
1. Introduction
Radiocarbon ( 14C) is a valuable tool for studying dynamical processes in living systems. In particular, radio-
carbon produced by nuclear bomb tests in the 1960s has been used in many contexts as a tracer for the dynam-
ics of carbon in different compartments of the global carbon cycle, including the atmosphere, the terrestrial 
biosphere, and the oceans (Goudriaan, 1992; Jain et al., 1997; Levin et al., 2010; Naegler et al., 2006; Randerson 
et al., 2002). As a biological tracer, radiocarbon can be used to infer rates of carbon cycling in specific compart-
ments, and to infer transfers among interconnected compartments. Therefore, radiocarbon is used as a diagnostic 
metric to assess the performance of models of the carbon cycle (Graven et al., 2017), and new data sets are now 
emerging to incorporate radiocarbon in model benchmarking (Lawrence et al., 2020).

Carbon cycling in biological systems can be represented using a particular class of mathematical models called 
compartmental systems (Sierra et al., 2018). As carbon enters a system such as the terrestrial biosphere, it is 
stored and transferred among a network of interconnected compartments such as foliage, wood, roots, soils, 
and other organisms. Compartmental systems represent the dynamics of carbon as it travels along the network 
of compartments (Rasmussen et al., 2016; Sierra et al., 2018), and provide information about the time carbon 
spends in particular compartments and the entire system (Rasmussen et al., 2016; Sierra et al., 2017). Although 
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there seems to be a direct relation between the time carbon spends in a compartmental system and its radiocarbon 
dynamics, few studies relate both concepts.

An open compartmental system contains inflows and outflows different from zero (Jacquez & Simon, 1993). 
Timescales in open compartmental systems are usually characterized by the concepts of age and transit time 
(Bolin & Rodhe, 1973; Rasmussen et al., 2016; Sierra et al., 2017). In open systems such as the biosphere, the 
incorporation and release of carbon occurs continuously, and it is possible to define the concept of age as the 
time elapsed since carbon enters the compartmental system until a generic time. The transit time can be defined 
as the time the carbon needs to travel through the entire system, that is, the time elapsed between carbon entry 
until its exit. In order to estimate these time metrics from  14C measurements, a model linking both carbon and 
radiocarbon dynamics is required. Thompson and Randerson (1999) have used impulse response functions from 
compartmental models to obtain ages, transit times, and time-dependent radiocarbon dynamics. However, this 
approach is computationally expensive and can introduce numerical errors if simulations are not long enough to 
cover the dynamics of slow cycling pools.

Explicit formulas for age and transit time distributions in compartmental systems have been recently developed 
(Metzler & Sierra, 2018). These formulas do not introduce numerical errors and can describe entire age distri-
butions of carbon for specific pools and for the entire compartmental system. These age distributions suggest 
that radiocarbon in compartmental systems may consist of a mix of different values, that is, compartments could 
be described in terms of radiocarbon distributions that relate the relative proportion of carbon with a particular 
radiocarbon value. However, until now, radiocarbon is reported and modeled as a single quantity, rather than the 
mean of an underlying distribution.

Knowledge of the distribution of the isotopic ratio between  14C to  12C in a compartmental system might give 
important insights on the model structure that better fits existing data. For example, by comparing the signature of 
radiocarbon in the pools and their outfluxes, we get insights into the size of the compartmental model that better 
describes ecosystem dynamics (Sierra et al., 2017). Further, empirical knowledge of the radiocarbon distribution 
of a particular system can play a significant role in determining the most appropriate model to describe a system.

Model-data comparisons using radiocarbon are made more complex by the fact that the quantity of  14C in the 
atmosphere is continuously changing. This is particularly important after the 1960s when nuclear bomb tests 
liberated large amounts of thermal neutrons to the atmosphere, contributing to the formation of radiocarbon 
(bomb or excess  14C). In addition, large quantities of fossil-fuel derived carbon ( 14C-free) have been emitted to 
the atmosphere since the beginning of the Industrial Revolution, diluting the atmospheric radiocarbon signal 
and producing a fast decline of the radiocarbon isotopic ratio in recent years (Graven et al., 2017). Therefore, we 
would expect a different radiocarbon distribution for every year in a compartmental system.

However, most studies have focused on estimating the mean isotopic ratio of  14C to  12C in order to evaluate 
carbon ages and transit times, ignoring its potential underlying distribution. As a tracer, the entire distribution of 
radiocarbon values are expected to change over time even if the compartmental system is in equilibrium. Thus, 
obtaining a simple and accurate method to estimate radiocarbon distributions as a function of time (e.g., the year 
of observation or sample collection) is of great interest for experimental and modeling studies. Therefore, the 
main objective of this manuscript is to introduce a method to obtain distributions of radiocarbon in compartmen-
tal systems at steady-state. In particular, we ask the following research questions: (a) How do distributions of radi-
ocarbon in terrestrial compartments change over time as a consequence of changes in atmospheric radiocarbon? 
(b) How do empirical data compare to these conceptual radiocarbon distributions? (c) What insights can these 
distributions provide for experimental and sampling design for improving model-data comparisons by capturing 
the entire variability of Δ 14C values?

