
1.  Introduction
Mid to high-latitude peatlands are important actors in the global carbon cycle with differential effects on the 
global climate (Frolking et al., 2011). On the one hand, they accumulated large amounts of atmospheric carbon 
dioxide (CO2) in the form of peat (Limpens et al., 2008), on the other hand they produce large amounts of meth-
ane (CH4) which can be emitted to the atmosphere (Frolking et al., 2011; Limpens et al., 2008). Redox reactions 
are important controls of carbon turnover and therefore redox processes and their role in methane and CO2 
production are crucial to understand peatland carbon dynamics (Limpens et al., 2008).

Methane formation is an obligatory anaerobic process and thus occurs only in the (at least temporally) anoxic 
zone of peatlands (Limpens et al., 2008). It can be suppressed if thermodynamically more favorable terminal elec-
tron acceptors (TEA), such as nitrate, iron oxides, sulphate, or organic molecules, are available (Blodau, 2011; 
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Gao et al., 2019; Klüpfel et al., 2014). While inorganic TEAs typically have a comparatively small abundance 
in peatlands, suppression of CH4 formation can occur due to the large abundance of OM that acts as TEA (Gao 
et al., 2019) and can be “recharged” even during short oxic periods (Klüpfel et al., 2014; Lau et al., 2016; Walpen, 
Lau, et al., 2018). Whereas dissolved organic matter (DOM) acts as electron mediator during such respiration 
processes (Gao et  al.,  2019; Lau et  al.,  2016), POM provides the main part of the electron accepting capac-
ity (EAC) of peat and can continuously reoxidize DOM mediators and other TEAs (Blodau et al., 2007; Gao 
et al., 2019). Consequently, understanding the electrochemical properties of peat POM and how these are driven 
by vegetation chemistry and decomposition are key to understand CH4 emissions from peatlands.

How OM chemistry controls its capacity to accept electrons electron donating capacity (EDC) has been 
studied mainly for DOM and humic and fulvic acids (Aeschbacher et  al.,  2012,  2010; Fimmen et  al.,  2007; 
Hernández-Montoya et  al.,  2012; LaCroix et  al.,  2020; Ratasuk & Nanny,  2007; Tan et  al.,  2017; Walpen, 
Getzinger, et al., 2018). The positive relation of the EAC to the C:H ratio and the EAC and EDC to indicators 
for aromaticity have been attributed to quinones and phenols representing the main contributors to the EAC 
and EDC, respectively (Aeschbacher et al., 2010; Tan et al., 2017). In addition, sulfur and nitrogen containing 
functional groups can contribute to the EAC and EDC (Fimmen et al., 2007; Hernández-Montoya et al., 2012; 
Ratasuk & Nanny, 2007) and the specific configuration of substituents and the degree of condensation control the 
magnitude and reversibility of the redox reactions (Ratasuk & Nanny, 2007; Uchimiya & Stone, 2009). Overall, 
there is a quite detailed conceptual understanding, which molecular structures are related to the EAC and EDC 
of DOM and humic and fulvic acids.

In contrast, knowledge on peat POM EAC and EDC (EACPOM and EDCPOM) and even more on how peat POM 
chemistry relates to its EAC and EDC is still scarce. Few studies analyzed the EAC and EDC of POM (Gao 
et al., 2019; Keller & Takagi, 2013; Lau et al., 2015, 2016). These studies focused on quantifying and analyz-
ing the reversibility of the electron transfer, but not how POM chemistry relates to its EAC and EDC (Gao 
et al., 2019; Keller & Takagi, 2013; Lau et al., 2015, 2016). However, the ranges of the EACPOM and EDCPOM for 
peat POM are not sufficiently quantified yet. Furthermore, POM has different chemical properties than DOM and 
humic and fulvic acids because these fractions are derived from POM or represent subfractions of DOM which 
may be chemically altered (either via decomposition reactions—in case of DOM—and/or addition of acids and 
bases during extraction—in case of humic and fulvic acids; Lipczynska-Kochany, 2018; Worrall et al., 2017). 
Therefore, it is unclear if POM electrochemical properties correlate in the same way to element ratios or molec-
ular structures as for DOM and humic and fulvic acids.

“Classical” indicators of peat chemistry (e.g., element ratios and the nominal oxidation state of carbon (COX)), 
tools to infer the contribution of different OM fractions, such as lignin or polysaccharides, (e.g., van-Kreve-
len diagrams; Kim et al. (2003)) and measurement procedures (e.g., mid infrared spectroscopy) are promising 
techniques to explore how peat POM chemistry relates to its EAC and EDC. These methods have been widely 
used to analyze peat chemistry, its molecular structures, and electrochemical properties of DOM and humic and 
fulvic acids (Aeschbacher et al., 2010, 2012; Artz et al., 2008; Bader et al., 2018; Cocozza et al., 2003; Hodgkins 
et al., 2018; LaCroix et al., 2020; Leifeld et al., 2012, 2020; Lv et al., 2018; Moore et al., 2018; Tan et al., 2017; 
Tfaily et al., 2014; Worrall et al., 2017). Therefore, these approaches can be useful to analyze how different OM 
fractions and molecular structures in POM relate to its EAC and EDC.

Similarly unexplored are the relations between the degree of decomposition of peat and its EACPOM and EDCPOM. 
Since decomposition can considerably transform peat POM and its molecular structures (Cocozza et al., 2003), 
it could have large effects on its EACPOM and EDCPOM. Specifically, these may be irreversible changes of the 
EACPOM and EDCPOM via decomposition and oxidation of polymeric phenol and quinone moieties (Aeschbacher 
et al., 2012; Ratasuk & Nanny, 2007; Uchimiya & Stone, 2009). Developing a conceptual understanding of these 
relations is therefore important to understand the mechanics of EACPOM and EDCPOM changes during decompo-
sition. Indicators of peat chemistry, for example, the N:C ratio (alternatively C:N; Biester et al., 2014), COX, and 
MIRS-derived humification indices (Broder et al., 2012) have been widely used to analyze the degree of decom-
position of peat (Biester et al., 2014; Drollinger et al., 2020).

A practically useful product of such investigations may be the development of regression models to predict peat 
EACPOM and EDCPOM from such indicators of peat chemistry or MIRS. For humic and fulvic acids, a close rela-
tion between the EAC and H:C ratio was found (Aeschbacher et al., 2010; Tan et al., 2017). MIRS has not yet 
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been used for the prediction of electrochemical properties of OM, but has proven useful for its qualitative analysis 
(Hernández-Montoya et al., 2012; Yuan et al., 2018) and the prediction of other peat properties (Artz et al., 2008). 
On the one hand, such regression models may enable inferring the EACPOM and EDCPOM of peat samples from 
existing data, on the other hand, they may serve at least as qualitative and (particularly for MIRS-based models) 
fast and cost effective screening tools which could assist in mapping peat EACPOM and EDCPOM.

To address these knowledge gaps, we investigated how peat chemistry relates to its EACPOM and EDCPOM, and 
how decomposition may change both peat chemistry and its electrochemical properties. Moreover, we wanted to 
assess if peat EACPOM and EDCPOM may be predicted from simple indicators of peat chemistry or MIRS. To this 
end, we aimed to (a) quantify under standardized conditions the EACPOM and EDCPOM of peat material formed 
under various environmental conditions and with a range of degrees of decomposition, (b) analyze the relation 
of the EACPOM and EDCPOM to bulk chemical properties, indicators for decomposition, and molecular structures, 
and (c) evaluate if element ratios (H:C, O:C, N:C, S:C) and MIRS can be used to predict peat EACPOM and 
EDCPOM, all based on a global data set of peat materials.

These analyses represent a basis for the conceptual understanding of how peat chemistry and decomposition 
affect the EACPOM and EDCPOM. This knowledge can help to understand, quantify, and predict spatiotempo-
ral variability in peat EACPOM and EDCPOM and thus contributes to the quantitative understanding of peatland 
decomposition processes and CH4 formation on a global scale. With this, we aim to contribute information to 
better understand and predict peatland-climate interactions.

2.  Materials and Methods
To answer our main research question—how peat chemistry relates to its EAC and EDC, and how decomposition 
may change both—we compiled peat material and data for peatland sites with a broad range of climate regimes, 
dominant vegetation, and peatland types and performed various measurements under standardized conditions to 
describe their chemical and electrochemical characteristics. With these data, we conducted an explorative analy-
sis, computed regression models that predict the EACPOM and EDCPOM from element ratios or MIRS, and finally 
developed a conceptual model how initial peat chemistry and decomposition change chemical characteristics and 
the EACPOM and EDCPOM of peat.

