consists of
gridded wind speed distribution parameters for the
period January 01, 1989 to December 31, 2018 at
250 m � 250 m horizontal resolution. GloWiSMo con-
siders the local influences of elevation, relative elevation,
curvature, slope, and roughness length on the wind speed
distribution (Jung & Schindler, 2020). For this study,
GloWiSMo mean wind speed (UGloWiSMo) was used. In
contrast to the UERA5 time series, the statistical distribu-
tions of hourly U comprised in GloWiSMo are only suit-
able for average U conditions but not for estimating
extreme 10-year return periods.

2.2 | Extreme value analysis

The extreme value analysis was made for each of the
monthly UNCEI and UERA5 time series. The block maxima
method was used for this purpose. It is an efficient
method in extreme value theory for estimating return
values. The block maxima method is suitable for this
investigation since wind speed measurements are not
independent and reveal a seasonal pattern (Ferreira &
De Haan, 2015). The first step was to extract the
monthly annual maxima of UNCEI (Umax,NCEI) and UERA5

(Umax,ERA5).
GEV (Hosking, 1985) and Wak (Houghton, 1978)

distributions were fitted to monthly Umax,NCEI and
Umax,ERA5. Previous studies revealed that both distribu-
tions are capable of reproducing U regimes (Jung &
Schindler, 2019b) and are suitable for extreme value
analysis (Jung et al., 2017).

The cumulative distribution function (cdf) of GEV is
defined as (Houghton, 1978):

FGEV Umax;μ,η, ιð Þ¼ exp � 1þ ι
Umax�μð Þ

η

� ��1
ι

( )
ð1Þ

where μ is the location, η is the scale, and ι is the shape
parameter.

Wak is usually defined by its quantile function
(F�1

Wak):

FWak
�1 Umax;α,β,γ,δ,εð Þ¼ εþα

β
1� 1�Fð Þβ
h i

� γ

δ
1� 1�Fð Þ�δ
h i

ð2Þ

with α and γ being the scale, β and δ the shape, and ε
being the location parameters. The cdf of Wak was calcu-
lated by numerically inverting the quantile function
(Rahman et al., 2015).

For GEV parameter estimation the maximum likeli-
hood (Hosking, 1985) and for Wak parameter estimation
the L-moment method (Houghton, 1978) were applied.

A 10-year return period corresponds to the 90th per-
centile of cdf. To obtain robust results, the mean of Wak
and GEV was used to calculate U10yr,NCEI and U10yr,ERA5.

2.3 | LS-Boost modeling

A least squares boosting (LS-Boost) modeling approach
(Friedman, 2001) was used for high spatial resolution
mapping of extreme wind speed. The target variable for
LS-Boost modeling was U10yr,NCEI. To account for the
large-scale pattern of extreme wind speed conditions,
monthly U10yr,ERA5 was chosen as first predictor variable
(PV). UGloWiSMo was applied as second PV to consider the
small-scale wind speed properties. Continent (binary)
and month (1, …, 12) were additional PVs. Month was
chosen as PV to account for the fact that over the course
of the year different storm types cause high U10yr.

The spatial pattern of the target variable and the PVs
is shown in Figure 1 exemplarily for Europe. Calculated
extreme wind speed in Europe in January based on the
target variable Umax,NCEI (U10yr,NCEI) and the first PV
Umax,ERA5 (U10yr,ERA5) is presented in Figure 1a,b. The
second PV UGloWiSMo is displayed in Figure 1c.

The LS-Boost approach was used for modeling
U10yr,NCEI yielding the predictions of U10yr,NCEI (bU10yr).
According to previous studies, the LS-Boost algorithm is
well suitable for small-scale modeling of extreme
U (Jung & Schindler, 2019a; Schindler et al., 2016) The
LS-Boost approach is based on a sequence of binary
regression trees (Bm) that minimize the mean squared
error (MSE) between U10yr,NCEI and bU10yr. The algorithm
begins with the first guess of U10yr,NCEI by using its
median (eU10yr,NCEI). Next, multiple regression trees B1, …,
BM are combined in a weighted manner. The LS-Boost
regression trees are a function of the PVs U10yr,ERA5,
UGloWiSMo, continent, and month, (Friedman, 2001; van
Heijst et al., 2008):

bU10yr PVð Þ¼ eU10yr,NCEI PVð Þþ lr
XM
m¼1

pmBm PVð Þ ð3Þ

with the hyperparameters pm being the weight for model
m, M is the total number of regression trees, and lr equals
the learning rate. The LS-Boost method is available in
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Mathworks' Matlab® Software Statistics and Machine
Learning Toolbox (Release 2020a; The Math Works Inc.).

The algorithm was applied to a 250 m � 250 m grid
that matches the GloWiSMo grid. This was done by run-
ning the LS-Boost regression trees at all grid cells and
using the closest ERA5 grid cell as input for U10yr,ERA5.
To find the optimal hyperparameterization, combinations
of different M and lr values were tested by the MSE
which is calculated by the errors (ER) between bU10yr and
U10yr,NCEI. The finally selected model was then evaluated
by fivefold cross-validation yielding the four error mea-
sures MSE, mean error (ME), mean absolute error
(MAE), and mean absolute percentage error (MAPE)
(Willmott, 1982).