The manuscript is organized as follows: First, we provide the necessary theoretical background to obtain age and 
transit time distributions from compartmental systems. Second, we describe an algorithm that computes radio-
carbon distributions for particular years using an age or a transit time distribution of carbon and an atmospheric 
radiocarbon curve. Third, we present an application of our algorithm to three compartmental systems addressing 
the research questions above. Finally, we discuss our results in the context of applications to any general compart-
mental model and potential new insights from our approach.
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2. Age and Transit Time Distributions in Compartmental Systems
2.1. Compartmental Systems

Compartmental systems describe the temporal dynamics of matter as it travels through a network of compart-
ments until its final release from the system. A set of compartments is translated mathematically as a set of linear 
or nonlinear ordinary differential equations, whose solutions are the amount of matter in each compartment at a 
certain time.

We will consider here linear autonomous compartmental systems, characterized by the mass of carbon at time t 
in m compartments as the vector 𝐴𝐴 𝒙𝒙(𝑡𝑡) ∈ ℝ

𝑚𝑚 . Additionally, the compartments of the systems considered here are 
assumed well mixed, which implies that all carbon atoms inside a compartment have the same probability of 
being transferred to other compartments or to outside the system (Anderson, 1983). This well-mixed property 
is linked to the fixed-rate at which mass is processed inside each compartment. For example, if a compartment i 
has a process rate ki, all particles inside the compartment have the same probability of being removed from the 
compartment at this rate.

The mass of carbon in the compartments changes over time according to the following expression:

𝑑𝑑𝒙𝒙(𝑡𝑡)

𝑑𝑑𝑡𝑡
= �̇�𝒙(𝑡𝑡) = 𝒖𝒖 + 𝐁𝐁𝒙𝒙(𝑡𝑡), 𝒙𝒙(𝑡𝑡 = 0) = 𝒙𝒙𝟎𝟎, (1)

where the constant vector u represents the inputs of carbon into the system, and the m × m compartmental matrix 
B contains constant values of the cycling rates of the compartments in its diagonal entries, while the off-diag-
onal entries consist of the constant transfer rates among them. In particular, the compartmental matrix in most 
ecosystem carbon models has an internal structure reflecting transfers between the components (coefficients αi,j, 
representing the proportion of C transferred from compartment j to compartment i) and cycling rates ki reflecting 
assumptions of first-order kinetics of loss (at rate ki) from any given compartment:
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This matrix contains information on the dynamics, structure, and size of a compartmental model. The outflux 
of carbon from the system can also be obtained from this matrix by summing all column elements; that is, the 
outputs from a pool that are not transferred to other pools are assumed to leave the compartmental system.

The information of the amount of carbon entering the system to be partitioned among the compartments is 
contained in the input vector:
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Linear autonomous systems of the form of Equation 1 have an equilibrium point or steady-state solution x* given 
by:

𝒙𝒙
∗ = −𝐁𝐁−1

𝒖𝒖, (4)

where the mass of the compartments do not change over time, and inputs are equal to outputs for all compartments.
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2.2. Age Distributions

We define age τ in a compartmental system as the time elapsed between the time of carbon entry until some 
generic time (Sierra et al., 2017). For a time-independent system in steady-state, a probability distribution of ages 
of carbon in the compartments can be obtained using stochastic methods. According to Metzler and Sierra (2018), 
the vector of age densities for the compartments (denoted by fa(τ)) can be obtained as:

𝒇𝒇
𝒂𝒂
(𝜏𝜏) = (𝐗𝐗∗)

−1
𝑒𝑒
𝜏𝜏 𝐁𝐁
𝒖𝒖 (5)

where 𝐴𝐴 𝐗𝐗∗ = diag
(

𝑥𝑥
∗

1
, 𝑥𝑥

∗

2
,… , 𝑥𝑥

∗
𝑚𝑚

)

 is the diagonal matrix with the steady-state vector of carbon stocks as compo-
nents, and e τ  B is the matrix exponential.

For the whole system (denoted by the function with capital A, fA(τ)), the age distribution is given by:

𝑓𝑓𝐴𝐴(𝜏𝜏) = −𝟏𝟏⊺𝐁𝐁𝑒𝑒𝜏𝜏𝐁𝐁
𝒙𝒙
∗

‖𝒙𝒙
∗
‖

, (6)

where 𝐴𝐴 ‖𝒙𝒙
∗
‖∶=

∑𝑚𝑚

𝑗𝑗=1
|𝒙𝒙

∗
| is the 1-norm of the steady-state solution and represents the sum of the masses in the 

vector.

2.3. Transit Time Distributions

We define transit time as the time elapsed since carbon enters the compartmental system until it leaves the 
boundaries of the system (Sierra et al., 2017). The transit time is equivalent, therefore, to the age of the outflux. 
Metzler and Sierra (2018) also provide an explicit formula to obtain the transit time density distribution for a 
time-independent system at steady-state as:

𝑓𝑓𝑇𝑇𝑇𝑇 (𝜏𝜏) = −𝟏𝟏⊺𝐁𝐁𝑒𝑒𝜏𝜏𝐁𝐁
𝒖𝒖

‖𝒖𝒖‖

. (7)

The age and transit time distributions are densities and they integrate to 1:

∫
∞

0

𝑓𝑓𝐴𝐴(𝜏𝜏) 𝑑𝑑𝜏𝜏 = ∫
∞

0

𝑓𝑓𝑇𝑇𝑇𝑇 (𝜏𝜏) 𝑑𝑑𝜏𝜏 = 1. (8)

The derivation of these Equations 5–7 is based on the idea that a deterministic compartmental system of differ-
ential equations can be expressed as a continuous-time Markov chain (Metzler & Sierra, 2018). This perspective, 
allows us to make inferences about the total masses of carbon in a stochastic setting, with explicit formulas for the 
age of carbon atoms in the system (Azizi-Rad et al., 2021).