2.1.  Study Sites

We compiled peat cores collected in the course of different projects from 15 peatland sites (one core per site). The 
different peatland sites are spread across the range of mid to high-latitude peatland areas (Figure 1), experience 
different climatic regimes, and comprise both bogs and fens with different dominant vegetation cover (Table 1). 
This enabled us to analyze peat material with a representative range of chemical properties and EAC and EDC.

Peat samples were selected from four approximate depth levels, depending on the vertical resolution of the peat 
cores and the maximum depth reached during coring (10–20, 30–40, 60–70 cm, and the deepest available sample 
per core at depths of 140–320 cm). We assumed that the samples cover most of the decomposition and vegetation 
shift-related variability in peat chemistry and hence EAC and EDC.

2.2.  EAC and EDC Measurements

We measured the EAC and EDC of the peat samples using mediated electrochemical reduction (MER) and oxida-
tion (MEO), respectively, following largely the protocols provided by Lau et al. (2015) and Gao et al. (2019).

For this, the peat material was freeze dried (alpha 1–4 plus, Christ, Osterode, Germany) and finely ground to 
powder in a vibratory cup mill (tungsten carbide cups; Retsch MM 400, Haan, Germany). The ground samples 
were suspended in water in order to create a suspension that can be pipetted for analyses as described elsewhere 
(Lau et al., 2015). For this, approximately 0.08 g of sample and 30 mL of deionized, degassed, and anoxic water 
were used, or, in case of lower amounts of sample available, a similar ratio of water to solids. Aliquots of these 
bulk peat POM suspensions were used during the electrochemical measurements.

The suspensions were transferred into a glove box with N2 atmosphere (<1 ppm O2; Inert Lab Glovebox, Inno-
vative Technology) to perform the electrochemical measurements. For each measurement, an aliquot of each 



Global Biogeochemical Cycles

TEICKNER ET AL.

10.1029/2021GB007160

4 of 22

Figure 1.  Map of the peatland sites from which peat material and data were compiled for this study. The map was created using data from the R package rnaturalearth 
(South, 2017).

Site 
label Site name Longitude Latitude Altitude

Peatland 
type Current vegetation Temperature Precipitation References

BB Beerberg 10.74 50.66 977 Bog Sphagnum, shrubs 5.3 1,349

MK Martinskapelle 8.15 46.10 2,089 Bog Shrubs, Sphagnum 2.1 1,027

LT La Tenine 6.93 48.04 863 Bog Sphagnum, shrubs 6.4 1,330

DE Degerö 19.56 64.18 275 Fen Sphagnum, sedges, shrubs 1.7 621 Sagerfors et al. (2008)

ISH Ishimbaevskoye 65.34 57.47 77 Fen Shrubs, Sphagnum 1.5 472 Wertebach 
et al. (2016)

KR Kyzyltun Ryam 69.62 56.26 110 Bog Sphagnum 1.0 384 Larina et al. (2013)

TX Touxi 127.84 42.28 1,070 Fen Vascular plants, Sphagnum 1.3 754

DT Dongtu 127.86 42.27 1,268 Fen Vascular plants, Sphagnum 0.6 775

LB Lutose Bog −117.17 59.48 309 Bog Sphagnum, shrubs −1.8 356 Heffernan 
et al. (2020)

LP Lutose Plateau −117.17 59.48 309 Bog Sphagnum, lichens −1.8 356 Heffernan 
et al. (2020)

MB Mer Bleue −75.52 45.41 68 Bog Shrubs, Sphagnum 5.6 945 Elliott et al. (2012)

PBR P. Brunswick −70.97 −53.64 50 Bog Sphagnum, shrubs 6.0 797 Broder et al. (2012)

SKY I-1 Skyring I-1 −72.45 −52.14 75 Bog Vascular plants (Astelia pumila), 
Sphagnum

6.1 637 Mathijssen 
et al. (2019)

SKY I-6 Skyring I-6 −72.45 −52.14 75 Bog Sphagnum 6.1 637 Mathijssen 
et al. (2019

SKY II Skyring II −72.13 −52.51 36 Bog Sphagnum 6.3 690 Broder et al. (2012)

Note. Longitude and latitude are given in decimal degree north and east, respectively (EPSG:3857), the altitude is given in meter above sea level, peatland type differentiates 
between bogs and fens following available studies for the respective sites or from own investigations following concepts in Rydin et al. (2013). “Temperature” is the 
mean annual temperature [°C], “Precipitation” is the total annual precipitation [mm], and “References” are references with additional information on the sites. Elevation 
data were derived from the median values of the GMTED2010 data (Danielson & Gesch, 2010). All climate data were derived from the WorldClim version 2.1 climate 
data for 1970–2000 (30 s spatial resolution, monthly temporal resolution) (Fick & Hijmans, 2017).

Table 1 
Overview on the Sites From Which Peat Samples and Data Were Derived From
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suspension, depending on the total organic carbon content and the expected range of the EAC/EDC (typically 
100 µL suspension containing 0.13 ± 0.01 mg; the error refers to pipetting errors in the volume), was transferred 
into electrochemical cells. The suspensions were continuously stirred (topolino, IKA) to ensure reproducible 
transfer into the electrochemical cells.

The electrochemical cells and analytical setup consisted of a multichannel potentiostat (CH1000, CH Instru-
ments), glassy carbon working electrodes (Sigradur, HTW), platinum counter electrodes (coiled 0.4 mm platinum 
wire, Sigma-Aldrich), and Ag/AgCl reference electrodes (RE-1B, ALS Co. Ltd). All potentials were experi-
mentally measured against Ag/AgCl reference, but are reported versus the standard hydrogen electrode (MER: 
−0.49 V, MEO: 0.61 V).

The working electrode solution contained KCl as a background electrolyte (0.1 mol L −1) and was buffered to pH 
7 (0.2 mol L −1 KH2PO4) to ensure stable pH during measurements (Aeschbacher et al., 2011) and to enable direct 
comparisons with available data (Aeschbacher et al., 2010; Tan et al., 2017; Walpen, Getzinger, et al., 2018). 
Prior to analyses of samples 180  µL of a 0.1  mol  L −1 solution of the mediator diquat (6,7-dihydrodipyrido 
[1,2-a:20,10-c] pyraziniumdibromid monohydrate; EH0 = −0.36 V; Supelco, USA; 95% purity) was added for 
MER, and a similar amount of ABTS (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) ammonium salt; 
EH0 = 0.68 V; Sigma Aldrich, St. Louis, USA; 98% purity) for MEO.

Values of EAC and EDC were determined in MER and MEO, respectively, by integrating the reductive or oxida-
tive current signals over time and normalizing the quantified numbers of electrons transferred to the amount of 
carbon added for analysis (Aeschbacher et al., 2010). The sum of EAC and EDC is referred to as total electron 
exchange capacity (EECtot).

In a strict sense, the obtained EAC and EDC values are the combined EAC and EDC of the POM, DOM, and 
dissolved inorganic ions and inorganic particles that could be reduced and oxidized, respectively. Prior studies 
of organic rich sediments and peat samples suggest that dissolved inorganic ions and DOM have a negligible 
contribution to the EAC and EDC of bulk peat material (∼1%; Gao et al., 2019; Lau et al., 2015) and therefore 
we assume that our measurements are representative for the solid phase.

Even though POM is assumed to be the dominant contributor to the EAC and EDC of organic rich sediments 
such as peat (Gao et al., 2019; Lau et al., 2015), solid iron phases can contribute to the EAC and EDC of peat 
as measured by MER/MEO (Lau et al., 2015). We therefore corrected the measured EAC and EDC values for 
contributions of Fe 2+ (each mol contributing one mol electrons to the EDC) and Fe 3+ (each mol contributing 
one mol  electrons to the EAC; Gao et al., 2019; Lau et al., 2015). To this end, we extracted iron by adding 4 mL 
1 mol L −1 HCl to 1 mL of each sample (in some cases less material had to be used), letting the suspensions rest 
for 72 hr in the dark, and filtering the solution through 0.22 µm Nylon syringe filters. Concentrations of Fe 2+ 
and Fe 3+ in the filtrate were measured spectrophotometrically using the 1,10-phenanthroline method (Tamura 
et al., 1974) and from this, we computed the contributions of iron to the EAC (EACFe 3+) and EDC (EDCFe 2+), 
respectively. The EACPOM was then computed by subtracting EACFe 3+ from the measured EAC and the EDCPOM 
by subtracting EDCFe 2+ from the measured EDC (Lau et al., 2015).