Areal means of bU10yr (U10yr) were computed for both
continents and subcontinental regions by averaging all
grid cells that belong to a continent or a region using
Esri's ArcGIS® 10.6 software.

3 | RESULTS AND DISCUSSION

3.1 | Modeled extreme wind speed

The pattern of bU10yr is highly variable both in space and
in time. To highlight the spatiotemporal bU10yr variability,
continental bU10yr from GloWiSMo-X which was modeled
based on the PVs U10yr,ERA5, UGloWiSMo, continent, and
month is presented for January and July in Figure 2.
These months were exemplarily chosen to compare bU10yr

in winter and summer.
In January, the area where bU10yr > 20 m � s�1 is 16.1%

in North America and 8.2% in Europe. In North America,
these areas include the central parts of the United States

and Northern Canada. In Europe, they include Iceland,
the British Isles, Denmark, and the Netherlands. Elsewise,
exposed mountain ranges and inland water bodies are
exposed to bU10yr > 20 m � s�1 in both continents. Regions
with bU10yr < 12 m � s�1 are rare. In both Europe and
North America, they account for less than 2.0% of the
total area. Their occurrence is mostly limited to sheltered
valley sites. However, there is a relevant number of
regions where 12:0 m � s�1 ≤ bU10yr < 15:0 m � s�1 (share of
area: 44.1% in North America and 37.6% in Europe), indi-
cating a strongly leptokurtic bU10yr distribution. These
regions comprise southeastern USA, central Alaska, and
southwestern Canada. In Europe, they occur in the south
in a patchy manner.

In July, bU10yr is considerably lower than in January.
Since the share of the area is below 1.6%, in both conti-
nents, areas where bU10yr > 20m/s are hardly identifiable.
However, the decline of bU10yr from January to July is
much more pronounced in Europe than in North Amer-
ica. Especially in the central parts of the United States,bU10yr frequently exceeds 15m/s. During July, the area
where bU10yr < 15m/s greatly increases to 93.7% in Europe
and is 73.6% in North America. In Europe, the regions
with bU10yr < 12.0m/s account for 40.7% and 26.4% in
North America.

The generally higher bU10yr values in January can be
attributed to the dominance of synoptic-scale storm
events in winter in both North America and Europe. Dur-
ing the summer months, synoptic-scale storm events are
much less frequent. However, in the summer months,
there are more convective storm events which are usually
much smaller in spatiotemporal extent than synoptic-
scale storm events. This leads to more localized damage
in summer than in the winter months.

FIGURE 1 Spatial distribution of wind speed for a 10-year return period in January in Europe estimated based on (a) the target variable

U10yr,NCEI from National Centers for Environmental Information data and (b) the first predictor variable U10yr,ERA5 available from ERA5

data. The second predictor variable is the (c) mean wind speed from the global wind speed model (UGloWiSMo)
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FIGURE 2 Modeled maximum hourly wind speed for a 10-year return period (bU10yr) in January in (a) North America and (b) Europe

and in July in (c) North America and (d) Europe

FIGURE 3 Monthly time series of modeled maximum hourly wind speed for a 10-year return period averaged (U10yr) across the grids

cells (U10yr) representing (a) North America (NA) and Europe (EUR); (b) Northeastern USA (USA-NE), Southeastern USA (USA-SE), central

parts of the United States (USA-C), Western USA (USA-W), Canada (CAN), and Alaska (AK); and (c) Northern Europe (EUR-N), Eastern

Europe (EUR-E), Southern Europe (EUR-S), Central Europe (EUR-C), and Western Europe (EUR-W)
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Despite the changed bU10yr magnitudes between
January and July, the intracontinental geographical
patterns of monthly bU10yr values are similar.

Monthly time series underline the distinct intra-annual
U10yr variability (Figure 3). In North America and
Europe, maximum continental U10yr occurs in January.
The U10yr minima were modeled for August. In January,
continental U10yr is 16.4m/s in North America and
16.3m/s in Europe. In August, U10yr decreases to 13.4m/s
in North America and 12.5m/s in Europe, respectively.
The continental U10yr differences, North America minus
Europe, are greater from April to November (1.2m/s)
compared to the period December to March (0.5m/s).
Furthermore, U10yr reveals major intracontinental varia-
tions. The central parts of the United States and Western
Europe have the highest U10yr values.

In January, U10yr in western Europe (18.0m/s)
exceeds U10yr in the central parts of the United States
(17.4m/s). The region with the lowest U10yr level

comprises southeastern parts of the United States where
U10yr < 14.0m/s. In Eastern, Southern, and Central
Europe, U10yr is almost identical from June to September
at a very low level (U10yr < 13.0m/s).

Map extracts of bU10yr centered around New York
State and Switzerland are presented in Figure 4 to high-
light the small-scale bU10yr variations. These regions were
selected because they both encompass very complex ter-
rain yielding a great bU10yr contrast.