3. Methods
3.1. Radiocarbon Distributions From Age and Transit Time Distributions

We developed an algorithm to convert age and transit time distributions into distributions of radiocarbon expressed 
as Δ 14C for any given year of observation. We define Δ 14C as:

Δ14C =
[

𝐹𝐹
14
𝐶𝐶𝐶𝐶

𝜆𝜆𝐶𝐶 (1950−𝑦𝑦) − 1
]

× 1000
[

‰
]

 (9)

where F 14C is the Fraction Modern (ASN/AON), that is, the sample ratio normalized to δ 13C by oxalic acid standard 
(OXII), λC is the updated  14C decay constant (equals 1/8,267 [y −1]), and y is the year of measurement.

The algorithm works in three main steps, (1) homogenization, (2) discretization, and (3) aggregation (Figure 1). 
We describe these three steps in detail in the sections below using mathematical notation for the system age 
distribution, but computations are similar for the transit time distribution, and the age distribution of individual 
compartments.
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3.1.1. Homogenization of Input Data

The main inputs for the algorithm are an age distribution fA(τ), and an atmospheric radiocarbon curve Fa(t) that 
provides the Δ 14C value of atmospheric CO2 for a calendar year t. To homogenize the time variable of both fA(τ) 
and Fa(t), we define the year of observation t0, as the year of interest to produce the radiocarbon distribution. In 
this way, we have fA and Fa in terms of the same independent variable.

Since we are interested in determining the radiocarbon values of material observed in the system at time t0, we 
will look in the radiocarbon curve −t years in the past to obtain the radiocarbon values in the system with an age 
τ. Therefore, atmospheric radiocarbon can be expressed as a function of age, that is, Fa(t0 − t) = Fa(τ) (Figure 1). 
Now, both the system age distribution fA(τ) and the atmospheric radiocarbon curve Fa(τ) are functions of the 
continuous variable τ that represents age since t0.

Several atmospheric radiocarbon data sets can be found in the literature (Graven et al., 2017; Hogg et al., 2013, 2020; 
Hua et al., 2013, 2021; Levin & Kromer, 1997; Levin et al., 1980, 2010; Reimer et al., 2013, 2020). Also, fore-
casts of radiocarbon content in the atmosphere can be found in the recent literature (Graven, 2015; Sierra, 2018). 
However, these atmospheric radiocarbon data sets do not necessarily have the same resolution in time. Some of 
them provide predictions or data at an annual or four-monthly time step, while in other data sets, some ranges are 
spaced by decades. To homogenize the resolution of the Δ 14C and to transform these radiocarbon data sets into a 
continuous function of τ, we use a cubic spline interpolation to obtain Δ 14C values for any value of τ. After this 

Figure 1. Graphical visualization of the three main steps for the computation of radiocarbon distributions in a compartmental system using an atmospheric radiocarbon 
curve of the carbon inputs to the systems, and the age distribution of carbon in a compartmental system. The homogenization step (1) consists of normalizing the 
times variables of the atmospheric curve, which is expressed in years of the calendar, and the age distributions, with ages in years. In the step 1, we also apply a spline 
interpolation to the atmospheric radiocarbon data set to make sure both curves—atmospheric radiocarbon and age distribution—have the same resolution h. In the 
discretization step (2) we divide the continuous curves into discrete intervals, where the masses of carbon will correspond to the probability densities obtained by the 
computation of the age distribution, multiplied by the steady-state solution of the compartmental system. Finally, in the aggregation (3) we subdivide the atmospheric 
radiocarbon curve into intervals with size of the final bin size of the bar-plots, that is, b, and sum the masses of carbon from the age distribution with the same Δ 14C 
value they would have in the atmosphere, independent of the age.
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step, Fa(τ) can be computed until the last available date in the chosen atmospheric radiocarbon data set, covered 
by the range where fA(τ) is computed, that is, for any value of τ ∈ [0, ∞).

3.1.2. Discretization

Although we have now the age distribution and the radiocarbon data as continuous functions of age, we need to 
discretize these functions in intervals of size h. The reason for this discretization is that the probability density 
function of age fA(τ) is a measure of the relative likelihood of an infinitesimal amount of mass having an age τ. But 
ultimately, we are interested in the probability that a small mass has certain radiocarbon distribution. Therefore, 
we need to discretize the probability density function to a probability mass function along a discrete variable 
T ∈ [0, Tmax]. The new discrete probability function of ages can be defined as:

𝑃𝑃𝐴𝐴(𝜏𝜏 ≤ 𝑇𝑇 ≤ 𝜏𝜏 + ℎ) = ∫
𝜏𝜏+ℎ

𝜏𝜏

𝑓𝑓𝐴𝐴(𝜏𝜏)𝑑𝑑𝜏𝜏𝑑 (10)

From this probability function, we can compute the proportion of total mass in the system with an age T as:

𝑀𝑀(𝑇𝑇 ) = ‖𝒙𝒙
∗
‖ ⋅ 𝑃𝑃𝐴𝐴(𝑇𝑇 ), (11)

where

𝑇𝑇
max
∑

𝑇𝑇=0

𝑃𝑃𝐴𝐴(𝑇𝑇 ) ≈ 1,

𝑇𝑇
max
∑

𝑇𝑇=0

𝑀𝑀(𝑇𝑇 ) ≈ ‖𝒙𝒙
∗
‖.