There are several known issues with this procedure. First, acid extraction may not extract all redox active iron 
moieties (Lau et al., 2016). Second, during acid extraction, the redox equilibrium between iron and OM is shifted 
and Fe 3+ may in part be reduced to Fe 2+ (Lau et al., 2015). Consequently, the contribution of iron to the EDC is 
typically overestimated, whereas the contribution of iron to the EAC is typically underestimated (Lau et al., 2015).

The first issue may be negligible for most samples because peat typically contains few mineral particles and 
hence most iron typically is acid extractable (Figure S3 in Supporting Information S1). However, we cannot fully 
exclude that more iron moieties than that accessible via acid extraction contributed to the EAC and EDC for 
samples with larger iron contents (Figure S3 in Supporting Information S1). The second issue probably affected 
our calculated EACPOM and EDCPOM values. One indication for this is that 5 EDCPOM values were negative (mini-
mum: −8 µmol 𝐴𝐴 g−1

C
 ). We therefore assume that the calculated EACPOM and EDCPOM values are biased for samples 

with high iron content and considered this during data analysis and interpretation (see below).

We finally report the EACPOM and EDCPOM relative to the C mass of the measured sample (mass of C in the bulk 
peat POM suspension aliquot). Moreover, we computed the EACPOM and EDCPOM relative to the total mass of the 
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sample for comparison with values reported in other studies. For each sample, we computed average EACPOM and 
EDCPOM values and respective standard deviations from the replicate measurements. During this, we discarded 
one EAC replicate measurement for which we assumed measurement errors because it differed extremely (more 
than 1,000 µmol 𝐴𝐴 g−1

C
 ) from the remaining replicate measurements for the same sample (Figure S2 in Supporting 

Information S1).

The EACPOM and EDCPOM values we report here can be interpreted as material properties because all measure-
ments have been standardized to specific conditions (pH value, oxidation state of the POM, reduction potentials, 
ionic strength of the solution, standardized particle size due to milling; Aeschbacher et al., 2012; Lu et al., 2015). 
This is necessary to interpret the EACPOM and EDCPOM values relative to the chemistry of the POM because 
otherwise the measured EACPOM and EDCPOM values would be confounded by factors not related to the chemistry 
and degree of decomposition of the peat POM. The values measured in this study therefore probably differ from 
EACPOM and EDCPOM values under in situ conditions due to different environmental conditions and intact physi-
cal structure of the peat POM. Due to an intact physical structure and more acidic conditions, in situ EACPOM and 
EDCPOM probably are smaller than the values reported here (Aeschbacher et al., 2012; Lu et al., 2015). If electron 
transfer within intact POM over larger distances occurs (Bai et al., 2020), smaller EACPOM and EDCPOM values 
under the same pH value and ionic strength would probably be a result of kinetic limitation and therefore longer 
measurements may be necessary to fully oxidize/reduce redox active moieties. Comparative values measured 
under in situ conditions are yet not available because it is currently practically difficult to measure the EAC and 
EDC under in situ conditions.

2.3.  Element Contents

We analyzed concentrations of C, N, and S for all samples by catalytic combustion using an elemental analyzer 
(EA 3000, Eurovector). Concentrations of H and O were determined based on the modified Dumas Method, 
using a CHNS/O analyzer (FlashEA 1,112, Thermo Fisher Scientific). The nominal oxidation state of C (Cox) was 
computed from the contents of C, H, N, and O (Masiello et al., 2008; Worrall et al., 2016).

Total concentrations of other elements (Fe, P and others; see Table S1 in Supporting Information S1 for a full list 
of measured elements) were determined by wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF; 
ZSX Primus II) calibrated with a set of 15 reference materials, consisting of certified plant, peat, and sediment 
materials, and 5 in-house working standards. Analyses were done on 500  mg of ground, powdered sample, 
pressed to a 13 mm pellet (without pelleting aids) at a load of approximately 7t. For few samples, S contents were 
derived from the WD-XRF data.

2.4.  Mid Infrared Spectroscopy

Fourier-transform mid infrared spectra (MIRS) were used to obtain detailed information on peat molecular struc-
tures and to compute regression models for the prediction of peat EAC and EDC. Two mg of powdered sample 
were mixed with 200 mg KBr (FTIR grade, Sigma Aldrich) and pressed to a 13 mm pellet. Spectra were recorded 
on a Cary 660 FTIR spectrometer (Agilent) in the range 650–4,000 cm −1 at a resolution of 0.5–2 cm −1. A number 
of 32 scans per sample was collected in absorbance mode and a KBr background was subtracted.

The recorded MIRS were preprocessed to remove known artifacts and harmonize the data. Spectral preprocessing 
was performed using the package ir (0.0.0.9000; Teickner, 2021). To assess the degree of peat decomposition, 
we computed a humification index by dividing the intensity at 1,630 cm −1 and 1,090 cm −1 (denoted as HI1630/1090; 
Broder et al., 2012) using irpeat (0.0.0.9000; Teickner & Hodgkins, 2021).

Two transformed versions of the spectra were created for the computation of MIRS-based regression models: The 
first is a binned version and the second is a derived and binned version of the preprocessed spectra. Binning was 
performed with a bin width of 10 cm −1 to reduce autocorrelation and noise in the spectra. Prior to binning, the 
preprocessed spectra were derived using a Savitzgy-Golay filter (filter width: 5 cm −1; signal developers, 2014). 
Derivatization can improve the resolution of features and therefore can improve the predictive accuracy of regres-
sion models (Engel et al., 2013; Stuart, 2004).
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2.5.  Statistical Analyses

2.5.1.  Balancing the Analytical Bias in EACPOM and EDCPOM Values

As mentioned in the previous section, the EACPOM and EDCPOM values computed from measured EAC and EDC 
values and acid extracted iron ion contents probably are biased, especially for samples with high iron content (Lau 
et al., 2015, 2016). Since we are interested in electrochemical properties of POM, this bias must be considered 
during all data analysis steps. We aimed to do this first by quantifying the maximum potential contribution of iron 
to the EAC and EDC, second, by creating a filtered data set for each the EACPOM and EDCPOM containing only 
data where the maximum potential contribution of iron to either the EAC and EDC was ≤100 µmol 𝐴𝐴 g−1

C
 , and third, 

performing all analyses for the filtered data set. Analyses for the unfiltered data set can be found in Supporting 
Information S1.

The maximum potential contribution of iron to the EAC and EDC was determined as the total concentration of 
iron in the acid extract (sum of the concentrations of Fe 2+ and Fe 3+). We assumed that non-extracted iron is redox 
inactive and hence this total iron concentration reflects the maximum potential contribution of iron to either 
the EAC or EDC, irrespective of the initial redox state and redox state changes during the acid extraction. This 
assumption is true for samples with low total iron contents, but cannot be validated for samples with larger iron 
contents (Figure S3 in Supporting Information S1; Lau et al., 2016). An overview on the maximum potential 
contribution of iron to the EAC and EDC across all samples computed from the acid extractable iron content can 
be found in Figure S4 in Supporting Information S1. The threshold of ≤100 µmol 𝐴𝐴 g−1

C
 was chosen to balance the 

reduction in the analytical bias in the filtered data and the reduction in sample size, resulting in a sample size of 
52 for the EAC and EDC. As a result, there was only a constant offset bias between corrected and uncorrected 
values for the EAC and EDC (Figure S5 in Supporting Information S1).

In general, measured EAC and EDC values typically are much larger than 100 µmol 𝐴𝐴 g−1
C

 and samples with large 
acid extracted (and total) iron contents typically have a small EAC and EDC (Figures S5 and S6 in Supporting 
Information S1), suggesting that the maximum bias is probably low. Therefore we assume that it is unlikely that 
the remaining bias had a large influence on the results. As mentioned above, we cannot, however, fully exclude 
contributions of non-acid extractable iron minerals to the EAC and EDC. We also note that choosing a tighter 
filter threshold is likely to cause selection bias since samples with high acid extracted iron content tend to be more 
decomposed (Figure S7 in Supporting Information S1).

2.5.2.  EACPOM and EDCPOM Variability

We created several plots and computed Pearson correlation coefficients to analyze patterns in the samples' 
EACPOM and EDCPOM. In particular, we compared our EACPOM and EDCPOM values with those measured for 
various humic and fulvic acids and DOM samples in other studies (Aeschbacher et al., 2012; Tan et al., 2017; 
Walpen, Getzinger, et al., 2018). These values from other studies were extracted from the publications' figures 
using the R package digitize (Poisot, 2011).