Regardless of the modeled month, bU10yr values are
very high in the exposed mountain ranges in both map
extracts. In New York State, noticeably high bU10yr

values occur in the Catskill Mountains which are a part
of the Appalachian Mountains. In Switzerland, the
exposed summits of the Alps are strongly affected by
high bU10yr values. In addition to the topographic influ-
ences on bU10yr, the roughness influence on bU10yr is
also emphasized by the map extracts. With increasing
proximity to the US Atlantic coast, the bU10yr values

FIGURE 4 Modeled maximum hourly wind speed for a 10-year return period (bU10yr) in January centered around (a) New York state

and (b) Switzerland and in July centered around (c) New York state and (d) Switzerland
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increase considerably. Furthermore, inland water
bodies lead to higher bU10yr values compared with the
surrounding area.

3.2 | Model validation

The error histograms for GloWiSMo-X (ER¼ bU10yr�
U10yr,NCEI) and ERA5 (ER = U10yr,ERA5 � U10yr,NCEI) are
displayed in Figure 5 to quantify the improvement of the
predictive power of GloWiSMo-X for extreme wind speed
simulation compared to ERA5. The model validation for
ERA5 reveals a distinct bias between U10yr,ERA5 and
U10yr,NCEI with ME = �4.2m/s. This bias was fully
corrected by GloWiSMo-X (MSE = 0.0m/s). The greater
bias of ERA5 may be due to the fact that rare storm
events are simulated worse by ERA5 than average condi-
tions. In particular, convective events are more poorly
simulated due to their short spatiotemporal extent. In
contrast, GloWiSMo-X uses actual measurements as tar-
get variables which reflect the general level of extreme
wind speed. The further error measures also indicate con-
siderable improvements of the predictive power of
GloWiSMo-X (MSE = 7.2m/s, MAE = 2.0m/s, and
MAPE = 14.3%) compared to ERA5 (MSE = 31.9m/s,
MAE = 4.5m/s, and MAPE = 28.6%).

For GloWiSMo-X, 17.2% of all evaluated predictions,bU10yr and U10yr,NCEI agree. For another 30.5% of all pre-
dictions, ER¼ 1 m � s�1j j. Overall, the errors for 69.5% of
all predictions are in the range of �2 to +2m/s indicat-
ing a sufficient model accuracy. However, for 16.6% of all
predictions, ER≥ 4 m � s�1j j.

The GloWiSMo-X parameterization using M = 90 and
lr = 0.20 provided the lowest MSE. Thus, this combina-
tion was selected for the final bU10yr model.

4 | CONCLUSIONS

In this study, monthly extreme wind speed for a 10-year
return period was mapped on a high spatial resolution
scale (250 m � 250 m) by the newly developed model
GloWiSMo-X in North America and Europe. The main
similarities between North America and Europe include
a distinctive annual U10yr pattern with the maximum in
January and the minimum in August and similar effects
of exposure and roughness on U10yr. In contrast, the main
differences are a greater magnitude of the annual cycle,
and usually smaller variations of U10yr between
intracontinental regions in Europe than North America.

The developed model proves to be very broadly appli-
cable as it covers two different continents and all months.
The model validation also indicates that GloWiSMo-X
outperforms the accuracy of the coarser resolved ERA5
reanalysis data set. Besides, the probabilistic nature of
GloWiSMo-X allows overcoming the limited informative
value of the evaluation of specific individual storm
events. It enables spatially explicit statements about
storm hazard statistics. These attributes make
GloWiSMo-X beneficial for numerous sectors and appli-
cations, including forestry, insurance, local planning, the
wind industry, nature conservation, and air traffic. In
addition, GloWiSMo-X allows direct comparisons of both
continents (e.g., comparison of disturbance regimes
between North America and Europe). Ultimately,
GloWiSMo-X may lead to improved risk management
when integrated into storm damage models.

In future studies, GloWiSMo-X may be extended to
other continents and more extended return periods.
However, the development of highly resolved extreme
wind speed fields requires a representative number of
long-term wind speed time series. It is anticipated that

FIGURE 5 Error histogram (ER) for (a) GloWiSMo-X (ER¼ bU10yr�U10yr,NCEI) and (b) ERA5 (ER = U10yr,ERA5�U10yr,NCEI)
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the reduced availability of long-term wind speed time
series in many other countries complicates the develop-
ment of such models, and the model accuracy may be
worse. Another future goal may be to determine climate
change-related changes in the spatiotemporal extreme
wind speed pattern and integrate them statistically into
GloWiSMo-X.

Further meteorological conditions not integrated in
GloWiSMo-X influence storm damage formation. It is rele-
vant whether the high wind speed occurs in conjunction
with heavy precipitation, snow, and/or flooding. Also, the
type of storm event may lead to different levels of damage.
The gustiness of the wind and the duration of the event
differ depending on whether it is a synoptic-scale or con-
vective wind event. To incorporate these features,
GloWiSMo-X can be parameterized storm type-specific in
future studies. This, however, requires an in-depth data
preparation in which the wind events are already selected
storm type-specific at the beginning. For the consideration
of very small-scale convective events which are not fully
covered by the NCEI measurement sites, it may also be
necessary to include additional data sources (e.g., radar).
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