 (12)

Equation 12 implies that there is an approximation error by discretizing the continuous density function to a finite 
set of discrete intervals. This approximation error can be minimized by decreasing the size of the intervals h and 
extending Tmax as far as possible.

Once we discretize fA(τ) to PA(T) and obtain discrete proportions of mass with certain age M(T), we proceed to 
discretize the atmospheric radiocarbon curve with respect to the same discrete interval of ages T ∈ [0, Tmax]. 
This is simply done by computing Fa(τ = T), which makes the assumption that within each interval [τ, τ + h], the 
atmospheric radiocarbon value is equal to Fa(τ).

3.1.3. Aggregation

Now we are ready to combine the distribution of mass in the system at discrete age intervals with the atmospheric 
radiocarbon curve. To do so, we first subdivide the Δ 14C axis of the radiocarbon curve into equally spaced bins 
(b); for each bin b we take the corresponding radiocarbon content Fa(T) and corresponding intervals of T ∈ [0, 
Tmax], matching them to the respective values of mass M(T) in the age distribution of carbon. Then, we sum all 
the masses within the same Δ 14C values (see Figure S1 in Supporting Information S1 for a better understanding 
of the aggregation step). The result can be organized as the amount of carbon mass in discrete intervals of Δ 14C; 
that is, M(Δ 14C) = M(Fa(T)).

We implemented these three steps in the R programming language, and used the package SoilR (Sierra, Müller, 
& Trumbore, 2012) to obtain the age distribution of the pools, the whole system, and the output flux (equivalent 
to the transit time) based on Equations 5–7. The versions used here were R version 4.0.3 and SoilR version 1.1 
(Sierra et al., 2014). The link to access the R scripts with the algorithm functions and model results is provided 
in the data availability statement.

Since atmospheric  14C concentration for the past 55,000 yr is mainly empirically known, generating the radio-
carbon curves, we could easily convert age into atmospheric Δ 14C. By matching the Δ 14C-based-on-age values 
with the previously estimated densities, we built barplots, gaining insight into the radiocarbon distributions for 
the models studied in this work. In the algorithm we defined four functions: PoolRDC, SystemRDC, TTRDC, and 
C14hist. The first three functions take the densities outputs, that is, the carbon contents discretized by age, from 
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built-in SoilR functions, such as transitTime and systemAge. The densities are subset to build bins through the 
C14hist function. The logical statements used to construct the bins are based on the atmospheric Δ 14C data and 
according to user-defined bin size b. This structure allows one to plot histogram-like graphs, where the height of 
the bars represent the amount of carbon mass with corresponding Δ 14C values. Thus, our algorithm starts with 
a compartmental matrix, an input vector and a radiocarbon calibration curve, and returns an object containing 
masses of C and their matching decay-corrected Δ 14C values, estimated for any given year of observation. The 
match is done by assuming that τ = 0 (age equals zero) at the year of observation t0. This means that the input 
radiocarbon signal in past years will correspond to the Δ 14C signal of the atmosphere of those years corrected for 
the radioactive decay of  14C (average lifetime of 8,267 yr, i.e., half-life of 5,730 yr) according to the age of the 
pool, system or outflux.

Besides the radiocarbon distributions for pools, whole system and output flux, one can also compute the expected 
value of Δ 14C from these distributions in any given year of observation. This is done by computing the mean of 
Δ 14C weighted by the amount of carbon in Δ 14C bins of size b. The standard deviation (sd) of the distribution is 
obtained as the square root of the difference between the square of the expected value and the expected value of 
the squares of Δ 14C values.

3.2. Carbon Cycle Models

Our approach can be used to obtain radiocarbon distributions for linear compartmental models of any size repre-
senting carbon cycling processes at different scales and for different biological systems. We discuss here the 
probability distributions of radiocarbon obtained for three different carbon cycle models. Despite the method 
described throughout this work may not be limited to these examples, the approach is particularly useful for 
interpretation of radiocarbon measurements in ecosystems in the future. Nevertheless further applications might 
include carbon dynamics in aquatic systems, molecular transformations of carbon in organisms, among others.

In the following sections, we focus on a model that represents the dynamics of soil organic carbon in a temperate 
forest, which we call here the Harvard Forest Soil (HFS) model. In the appendix, we describe two other carbon 
models, hereafter called Porce model and Emanuel model. The Porce model represents the carbon cycle of a 
tropical forest in the Porce region (Colombia) through seven interconnected compartments (Sierra et al., 2021). 
The Emanuel model describes the global carbon cycle through a 5-box model (Emanuel et al., 1981).

The pools of the HFS model were operationally defined, which means they were based on methods to separate 
organic matter performed on samples from the Harvard Forest in Massachusetts, USA (Gaudinski et al., 2000; 
Sierra, Trumbore, et al., 2012). Soil samples collected in O-horizon, corresponding to 0–8 cm depth, and A-ho-
rizon (8–15 cm depth) were separated into seven soil fractions corresponding later to each of the compartments 
of the model (Figure 2); one pool corresponds to dead roots x1. Pools x2, x3, and x4 correspond, respectively, to 
fractions from the O-horizon here called Oi, Oe/a L, and Oe/a H. We keep the pool names given in Gaudinski 
et al.  (2000) and Sierra, Trumbore, et al.  (2012), but these fractions are equivalent to leaf litter (Oi fraction), 
recognizable root litter (Oe/a L fraction), and humified fraction, that is, organic matter that has been transformed 
by microbial action (Oe/a H). Pools x5, x6, and x7 correspond, respectively, to fractions from the A-horizon here 
called A, LF (>80 μm), A, LF (<80 μm), and mineral associated. The A-horizon pools were fractionated by 
density (1 g cm −3), with the low-density portion being further subdivided by sieving into recognizable leaf larger 
than 80 μm (A, LF (>80 μm) fraction, pool x5) and smaller than 80 μm (A, LF (<80 μm) fraction, pool x6). Details 
about the methods employed to fractionate the samples can be found in Gaudinski et al. (2000).