2.5.3.  Relation to Chemical Properties, Decomposition Indicators, and Infrared Spectra

To analyze the relation of the EACPOM, EDCPOM, and EDCPOM:EACPOM ratio to different indicators of bulk peat 
chemistry (H:C, O:C, N:C, S:C ratio, HI1630/1090, and COX), we created scatterplots and computed their pairwise 
Pearson correlation (ρ). The H:C ratio has been shown to relate negatively to the EAC and EDC of humic and 
fulvic acids (Aeschbacher et al., 2010; Lv et al., 2018; Tan et al., 2017). The O:C, N:C, S:C ratio, and COX are 
indicators for peat decomposition (Biester et al., 2014; Leifeld et al., 2012; Masiello et al., 2008) and COX was 
positively related to the EDC of humic and fulvic acids (Lv et al., 2018). The O:C ratio is an indicator for the 
amount of polysaccharides (Kim et al., 2003) which are not assumed to contribute to the EACPOM and EDCPOM. 
There is some evidence for the contribution of nitrogen and sulfur containing functional groups to the EACPOM 
and EDCPOM (Fimmen et al., 2007; Hernández-Montoya et al., 2012; Ratasuk & Nanny, 2007) and the N:C, and 
S:C ratio might give information on this, too.

To qualitatively analyze potential joint effects of the H:C and O:C ratio and relate their variability to different 
OM fractions, we created van-Krevelen plots. For some International Humic Substances Society (IHSS) refer-
ence humic and fulvic acids (terrestrial and aquatic), information on element contents (Huffman Laboratories & 
Soil Biochemistry Laboratory University of Minnesota, NA) and EAC and EDC (Aeschbacher et al., 2012) are 
available. We therefore could include these samples in the van-Krevelen plots. Finally, we computed correlation 
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spectra for the EACPOM and EDCPOM by computing the Pearson correlation of both variables with each MIRS 
variable. This allowed us to investigate relations to molecular structures derived from MIRS.

2.5.4.  Regression Models

We used regression models to analyze if peat EACPOM and EDCPOM can be predicted from a linear combination 
of individual element ratios (H:C, O:C, N:C, S:C). Different regression approaches were investigated: (a) includ-
ing only the H:C and O:C ratio, and (b) including all four element ratios. We used Bayesian hierarchical models 
to consider the uncertainties of the replicate measurements and that these were different for different samples 
(Figure S8 in Supporting Information S1 provides an overview on the model structure). For the EACPOM and 
EDCPOM values (both individual measurements and replicate measurement averages), we assumed a Gamma 
distribution with log-link function. Individual replicate measurements with EDCPOM values ≤ 0 µmol 𝐴𝐴 g−1

C
 were 

set to 0 µmol 𝐴𝐴 g−1
C

 for this. Since the absolute values of these measurements is small in comparison to the median 
EDCPOM values, we assumed that this causes no bias in our analyses. Further details on the specification of the 
element ratio-based models can be found in Supporting Information S1.

Additionally, we computed regression models to analyze the joint relation of molecular structures derived from 
MIRS to the EACPOM and EDCPOM. For this, we used partial least squares regression (PLSR) and Bayesian regu-
larization (e.g., Artz et al., 2008; Ferragina et al., 2015). Since different preprocessing approaches for MIRS can 
affect the predictive performance of models (Engel et al., 2013), we computed not only one regression model for 
each the EACPOM and EDCPOM, but four, using either non-derived spectra or first derivative spectra as input data, 
and PLSR or Bayesian regularization, respectively. In addition, for the EDCPOM, we observed biases and tried to 
reduce these by dividing the EDCPOM by HI1630/1090.

We applied Bayesian projection (Piironen et al., 2020) on all MIRS-based models to facilitate their interpretation. 
Bayesian projection seeks to find a reduced model that is similar to the full model in terms of its posterior distri-
bution within some defined tolerance threshold (Piironen et al., 2020). This allowed us to establish more direct 
links between the underlying molecular structures and the EACPOM and EDCPOM. Further details on the projection 
approach are described in in Supporting Information S1.

We also wanted to analyze if regression models using element ratios or mid infrared variables may be used 
to predict peat EACPOM and EDCPOM. For this, we estimated the predictive accuracy using 10-fold cross-val-
idation (CV; Roberts et al., 2017) and the root mean square error (RMSE) as performance metric (Bellocchi 
et al., 2010). As we did not observe large deviations between alternative regression models, we cross-validated 
only the regression models containing all element ratios (H:C, O:C, N:C, S:C) and the MIRS-based models using 
Bayesian regularization and non-derived spectra. The RMSE was computed between the Markov Chain Monte 
Carlo (MCMC) draws for predictions of the regression models for new observations and MCMC draws for esti-
mates of the samples' average EACPOM or EDCPOM, respectively. This allowed us to consider the uncertainties of 
the repeated measurements during CV, and to compute a probability distribution for the RMSE values based on 
the CV uncertainty, as well as the models' uncertainties.

3.  Results
3.1.  EACPOM and EDCPOM

Our peat samples' average EACPOM ranges between 179 and 1,228 µmol 𝐴𝐴 g−1
C

 and their EDCPOM between 9 and 
569  µmol 𝐴𝐴 g−1

C
 (after filtering; see Table  2 for site-specific values). The EACPOM is typically larger than the 

EDCPOM, with few exceptions, and both are loosely positively related (ρ = 0.39), as shown in Figure 2b.

The EACPOM and EDCPOM vary considerably between different sites and the depth-related within-site variability 
is also large (Figure 2a). In addition, no general depth-related pattern is visible: For some peat cores, the upper-
most sample had the largest EACPOM or EDCPOM, for others the deepest, and for some the intermediate samples. 
The same figure also shows that the EACPOM and EDCPOM can change independently or even inversely to each 
other along the peat profile. Finally, our specific sites did not show distinct patterns in their EACPOM and EDCPOM 
to differentiate bogs and fens (Figure S10 in Supporting Information S1).

Figure 2c compares EACPOM and EDCPOM for our peat samples to those for different humic and fulvic acids and 
peat DOM samples obtained from different studies (Aeschbacher et al., 2012; Tan et al., 2017; Walpen, Getzinger, 
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et al., 2018). Most humic and fulvic acids and peat DOM samples have a larger EAC and EDC on a per gram 
carbon scale, whereby mineral soil humic and fulvic acids (Tan et al., 2017) seem to have intermediate values rela-
tive to our measurements on the one hand and the larger values for various IHSS reference samples (Aeschbacher 
et al., 2012) and peat DOM samples (Walpen, Getzinger, et al., 2018) on the other hand.

3.2.  Relation to Bulk Chemical Properties

No single bulk chemical property is strongly related to either the EACPOM, EDCPOM or EDCPOM:EACPOM ratio, 
except for the N:C ratio which is relatively strongly related to the EDCPOM (ρ = −0.65), and the H:C ratio which 
is related to the EACPOM (ρ = −0.47; Figure S11 in Supporting Information S1). The EDCPOM:EACPOM ratio 
is related to the N:C ratio (ρ = −0.5). All other Pearson correlation coefficients between either the EACPOM or 
EDCPOM and any of the variables we considered is not larger than 0.45 or smaller than −0.43.

The relative weak correlations are not due to non-linear relations, but due to a large variability within and 
between sites (Figure S11 in Supporting Information S1). For the EACPOM, this variability is especially large for 
samples with average N:C ratio, medium to large O:C ratio, large COX, and medium HI1630/1090. For the EDCPOM, 

Site label EACPOM EDCPOM H:C O:C N:C S:C COX HI1630/1090

BB 477 (390, 534) 397 (327, 463) 1.46 (1.4, 1.5) 0.68 (0.62, 0.74) 0.01 (0.01, 0.02) 0.001 (0, 0.003) −0.07 (−0.12, 
0.02)

0.56 (0.44, 0.62)

MK 581 (339, 940) 341 (213, 492) 1.44 (1.43, 1.45) 0.61 (0.52, 0.69) 0.02 (0.01, 0.03) 0.001 (0, 0.001) −0.16 (−0.29, 
−0.01)

0.72 (0.55, 0.86)

LT 542 (427, 734) 310 (161, 452) 1.49 (1.48, 1.52) 0.68 (0.66, 0.7) 0.01 (0.01, 0.02) 0.001 (0, 0.001) −0.1 (−0.13, 
−0.05)

0.58 (0.5, 0.63)

DE 477 (424, 590) 466 (288, 673) 1.55 (1.49, 1.61) 0.66 (0.6, 0.7) 0.02 (0.01, 0.02) 0 (0, 0.001) −0.18 (−0.25, 
−0.08)

0.54 (0.49, 0.59)

ISH 633 (435, 926) 227 (176, 349) 1.42 (1.35, 1.48) 0.57 (0.54, 0.61) 0.02 (0.02, 0.03) 0.001 (0.001, 
0.003)

−0.22 (−0.28, 
−0.13)

0.93 (0.66, 1.1)

KR 721 (486, 907) 402 (276, 548) 1.5 (1.39, 1.56) 0.65 (0.59, 0.69) 0.02 (0.01, 0.02) 0.001 (0.001, 
0.001)

−0.16 (−0.25, 
−0.09)

0.75 (0.64, 1.01)

TX 415 (302, 636) 80 (36, 128) 1.51 (1.47, 1.56) 0.56 (0.53, 0.61) 0.04 (0.04, 0.05) 0.002 (0.001, 
0.002)

−0.27 (−0.31, 
−0.2)

0.83 (0.61, 0.98)

DT 325 (255, 388) 121 (98, 140) 1.47 (1.4, 1.53) 0.5 (0.48, 0.53) 0.04 (0.04, 0.05) 0.002 (0.001, 
0.002)

−0.33 (−0.38, 
−0.31)

0.89 (0.8, 0.99)

LB 642 (324, 1,208) 363 (284, 410) 1.48 (1.29, 1.63) 0.68 (0.57, 0.73) 0.02 (0.01, 0.02) 0.001 (0, 0.002) −0.06 (−0.13, 
−0.01)

0.45 (0.37, 0.62)

LP 968 (691, 1,228) 269 (207, 334) 1.4 (1.28, 1.54) 0.65 (0.6, 0.7) 0.02 (0.01, 0.02) 0.001 (0, 0.001) −0.04 (−0.08, 0) 0.61 (0.55, 0.66)

MB 758 (656, 868) 351 (247, 569) 1.41 (1.31, 1.46) 0.64 (0.52, 0.72) 0.02 (0.01, 0.03) 0.001 (0, 0.001) −0.09 (−0.21, 
0.05)

0.69 (0.47, 0.95)

PBR 799 (455, 1,192) 461 (376, 541) 1.38 (1.3, 1.45) 0.6 (0.56, 0.65) 0.02 (0.01, 0.02) 0.001 (0.001, 
0.001)

−0.12 (−0.15, 
−0.11)

0.83 (0.7, 0.95)

SKY I-1 323 (179, 468) 76 (10, 155) 1.43 (1.38, 1.51) 0.58 (0.55, 0.63) 0.03 (0.02, 0.04) 0 (0, 0.001) −0.2 (−0.29, 
−0.07)

0.9 (0.54, 1.13)

SKY I-6 346 (234, 497) 169 (58, 269) 1.44 (1.4, 1.48) 0.55 (0.48, 0.62) 0.02 (0.02, 0.02) 0 (0, 0.001) −0.28 (−0.38, 
−0.14)

0.92 (0.65, 1.37)

SKY II 749 (570, 912) 376 (347, 403) 1.46 (1.44, 1.48) 0.67 (0.53, 0.74) 0.01 (0.01, 0.02) 0 (0, 0.001) −0.07 (−0.32, 
0.08)

0.58 (0.44, 0.73)

Note. EACPOM and EDCPOM are given in µmol 𝐴𝐴 g−1
C

 . element ratios are molar ratios. COX is the nominal oxidation state of carbon. HI1630/1090 is the ratio of the intensities 
at 1,630 and 1,090 cm −1 computed from mid infrared spectra.

Table 2 
Overview on the Electrochemical and Chemical Properties and Decomposition States of the Peat Samples for the Different Sites (Mean, Min, Max)
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Figure 2.
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the variability is large for medium to small O:C ratio, medium to small COX, and medium HI1630/1090. For the 
EDCPOM:EACPOM ratio, the variability is large for small to medium N:C ratios and HI1630/1090.

EACPOM and EDCPOM values are large along a gradient with large O:C and large H:C ratio at the one end and 
small O:C and small H:C ratio at the other end (Figure 3). Conversely, samples with small O:C ratio, but large 
H:C ratio have the smallest EACPOM and EDCPOM. Whilst this gradient is a general pattern, there are some 
samples with smaller and larger EACPOM and EDCPOM values than could be expected based on the described 
gradient. For instance the two samples from SKY I-1 at intermediate depth have a surprisingly small EACPOM 
and EDCPOM, and samples from SKY II and Martinskapelle (MK) have a large EACPOM and EDCPOM for their 
small  O:C and large H:C ratio (Figure 3).

To compare these patterns to those for humic and fulvic acids, we present the same variables in Figure 3b, but 
including various IHSS reference humic and fulvic acids and measured EAC and EDC values from Aeschbacher 
et al. (2012) for some of these. The H:C values of the humic and fulvic acids are separated by ∼0.5 from that of 
the peat samples, whereas there is a rather large overlap in the O:C ratio between both sample groups. One excep-
tion is the Pony Lake FA which has a H:C ratio similar to our peat samples. Overall, the humic and FA samples, 
with their larger EAC and EDC, extent the gradient we observed for the peat samples. We additionally labeled 
regions according to OM fractions typically delineated in van-Krevelen diagrams (Kim et al., 2003). The peat 
samples spread between the cellulose and lignin regions, whereas the humic and FA samples are shifted more 
towards the lignin region due to their small H:C ratios (except Pony Lake FA; Figure 3b).

This observed gradient is partly also supported by the regression models. For the EACPOM, the H:C ratio has a 
negative coefficient (βH:C ∈ [−2.58, −0.8]; All reported intervals are 95%-posterior intervals for the models with 
all element ratios and Gaussian coefficients, except if stated differently) and the O:C ratio a positive coefficient 
(βO:C ∈ [0.38, 2.27]) for all models. For the EDCPOM, the O:C ratio only has a positive coefficient (βO:C ∈ [0.7, 
1.92]) if the N:C and S:C ratio are not included, whereas the coefficients' posterior intervals for the H:C ratio 
broadly overlaps zero (βH:C ∈ [−1.09, 0.37]). If the N:C and S:C ratio are included in the model, the coefficient 
for the O:C ratio (βO:C ∈ [−0.64, 1.09]) and H:C ratio (βH:C ∈ [−0.54, 0.93]) clearly overlap zero.

For the EACPOM, neither the N:C (βN:C ∈ [−0.82, 0.86]), nor the S:C ratio (βS:C ∈ [−0.17, 0.74]) have a clearly from 
zero different coefficient. For the EDCPOM, the S:C ratio is also not clearly different from zero (βS:C ∈ [−0.32, 
0.7]), whereas the model implies a negative relation for the N:C ratio (βN:C ∈ [−2.55, −0.63]). Thus, it seems 
that the EACPOM is linearly mainly related to the H:C and O:C ratio, whereas the EDCPOM is mainly related to 
the N:C ratio.

3.3.  Relation to Molecular Structures

MIR variables typically assigned to labile OM fractions tend to be positively related to the EACPOM and EDCPOM 
and variables typically assigned to more recalcitrant OM fractions tend to be negatively related to the EACPOM and 
EDCPOM (Figure S12 in Supporting Information S1). This is evident from positive correlations with MIR vari-
ables representing cellulose C-O stretching, phenol C-O stretching and O-H bending, carbonyl C=O stretching, 
cellulose and phenol O-H stretching and negative correlations with MIR variables representing aromatic C=C 
stretching, C-H bending, and lipid C-H stretching (Artz et al., 2008; Cocozza et al., 2003; Kubo & Kadla, 2005; 
Schmidt et al., 2006; Stuart, 2004). However, the correlations are overall relatively small (maximum absolute 
correlation = 0.61).

The general patterns in the correlation spectra for the EACPOM are similar to those for the EDCPOM. Some devia-
tions are visible: For example, the EDCPOM has a more negative relation to aromatic C=C stretching, and a more 

Figure 2.  (a) Depth profiles of the EACPOM and EDCPOM for each peat core. Thick curves represent the median values of the replicate measurements and horizontal 
lines the standard error of the replicate measurements. Sites are sorted according to their median EACPOM. The depth is presented log-scaled. Different colors indicate 
samples for which the potential maximum contribution of iron to the EAC or EDC is larger than 100 µmol 𝐴𝐴 g−1

C
 (b) Plot of the average EACPOM versus the average 

EDCPOM. Error bars represent the respective standard errors from replicate measurements. Samples below the diagonal line have a larger EACPOM than EDCPOM. Only 
samples with a potential contribution of iron to the EAC and EDC ≤100 µmol 𝐴𝐴 g−1

C
 are shown. (c) Histograms of the EAC and EDC values, respectively, for the peat 

POM samples analyzed in this study, humic and fulvic acids, and DOM analyzed in other studies. Top: Values reported in µmol 𝐴𝐴 g−1
sample

 . Bottom: Values reported in µmol 
𝐴𝐴 g−1

C
 . Only samples with a potential contribution of iron to the EAC and EDC ≤100 µmol 𝐴𝐴 g−1

C
 are shown.
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positive relation to cellulose and phenol O-H stretching, whereas the EACPOM is more strongly related to carbonyl 
C=O stretching.