The HFS model was built by fitting empirical radiocarbon data from the above described soil fractions. Details 
about the use of the data to build the compartmental model are presented in Sierra, Trumbore, et al.  (2012). 
For the same sites, independent data (i.e., data not used for estimating the compartmental matrix) are available 
(Sierra, Trumbore, et al., 2012). The independent data used in this work consists of Δ 14C measurements on total 
soil CO2 efflux collected between 1996 and 2010 (with exception for the year 2005). We used these data to 
compare the representativity of the mean Δ 14C measurements to the expected Δ 14C values obtained through our 
algorithm. In the results, we present the probability distributions of radiocarbon for the years 1996, 1998, 2002, 
and 2008. The number of samples measured corresponding to the respective years was n = 12, 28, 23, and 10. 
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We also estimated the expected value of Δ 14C for the remaining years and these values can be seen in Figures S2 
and S3 in Supporting Information S1.

The set of ordinary differential equations for the HFS model can be expressed in compartmental form as:
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Figure 2. Scheme of Harvard Forest soil model stocks (Ci) and fluxes among compartments (adapted from Sierra, Trumbore, 
et al., 2012). All the fluxes are in units of gC m −2 yr −1 and stocks in gC m −2. Pool x1 corresponds to dead roots; in the 
O-horizon we have pools x2: Oi (leaf litter), x3: Oe/a L (recognizable root litter), and x4: Oe/a H (humidified OM). In the 
A-horizon, we have pools x5: A, LF (>80 μm) (less dense, i.e., density <1 g cm −3, fraction with particles >80 μm), and x6: 
A, LF (<80 μm) (less dense fraction passing through an 80 μm sieve). The seventh pool x7 represents the dynamics of the 
mineral associated fraction (density >1 g cm −3).

x1

x2

x3

x4

x5

x6

x7



Journal of Geophysical Research: Biogeosciences

CHANCA ET AL.

10.1029/2021JG006673

9 of 23

3.3. Set of Parameters

As described before, in order to estimate the radiocarbon distributions and expected values of Δ 14C, the algo-
rithm needs the following arguments: a compartmental matrix B, containing the decomposition and transfer rates 
within the pools; an input vector u containing the input mass to be partitioned among the compartments; the year 
of observation (equivalent to year of sampling in an experimental framework); the number of years in the past one 
aims to compute the distributions for; and a set of radiocarbon values in the atmosphere, comprising the year of 
observation and the number of years chosen. An additional argument is h, the discretization size described above, 
which has a default value of 0.1 yr, but could be modified according to user preferences.

For the HFS model, B is the matrix in Equation 13, with the form of Equation 2, and u is the numeric vector in the 
same Equation 13, with similar form as Equation 3. We estimated the radiocarbon distributions for different years 
of observation, in order to address different research questions raised in this work. In the results and Appendix A, 
we present the distributions for the pools and total outflux of all the three models for the years 1965, 2027, and 
2100. Additionally, in the supporting material we provide the non-stacked radiocarbon distributions of individual 
pools for the same mentioned years (Figures S4–S12 in Supporting Information S1), as well as the radiocarbon 
distributions for the total outflux and whole system for all the years between 1955 and 2100 (Videos S1–S6, 
respectively). Radiocarbon distributions of the outflux in the HFS model are also presented for the years 1996, 
1998, 2002, and 2008, as for those years we also have independent Δ 14C data from soil CO2 efflux in the Harvard 
Forest to compare to our estimations (Sierra, Trumbore, et al., 2012). For all those estimations, the number of 
years of computation was 1,000 yr. The bin size b for plotting the histograms was set as 10‰ for most of the 
radiocarbon distributions, except for the year 1965, where it was set up to 40‰, avoiding gaps on the x-axis.

3.3.1. Atmospheric Radiocarbon Data Sets

For the models studied here, we needed to build two different combinations of atmospheric radiocarbon curves. 
One for the Northern Hemisphere (NH) to cover the HFS and Emanuel models, and the second one for the tropics 
to serve as input for the Porce model (Figure 3).

The atmospheric Δ 14C values used for years in the past—for example, CE 1965—were obtained by merging the 
recently released IntCal20 calibration curve (Reimer et al., 2020), which combines radiocarbon data and Bayes-
ian statistical interpolation for the range 55,000–0 cal BP (BP = before present = CE 1950), and the records of 
atmospheric radiocarbon data compiled by Graven et al. (2017), from CE 1950–2015 for the NH and for the trop-
ics. Graven et al. (2017) also provide radiocarbon data in one-year resolution on the range 1850–1949. However, 
as in this range, there are estimations partially based on the previous NH calibration curve (IntCal13, Reimer 
et al., 2013), we decided to subset Graven et al. (2017)’s data set, starting in CE 1950.

For the years in the future, such as CE 2027 and CE 2100, we made use of the forecast simulations computed by 
Graven (2015), who simulated Δ 14C values in the atmosphere for four Representative Concentration Pathways 
of fossil fuel emissions: RCP2.6, RCP4.5, RCP6, and RCP8.5. In this work, we use the predictions based on the 
high emissions scenario (RCP8.5), starting in CE 2016.