Variable selection during the regression analysis identified 6 and 2 variables as sufficient to predict the EACPOM 
and EDCPOM, respectively: The EACPOM is positively related to carbonyl group C=O stretching and tends to be 
negatively related to lipid C-H stretching, O-H stretching of unbonded OH groups, and C-H bending of (poten-
tially polysubstituted) aromatics (Table 3). For lipid C-H stretching and unbonded O-H stretching, two directly 

Figure 3.  Van-Krevelen-like plot for the peat samples analyzed in this study. (a) Points are scaled relative to the EAC 
and EDC, respectively, and colored accoring to the sites the samples were taken from. (b) The same as a, but including all 
samples from this study and various IHSS reference humic substances (red and small gray points) in addition to our peat 
samples (blue points). Humic and fulvic acids for which Aeschbacher et al. (2012) measured EAC and EDC data are filled 
red and scaled according to these values. Humic and fulvic acids for which this was not the case are represented as uniformly 
small gray points. Moreover, we highlighted regions commonly attributed to different OM fractions in van-Krevelen plots 
(Kim et al., 2003). PLFA is the Pony Lake FA reference material. From this study, only samples with a potential contribution 
of iron to the EAC and EDC ≤100 µmol 𝐴𝐴 g−1

C
 are shown and point sizes are scaled relative to the EACPOM and EDCPOM, 

respectively.



Global Biogeochemical Cycles

TEICKNER ET AL.

10.1029/2021GB007160

13 of 22

neighboring variables with partly contrasting coefficients (positive and negative) were selected. However, their 
joint relation to the EACPOM is clearly negative (Figure S19 in Supporting Information S1). The EDCPOM tends to 
be positively related to O-H stretching of intramolecularly bonded OH groups, probably of cellulose and phenols, 
and tends to be negatively related to secondary amide N-H bending and C-N stretching (Table 3).

Overall, this indicates that the EACPOM is positively related to carbonyl groups and negatively related to struc-
tures more abundant in decomposed peat (lipids, aromatics, unbonded OH groups), and the EDCPOM is positively 
related to structures more abundant in undecomposed peat (intramolecular OH bonds in cellulose and phenols).

3.4.  Predictive Accuracy of the MIRS-Based Models in Comparison to Regression Models Based on 
Element Ratios

The predictive performances of the different modeling approaches (MIRS-based vs. element ratio-based) do not 
differ considerably, and their respective CV-RMSEs are several times larger than the standard deviation of the 
distributions for the respective replicate measurements. The MIRS-based models had a median 10-fold CV-RMSE 
23.5 and 4.4 µmol 𝐴𝐴 g−1

C
 smaller and larger than the element ratio-based models for the EACPOM and EDCPOM, 

respectively. The models with the least median 10-fold CV-RMSE for each variable had a 10-fold CV-RMSE 
of 250.4 [101.3, 509] and 160.5 [58.1, 279.7] µmol 𝐴𝐴 g−1

C
 for the EACPOM and EDCPOM, respectively.  In  compar-

ison to this, the median standard deviation from the estimated distribution for the measured values is 36.2 and 
21.2 µmol 𝐴𝐴 g−1

C
 . In spite of the similar predictive performance of both models for the EACPOM, the MIRS-based 

model is clearly less biased than the element ratio-based model, whereas both models for the EDCPOM are clearly 
biased (Figure S15 in Supporting Information S1).

Using derivative spectra, data subsets, or PLSR instead of Bayesian regularization neither yield considerably 
worse, nor better models in terms of their training predictive accuracy (Figure S18 in Supporting Information S1).

4.  Discussion
To answer how peat chemistry relates to its EACPOM and EDCPOM and how decomposition changes both, we use 
our results to develop a conceptual model describing how vegetation chemistry and intensity of aerobic decom-
position control peat electrochemical properties via the amount of polymeric phenols and quinones.

The analyzed peat samples cover a globally representative range of mid to high latitude peat properties and 
degrees of decomposition (Table  2). The element ratio data are within the ranges reported by several larger 

Wavenumber

Coefficient

Assigned structure ReferenceEACPOM EDCPOM

830 −0.13 (−0.28, 0.03) C-H bending of di- or trisubstituted aromatics Stuart (2004)

1,530 −0.23 (−0.68,0.17) Secondary amide N-H bending and C-N 
stretching

Stuart (2004)

1,720 0.41 (0.19, 0.62) Carbonyl C=O stretching (carboxyls, esters, 
ketones - aliphatic and aromatic)

Cocozza et al. (2003), Stuart (2004), Artz et al. (2008)

2,890 −0.71 (−1.1, −0.28) Lipid C-H stretching Cocozza et al. (2003), Stuart (2004), Artz et al. (2008)

2,910 0.1 (−0.27, 0.45) Lipid C-H stretching Cocozza et al. (2003), Stuart (2004), Artz et al. (2008)

3370 0.34 (−0.09,0.75) O-H stretching of bonded OH groups 
(cellulose, phenols)

Stuart (2004), Kubo and Kadla (2005) Schmidt 
et al. (2006)

3660 1.45 (−0.84, 3.58) O-H stretching of unbonded OH groups Stuart (2004), Kubo and Kadla (2005) Schmidt 
et al. (2006)

3670 −1.88 (−4.02, 0.42) O-H stretching of unbonded OH groups Stuart (2004), Kubo and Kadla (2005) Schmidt 
et al. (2006)

Note. “Wavenumber” represents the average bin position wavenumber value of the mir variable that were selected. “Coefficient” are the estimated coefficients for the 
variables (mean and limits of the 95% posterior intervals).

Table 3 
Assignment of MIR Variables Included in the Projected Regression Models for the EACPOM and EDCPOM Using the Filtered Data Set, Respectively
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compilations of peat chemical properties (Moore et al., 2018; Leifeld et al., 2020; M. Wang et al., 2015; Loisel 
et al., 2014; Tipping et al., 2016). The same is true for COX values (Leifeld et al., 2020; Moore et al., 2018; Worrall 
et al., 2016). Overall, we are confident that our findings and interpretations should hold for a broad range of peat 
materials and thus are generalizable.

4.1.  Quinones and Phenols Are Main Contributors to Peat EACPOM and EDCPOM

Our results point towards quinones and phenols as main contributors to the EACPOM and EDCPOM of peat, respec-
tively. EACPOM and EDCPOM values are large along a H:C-O:C gradient with large O:C and large H:C ratio at the 
one end and small O:C and small H:C ratio at the other end (Figure 3). Based on commonly delineated H:C-O:C 
regions in van-Krevelen diagrams (Kim et al., 2003), we assume that this gradient characterizes material rich 
in polymeric quinones and phenols. This interpretation is also supported by the positive relation to carbonyl 
groups which are characteristic for polymeric quinones and phenols (El Mansouri & Salvadó, 2007; Figure S12 
in Supporting Information S1). In addition, the more pronounced negative correlation of the EDCPOM to the N:C 
ratio in comparison to the EACPOM can be explained with the larger susceptibility of phenols towards decompo-
sition in contrast to quinones which are formed by partial oxidation of phenols (Aeschbacher et al., 2012; Bolton 
et al., 2018; Fenner & Freeman, 2011). We expected this finding since quinones and phenols have been identified 
as major contributors to OM EAC and EDC in general (Aeschbacher et al., 2010, 2012; Ratasuk & Nanny, 2007).

We did not find clear relations of the N:C or S:C ratio to the EACPOM and EDCPOM that would point towards a large 
contribution of non-quinone moieties to the EACPOM or EDCPOM. In fact, the N:C ratio is negatively related to the 
EDC. A small non-quinone EAC and EDC is in line with the relative small S and N contents of the peat samples 
and the neutral pH value our measurements were standardized to (Fimmen et  al., 2007; Hernández-Montoya 
et al., 2012); non-quinone EACPOM and EDCPOM would likely be larger with smaller pH values (Aeschbacher 
et  al.,  2012; Fimmen et  al.,  2007; Hernández-Montoya et  al.,  2012). Moreover, it is likely that any relation 
between the N:C and S:C ratio and non-quinone EACPOM and EDCPOM is confounded by the dependence of these 
element ratios and the quinone EACPOM and EDCPOM on the degree of decomposition (Biester et al., 2014; see 
below).

4.2.  Vegetation Chemistry and Decomposition Cause the Decoupling of Peat EACPOM and EDCPOM

The decoupling of peat EACPOM and EDCPOM (Figure 2b) can be explained by the joint effects of vegetation 
polymeric phenol contents and transformation of phenols to quinones during decomposition (Aeschbacher 
et al., 2012). It has been suggested that undecomposed plant-derived polymeric aromatics, such as lignin, have 
large contents of phenols, but small contents of quinones, which results in an initially large EDC, but small 
EAC (Aeschbacher et al., 2012). Decomposition and oxidation of the polymeric phenols decrease their fraction, 
but can increase the relative (and absolute) amount of quinones (Aeschbacher et al., 2012; Bolton et al., 2018; 
LaCroix et al., 2020). These mechanisms have four important implications: First, undecomposed samples have a 
maximum EDC, second, this maximum EDC varies depending on the vegetation polymeric phenol content, third, 
decomposition of polymeric phenols decreases the EDC and increases the EAC (Aeschbacher et al., 2012), and 
fourth, the initial EDC defines the maximum potential EAC of a sample. This explains why a decoupling of the 
EAC and EDC can be observed for humic and fulvic acids and DOM (Aeschbacher et al., 2012). Our measure-
ments fit into the EDC-EAC gradient observed for humic and fulvic acids and DOM (Figure S20 in Supporting 
Information S1) and we therefore conclude that the decoupling of peat EACPOM and EDCPOM is caused by the 
same mechanisms.

4.3.  The Degree of Decomposition Confounds How the H:C Ratio Represents Phenols and Quinones

In contrast to Aeschbacher et al. (2012), we found only a weak relation between the EACPOM and the H:C ratio. 
In Aeschbacher et al. (2012), a large H:C ratio indicates a smaller polymeric phenol and quinone content, but also 
a larger polysaccharide content because the H:C ratio is related to the O:C ratio (Figure 3). In contrast, for our 
peat POM samples, a large H:C ratio is not indicative for a larger polysaccharide content because it could also 
represent strongly decomposed samples with high lipid content (Figure 3a). This confounds how the H:C ratio 
represents polymeric phenols and quinones because peat samples with the same large H:C ratio tend to have a 
smaller EACPOM if they contain a larger amount of lipids and smaller amount of polysaccharides (smaller O:C 
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ratio). This indicates that strongly decomposed, lipid rich, peat has fewer polymeric phenols and quinones than 
undecomposed peat. In other words, for the peat POM samples, the same H:C ratio can represent samples with 
either large O:C ratio or small O:C ratio, corresponding either to relatively undecomposed samples rich in poly-
saccharides and phenols and quinones or to strongly decomposed samples rich in lipids, but depleted in phenols 
and quinones (Bader et al., 2018; Kim et al., 2003; Leifeld et al., 2012). This interpretation is also supported 
by the joint relation  of the H:C and O:C ratio to the EACPOM in our regression models and by negative coeffi-
cients for MIRS variables representing lipids (Table 3, Figure S12 in Supporting Information S1). Thus, since 
differences in the O:C ratio are linked to differences in the EACPOM, and since such samples are present within 
our  data  set, we found a weaker relation of the EACPOM to the H:C ratio. It is likely that the same pattern caused 
the relative weak relation Tan et al. (2017) observed for the EAC of humic and fulvic acids to the H:C ratio.

4.4.  Decomposition Indicators Are Poorly Related to Phenols and Quinones

We argue that many peat decomposition indicators are only weakly related to the EACPOM and EDCPOM because 
they are not optimal descriptors of the polymeric phenol and quinone content. The O:C ratio is an indicator of the 
polysaccharide content and strongly related to all other decomposition indicators we analyzed (Pearson correla-
tions of the O:C ratio with the N:C ratio, HI1630/1090, and COX are −0.68, −0.82, and 0.87, respectively). If we focus 
on how these indicators describe the degree of decomposition, there is the same confounding as described above, 
but viewed from a different perspective: for strongly decomposed peat (small O:C ratio), the indicators cannot 
distinguish between peat with large content of polymeric quinones and phenols on the one hand (small H:C ratio) 
and strongly decomposed peat rich in lipids, but depleted in phenols and quinones (large H:C ratio) on the other 
hand. For this reason, the EACPOM can vary considerably across a broad range of HI1630/1090 and N:C ratios, as 
observed in our peat samples (Figure S11 in Supporting Information S1).

For the EDCPOM, this confounding effect is less relevant since the EDCPOM is negatively affected by decom-
position, irrespective if the resulting peat is rich in lipids or polymeric quinones, as mentioned above (Bolton 
et al., 2018; Fenner & Freeman, 2011). This is evident from the stronger relation of the EDCPOM to the N:C ratio 
(ρ = −0.69). Nevertheless, since samples with a small O:C ratio that are rich in polymeric quinones and phenols 
have a larger EDCPOM, and since the HI1630/1090 and COX do separate these samples less clearly from the lipid rich 
samples than the N:C ratio (Figure S11 in Supporting Information S1), the relation of both the HI1630/1090 and COX 
is also weak for the EDCPOM.

4.5.  Which Factors Determine the Polymeric Phenol and Quinone Content of Decomposed POM?

Which factors determine if a sample with a larger degree of decomposition is either rich in polymeric quinones 
and phenols—thus having a larger EACPOM and EDCPOM—or rich in lipids—thus having the minimal EACPOM 
and EDCPOM? Both, differences in vegetation chemistry and decomposition, may result in the observed differ-
ences in lipid versus polymeric quinone and phenol content.

Even though we cannot definitely disentangle both factors based on our data—we neither have complete infor-
mation about the peat forming vegetation, nor the actual predominant decomposition processes—there is some 
evidence how both contribute. First of all, the samples with the smallest H:C ratio probably contain larger amounts 
of wood and root remains from trees and shrubs (e.g., both Lutose sites, especially the deepest samples (Heffernan 
et al., 2020); P. Brunswick (Broder et al., 2012); Mer Bleue, deepest sample (Elliott et al., 2012)) which is a plau-
sible explanation for their large EACPOM. In contrast, samples with approximately the same O:C ratio, but a larger 
H:C ratio are probably formed by sedges and (minerotrophic) Sphagnum mosses (samples from both fen sites 
[Touxi, Dongtu], or from the Patagonian bog [SKY I-1 and SKY I-6]) and likely strongly decomposed (Touxi, 
Dongtu) or known to be strongly decomposed (Both SKY I sites and SKY II, Broder et al. (2012); Mathijssen 
et al. (2019)). Second, intense aerobic decomposition of peat under drainage results in a larger H:C ratio, whereas 
less oxic conditions result in a decrease of the H:C ratio during decomposition (Leifeld et al., 2012). A plausi-
ble and likely explanation therefore is that aerobic decomposition of POM initially rich in polymeric phenols 
results in a large amount of quinones and therefore a large EACPOM, whereas intense aerobic decomposition of 
POM that already had small initial amounts of polymeric phenols results in a large relative amount of lipids. 
Conversely, anaerobic decomposition may conserve initial polymeric phenols and quinones and thus EACPOM  
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and EDCPOM (see below). This means that both vegetation chemistry and intensity of aerobic decomposition 
contribute to the observed pattern.

4.6.  Differential Effects of Decomposition on Peat EACPOM

The hypothesis that vegetation chemistry and decomposition intensity together change peat phenols and quinone 
content can help resolving the apparent contradiction we have produced: Partial oxidation of phenols to quinones 
during decomposition increases the EACPOM (Aeschbacher et  al.,  2012; Tan et  al.,  2017; Walpen, Getzinger, 
et al., 2018), but typical MIRS-derived decomposition indicators such as the amount of lipids, unbonded OH 
groups, and aromatic backbone structures (Artz et  al.,  2008; Cocozza et  al.,  2003) are negatively related to 
the EACPOM (Table 3). According to our conceptual understanding, the contradiction is only apparent: Aero-
bic decomposition of POM initially rich in polymeric phenols and quinones increases the amount of quinones 
(Aeschbacher et al., 2012), as indicated by larger amounts of carbonyl groups (Table 3). Intense aerobic decom-
position of POM with initially low amounts of polymeric phenols and quinones (and hence larger amounts of 
polysaccharides) results in the mineralization of polysaccharides, phenols and quinones and the accumulation of 
lipids (Fenner & Freeman, 2011; Leifeld et al., 2012). Thus, if a specific peat contains large amounts of lipids and 
has an amorphous structure, this indicates that it also contains low amounts of polymeric phenols and quinones 
because it experienced intense decomposition.