The Δ 14C values in all data sets used in this work are written as the deviation from the standard representing the 
pre-industrial atmospheric  14C concentration. The raw published values are already corrected for fractionation 
and decay with respect to the standard. It is equivalent to Δ in Stuiver and Polach (1977) (Equation 9).

4. Results
4.1. Shape of the Radiocarbon Distributions and Their Change Over Time

Overall, our results show that even though the age and transit time distributions for the compartmental systems at 
steady-state are static (Figures 4a, 5a, A2a, A3a, A5a, and A6a), the radiocarbon distributions are highly dynamic 
and non-normal (e.g., Figures 4b–4d, A2b–A2d, A5b–A5d, Videos S1–S6). They change dramatically over time 
as the atmospheric CO2 source is affected by the bomb spike and the Suess effect (Suess, 1955), that is, the effect 
of the dilution of radiocarbon in the atmosphere due to the emission of fossil fuels ( 14C-free). Pools that cycle 
fast, that is, pools with sharp age distribution peaks, such as dead roots and Oi in the HFS model or foliage in the 
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Porce model, followed most closely the radiocarbon dynamics in the atmosphere, while pools that cycle slowly 
showed a wide range of values. Consequently, the expected Δ 14C values also vary largely.

The distributions we obtained for the compartments of all models show very unique shapes for different years and 
the Δ 14C values are not normally distributed. In 1965, just after the peak of excess  14C in the atmosphere due to 
nuclear weapon tests, pools that cycle fast had a wide Δ 14C range with high probability, due to the incorporation 
of radiocarbon values that changed rapidly over the period CE 1955–1964. Compartments that cycle slowly have 
a narrower distribution with their modes corresponding to negative Δ 14C values, as they represent pre-bomb 
atmospheric signals that varied less.

In the HFS model, for the whole system in CE 1965 (Figures 4b and S4 in Supporting Information S1), the distri-
bution of radiocarbon aggregates the contributions of the different pools, which results in different peaks in the 
overall distribution. The mode (i.e., the Δ 14C with highest mass density) is below 0‰ because a large portion 
of the total amount of carbon is contributed by the mineral associated pool that is predominantly still pre-bomb 
carbon with little contribution from carbon fixed after 1964. In addition, other pools that cycle fast, contribute 
relatively small amounts of bomb  14C to the overall distribution.

The radiocarbon distribution in the output flux of the HFS model in 1965, that is, the radiocarbon distribution 
that corresponds to the transit time distribution for this year (Figures 5b—blue bars—and S4 in Supporting Infor-
mation S1) has three distinct peaks in the distribution. In the soil model, the distribution of the outflux is very 
similar to that of the dead roots pool (Figure S4 in Supporting Information S1), which is the main contributor 
to the total respiration flux. However, other pools also contribute to the respiration flux with their radiocarbon 

Figure 3. Scheme of the atmospheric radiocarbon inputs used in the estimation of the probability density distributions 
of radiocarbon. Before CE 1950, input radiocarbon data relies on the IntCal20 (Reimer et al., 2020) measurements and 
modeling; Between 1950 and 2015 it consists of atmospheric Δ 14CO2 records compiled by Graven et al. (2017); From 2016 
on, the atmospheric radiocarbon values are based on the predictions of Graven (2015) for the RCP8.5 scenario. The records 
between 1950 and 2015 comprise values for the atmosphere in Northern Hemisphere (NH) and Tropics. The Tropics records 
are used as input in the Porce model (Appendix A1). The NH data set is used as input in the HFS model and Emanuel model 
(Appendix A2).
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signatures and emphasize fluxes from the fastest cycling pool (Oi) and respiration of carbon that was present in 
other pools before the bomb peak.

The shapes of the distributions change dramatically for subsequent years after the bomb spike (Figure 5b). For CE 
2027, the expected Δ 14C values of fast pools drop considerably, in parallel with atmospheric  14C, compared to CE 
1965 (Figure S5 in Supporting Information S1). These fast pools do not store much radiocarbon from the bomb 
period, and their radiocarbon signatures reflect recent carbon from the atmosphere. In contrast, slow cycling 
pools in 2027 had relatively high Δ 14C values, mostly because they still contain radiocarbon from the bomb 
period. In the output flux (Figures 5b—green bars—and S5 in Supporting Information S1), as expected, since the 
respiration flux is dominated by the faster-cycling pools such as dead roots and Oi for HFS model, most of the 
radiocarbon is narrowly distributed around the recent atmospheric Δ 14CO2 value in 2027 (Δ 14CO2 = −28.8‰) 
(Graven, 2015), with almost no contributions from bomb  14C.

By the year 2100, the atmospheric Δ 14CO2 values have dropped to −254.5‰ (Graven,  2015), reflecting the 
Suess effect. In all the models studied here, the distributions of most pools show a lower Δ 14C variability in 2100. 
Faster-cycling pools have dropped to reflect negative Δ 14C in the atmosphere over the 73 yr since 2027, while the 
slow pools still show a wide range of Δ 14C values that includes C fixed during the bomb period (now ∼150 yr 
previously). The latter pattern can be observed for mineral associated (x7), A, LF (<80 μm) (x6) and Oe/a H (x4) 
pools in the HFS model (Figure S6 in Supporting Information S1).