4.7.  A Conceptual Model for Peat EACPOM and EDCPOM

To summarize our findings, we propose the conceptual model shown in Figure 4. We hypothesize that both the 
polymeric phenol content of the peat forming vegetation and the intensity of decomposition processes are the 
most important factors controlling the EDCPOM and EACPOM of peat. Moreover, both factors likely interact since 
peat with initially large amounts of polymeric phenols has a smaller decomposition rate (Bengtsson et al., 2018).

Wood and roots from trees and shrubs are probably the plant remains with the largest fraction of polymeric 
phenols (Benner et  al.,  1984; Hodgkins et  al.,  2018; Straková et  al.,  2010; H. Wang et  al.,  2015; Williams 
et al., 1998), whereas other vascular plants and mosses have variable and partly smaller amounts of polymeric 
phenols (Bengtsson et  al.,  2018; Scheffer et  al.,  2001; Straková et  al.,  2010; H. Wang et  al.,  2015; Williams 
et  al.,  1998; Zak et  al.,  2019). For this reason, peat with larger contributions of wood or roots, for example, 
from shrubs (and potentially some graminoid or moss species), likely has the largest initial EDCPOM and upon 
decomposition the largest potential EACPOM (Figure 4 and Figure S21 in Supporting Information S1). We propose 
that standardized measurements of electrochemical properties for different peat forming species are required to 
provide a quantitative basis for this hypothesis.

Under anoxic conditions, low phenol oxidase activities and the effects this has on other enzymes required for 
biomass breakdown (Fenner & Freeman,  2011) make peat material keep its initial EDCPOM and EACPOM. In 
addition, quinone formation by partial oxidation is limited under such conditions, such that the EDCPOM should 
be relative large, whereas the EACPOM remains smaller (Figure 4 and Figure S21 in Supporting Information S1). 
A factor that may decrease both the EACPOM and EDCPOM under such conditions are condensation reactions 
(Bolton et al., 2018; Heitmann & Blodau, 2006; Hotta et al., 2002; Olk et al., 2006; Uchimiya & Stone, 2009; 
Yu et al., 2016; Zhao et al., 2020). Conversely, faster degradation of polysaccharides may increase the EACPOM 
and EDCPOM since this results in a relative increase of phenols and quinones (Benner et al., 1984). However, it 
remains currently unclear to which extent both factors may play a role under anoxic conditions. Thus, we assume 
that under anoxic conditions the initial vegetation properties largely control peat electrochemical properties.

Under oxic conditions, increased phenol oxidase activities result in an oxidative transformation of polymeric 
phenols to quinones (Bolton et al., 2018; Fenner & Freeman, 2011; Schellekens et al., 2015). This can increase 
the EACPOM and decrease the EDCPOM. If under such oxic conditions the mineralization of polymeric phenols, 
coupling reactions (Bolton et  al.,  2018; Hotta et  al.,  2002; Johnson et  al.,  2015; Zhao et  al.,  2020) and other 
condensation reactions (Bolton et al., 2018; Heitmann & Blodau, 2006; Olk et al., 2006; Yu et al., 2016) are further 
facilitated, for example, by warmer temperatures, large concentrations of nutrients, large amounts of labile OM, 
high pH values, (Bragazza & Freeman, 2007; Bowring et al., 2020; Fenner & Freeman, 2011; Kang et al., 2018), 
both the EACPOM and EDCPOM may decrease (Figure 4 and Figure S21 in Supporting Information S1). Intense 
break-down of cell wall structures (as implied by our regression models for the EDCPOM and EACPOM) may has 



Global Biogeochemical Cycles

TEICKNER ET AL.

10.1029/2021GB007160

17 of 22

an important role since it increases the surface of the polymeric phenols exposed for oxidation or condensation 
reactions (Tsuneda et al., 2001). In addition, different vegetation has different types of polymeric phenols and it is 
assumed that Sphagnum phenols decompose faster than phenols of shrubs (H. Wang et al., 2015). For this reason, 
the EDCPOM and EACPOM of Sphagnum peat may decrease at a larger rate during oxic decomposition than for peat 
with more contribution by shrubs or trees (H. Wang et al., 2015). Just as under anoxic conditions, a decrease in the 
EACPOM and EDCPOM may be offset by faster mineralization of polysaccharides than polymeric phenols (Benner 
et al., 1984). However, again it remains currently unclear to which extent this factor and also condensation reac-
tions play a role.

Thus, we assume that oxic conditions increase the EACPOM at the expense of the EDCPOM. The initial content of 
polymeric phenols defines the maximum EACPOM peat can attain throughout this process which results in vari-
able responses of the peat EACPOM and EDCPOM to decomposition. Intense aerobic decomposition, especially of 
material with low initial amounts of polymeric phenols, may even decrease the EAC due to mineralization and 
condensation of polymeric phenols.

Figure 4.  Conceptual description of the assumed effects of vegetation chemistry (polymeric phenol content) and 
decomposition pathways and intensity on peat chemistry and its EAC and EDC. Note that the assignment of plant taxa and 
their polymeric phenol contents is only an example as the chemical properties may be highly diverse within taxa (Bengtsson 
et al., 2018).
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4.8.  MIRS-Based Regression Models Can Predict Peat EACPOM

We suggest that our modeling approach is a proof-of-concept that peat EACPOM can be predicted from MIRS. The 
MIRS-based model had the smallest average RMSE, albeit the RMSE for both the MIRS-based model and the 
element ratio-based model were relatively large and their 95%-posterior intervals broad and strongly overlapping. 
During graphical model validation, we observed that the element ratio-based model had a considerably larger bias 
than the MIRS-based model (Figure S15 in Supporting Information S1), suggesting that the MIRS-based model 
overall is more robust.

In contrast to this, both element ratio-based and MIRS-based regression models failed to adequately capture the 
variability in the EDCPOM. Since the EDCPOM of our samples in their oxidized state was smaller, the relative large 
predictive uncertainties turn both models unsuitable for practical applications.

5.  Conclusions
Our research question was how peat chemistry relates to its EACPOM and EDCPOM and how decomposition 
changes both. Based on our results, we hypothesize a conceptual model that describes how vegetation chemistry 
and intensity of aerobic decomposition control peat EACPOM and EDCPOM. Undecomposed peat formed by vege-
tation rich in polymeric phenols has the largest EDCPOM. Decomposition of such material results in peat with 
the largest EACPOM, but decreases the EDCPOM. In contrast, peat formed by vegetation with small amounts of 
polymeric phenols generally has a smaller EACPOM and EDCPOM. Especially for such material, intense decom-
position not only decreases the EDCPOM, but potentially also the EACPOM. This model can plausibly explain the 
large variability in the relation of the EACPOM and EDCPOM to peat chemical properties, decomposition indicators, 
and molecular structures, as well as the high intra-site variability and decoupling of the EACPOM and EDCPOM. 
Finally, we provide a proof-of-concept that MIRS-based regression models may be at least suitable as screening 
tools to predict peat EACPOM.

Our study has four inherent limitations: First, it is difficult to completely exclude contributions of iron to our 
estimates for the EACPOM and EDCPOM. Second, we derived our conceptual understanding on purely observa-
tional data without experimental control. Third, we had only limited data on palaeovegetation and thus could only 
partly establish direct links between vegetation and peat chemistry. Fourth, to link our conceptual model to in situ 
processes occurring in peatlands (e.g., suppression of methanogenesis), it will be important to understand how in 
situ conditions modulate the EACPOM and EDCPOM and its availability to microbes.

Nevertheless, our results imply that peat EACPOM and EDCPOM can be spatially and temporally highly variable 
and that it is difficult to predict based on peat bulk properties. This furthermore implies that the potential for CH4 
suppression due to POM reduction may be similarly variable and difficult to predict.

Therefore, spatially resolved measurements or the incorporation of our hypothesized conceptual understanding 
into process models are required for the accurate quantification of peat EACPOM and EDCPOM and their potential 
effects on redox processes, particularly CH4 formation.

Data Availability Statement
Data and code to reproduce this document are available as research compendium on Zenodo (Teickner et al., 2021) 
and GitHub (https://github.com/henningte/redoxpeat). In addition, the MIRS-based reference models based on 
Bayesian regularization for both the EACPOM and EDCPOM are available via the R package irpeat (Teickner & 
Hodgkins, 2021). These models can be used for predictions with own MIRS data.
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