Figure 4. (a) Pool age distributions for the Harvard Forest Soil model computed in a span of 1,000 yr with a resolution of 
0.1 yr. Mean system age is 50.9 yr. Mean pool ages vary from 1.5 yr (for Oi pool) to 150 yr (for mineral associated pool). 
(b) Mass density distribution of radiocarbon in 1965—just after the  14C bomb peak in 1964. Distribution was computed 
over 1,000 yr, discretized by 0.1 yr. Bin size b = 40‰. The expected Δ 14C and standard deviation (sd) of the whole system 
in 1965 is 141 ± 280‰. (c) Mass density distribution of radiocarbon in 2027. Distribution was computed over 1,000 yr, 
discretized by 0.1 yr. Bin size b = 10‰. The expected Δ 14C and sd of the whole system in 2027 is 54 ± 144‰. (d) Mass 
density distribution of radiocarbon in 2100. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin size 
b = 10‰. The expected Δ 14C and sd of the whole system in 2100 is −147 ± 146‰.
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4.2. Comparison With Measured Data

Radiocarbon measurements of total soil CO2 efflux at the Harvard Forest compared relatively well with the theo-
retical distributions of radiocarbon in the output flux obtained from our approach. Total soil CO2 efflux includes 
both decomposition sources predicted by the model and root respiration, estimated by Gaudinski et al. (2000) to 
be ∼55% and to have Δ 14C values equal to the atmosphere in any given year.

In the model, for all the years presented in this section (1996, 1998, 2002, and 2008) the mode represents a mass 
of respired carbon equivalent to ∼10 3 gC m −2. We refer also to smaller peaks, hereafter secondary peaks, where 
the mass of respired carbon is equivalent to values larger than 100 gC m −2 but lower than 1 kgC m −2 in one bin 
size (b) range. For all the theoretical distributions in this section b = 10‰, however, as one could anticipate, 
the size of the b has not effect on the expected value. The measurements were always within the expected range 
of Δ 14C estimated through the algorithm (Figure 6, Table 1). In all cases, the average of the measurements was 
relatively close to the expected value of the theoretical distributions. However, the variance of the observations 
was smaller than the expected variance from the model (Figure S3 in Supporting Information S1 and Video S7). 
In particular, the expected values were systematically higher in  14C than the average of the observations for years 
1996, 1998, 2002, and 2008 by 23.5‰, 21.8‰, 15.1‰, and 10.8‰, respectively (Figure 6). The sd of the obser-
vations were 17.3‰, 26.2‰, 8.4‰, and 13.6‰ for the years 1996, 1998, 2002, and 2008, respectively, which 
are smaller than the expected sd of the distributions, which were 107.6‰, 103.3‰, 96.3‰, and 89.7‰ for the 
corresponding years, as a consequence of the larger spread of the theoretical distributions.

For the year 1996 (Figure  6a), the 12 measurements of soil CO2 efflux ranged from 104.3‰ to 167.3‰ 
(σ = 17.3‰). The mode of the theoretical distribution also falls in this interval: (112, 122]‰. Secondary peaks 
fall in a range with magnitude of one bin size below 0‰, starting in Δ 14C values of −28‰ and in a wide range 
of Δ 14C above the mode, ranging from 122‰ to 212‰ (Table 1).

Figure 5. (a) Transit time distribution for the Harvard Forest Soil model computed in a span of 1,000 yr with a resolution of 
0.1 yr. Mean transit time is 14.7 yr. (b) Mass density distributions of radiocarbon for the output flux (total respiration) in the 
years 1965, 2027, and 2100. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin size b equals 40‰ for all the 
years of observation. The expected Δ 14C values and standard deviations of the outflux are: 334 ± 333‰ in 1965; 9 ± 81‰ in 
2027; and −223 ± 78‰ in 2100.
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For the year 1998 (Figure  6b), the 28 measurements of soil CO2 efflux ranged from 66.4‰ to 193.9‰, 
(σ = 26.2‰). The mode of the theoretical estimation fall in the range from 102‰ to 112‰ (Table 1), while 
secondary peaks are observed in the ranges (−28, −18], (92,102], and (112, 202].

For the year 2002 (Figure 6c), the 23 measurements of soil CO2 efflux range from 88‰ to 117.9‰, (σ = 8.4‰). 
The theoretical mode falls partially in the range of the observations: (81, 101]‰. The theoretical estimations 
include the range observed in the empirical data – (102, 152]‰—however, with probability density one order of 
magnitude smaller than the mode. Moreover, the theoretical distribution has a secondary peak in the range of (71, 
81], which is not observed in the measurements.

Figure 6. Comparison between theoretical radiocarbon distribution and independent empirical data for the corresponding years of observation. (a) Year of 
observation = CE 1996 = year of sampling and number of observations n = 12; (b) year of observation = CE 1998 = year of sampling and number of observations 
n = 28; (c) year of observation = CE 2002 = year of sampling and number of observations n = 23; (d) year of observation = CE 2008 = year of sampling and number 
of observations n = 10.
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Finally, in the year 2008 (Figure 6d), the 10 measurements of soil CO2 efflux range from 60.8‰ to 104.7‰, 
(σ = 13.6‰). The peaks (carbon masses over 100 gC m −2) of the theoretical distributions for this year are concen-
trated in the range (41, 121], with the mode in the bin (51, 61]‰.

For all the years, secondary peaks falling in the negative part of the Δ 14C axis (Table 1), comprising values 
between −29 or −28‰ and −19 or −18‰, are not captured in the soil Δ 14CO2 efflux measurements.

5. Discussion
5.1. How Do Distributions of Radiocarbon Change Over Time as a Consequence of Changes in 
Atmospheric Radiocarbon?

Our results clearly showed that distributions of radiocarbon in a compartmental system at steady-state change 
considerably over time, despite the stationarity of the age and transit time distributions for such systems, where 
the total mass of carbon does not change over time. These changes reflect recent and expected dramatic changes 
in the carbon isotopic signature of the inputs originating in the atmosphere, including the bomb spike and the 
Suess effect, which acts as tracer of the global carbon cycle.

In the non-steady-state case, the age and transit time distributions become also time-dependent. There are meth-
ods for obtaining age distributions of carbon in compartmental systems out of equilibrium (Metzler et al., 2018), 
however, the additional complexity that would be incorporated to the algorithm is outside the scope of this manu-
script. We expect, nevertheless, that the topic of radiocarbon distributions for nonlinear and non-autonomous 
systems can be discussed in future work.

For fast cycling pools, we expect changes to match that of the radiocarbon content in the atmosphere. Conse-
quently, the radiocarbon distributions for fast cycling pools present peaks in Δ 14C values similar to those from 
the contemporary atmospheric radiocarbon. That is an effect of the fast response of highly dynamic pools to the 
variations in the isotopic composition of the system inputs. As fast pools are the major contributors to the output 
flux, the total respiration also has similar narrow distributions close to the atmospheric Δ 14C in the year of obser-
vation t0. For slow cycling pools that receive carbon from other pools, we expect wider distributions that include 
contributions from C fixed decades to centuries in the past. Thus, excess  14C takes a longer time to be observed 
in the radiocarbon distributions of slow cycling pools.

As a consequence of fossil fuel ( 14C-free) emissions to the atmosphere, the dilution of atmospheric radiocarbon 
(Suess effect, Suess, 1955) affects radiocarbon distributions, without affecting, however, the dynamic equilibrium 
(steady-state) of the compartmental system. This further widens distributions in slow cycling pools, and causes 
fast cycling pools to have lower Δ 14C values than slow cycling pools. The Suess effect becomes particularly 
relevant in the distributions for future years, as shown in the distributions of radiocarbon based on the forecast of 
atmospheric Δ 14CO2 values. The Δ 14CO2 in the atmosphere is estimated to achieve values as low as ca. −254‰ 
in 2100 for the RCP8.5 scenario (Graven, 2015). Such low values can emerge in the radiocarbon distributions of 
the pools with relatively high density in two cases: (a) if the pool cycles fast but the Δ 14C values in the atmos-

Year

Δ 14C [‰]

Mode a Secondary peaks b Expected value c Mean value d

1996 (112, 122] (−28, −18], (102, 112], (122, 212] 153 ± 107.6 129.5 ± 17.3

1998 (102, 112] (−28, −18], (92, 102], (112, 202] 139.4 ± 103.3 117.6 ± 26.2

2002 (81, 101] (−29, −19], (71, 81], (101, 151] 115.9 ± 96.3 100.8 ± 8.4

2008 (51, 61] (-29, −19], (41, 51], (61, 121] 85 ± 89.7 74.8 ± 13.6

 aCarbon masses ∼10 3 gC m −2.  bCarbon masses between 100 gC m −2 and 1 kgC  −2.  cExpected value of theoretical radiocarbon 
distribution of the outflux (weighted mean).  dMean value of the Δ 14C values measured on soil CO2 efflux from the Harvard 
Forest.

Table 1 
Δ 14C Ranges With Masses of Carbon Above 100 gC m −2 According to Our Estimations; Δ 14C Expected Values According to 
Weighted Mean of Mass Distribution of Radiocarbon; and Observed Δ 14C Mean Values of Soil CO2 Efflux
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phere present high dilution (as in 2100), or (b) with natural or bomb, however non-diluted, Δ 14C values in the 
atmosphere, but in very slow cycling pools (i.e., >2,500 yr of carbon age). The latter case reflects sufficient time 
for radioactive decay to reduce radiocarbon ratios in the carbon residing in the system. In experiments, this could 
result in an inability to distinguish faster and slower cycling pools using Δ 14C average values. Thus, one advan-
tage of using these radiocarbon distributions is to get insight into the dynamics of transfers in the compartmental 
system, highlighting when these become less meaningful in the future years. Such issues can begin as soon as in 
2027, when the atmospheric Δ 14CO2 values start to decline to values never observed before by natural processes 
(i.e., without the anthropogenic effects such as the fossil fuel emissions). In the forecast for central Europe 
(Sierra, 2018), this transition year occurs as soon as 2022. This underlines the urgency of measurements in the 
current situation and the use of archived samples from the last decades, to emphasize the difference between fast 
pools that will track the changing atmosphere and slower pools that adjust more gradually and retain bomb  14C 
signals even in future decades.

5.2. How Do Empirical Data Compare to These Conceptual Radiocarbon Distributions?

Measurements of radiocarbon in the output flux of a soil system suggest that field measurements capture the 
mean value of the distributions, but not necessarily the variance of its distribution. The observations tend to 
be around the mean value with a fairly small sd. Conversely, the estimate of Δ 14C values from the model show 
that for slow cycling pools, the spread of the Δ 14C distributions can capture almost all the atmospheric Δ 14CO2 
history.

Although we do not have independent observations available for specific pools to compare with our model predic-
tions, we expect that for fast cycling pools the measurements will fall in a narrow range of Δ 14C values, as can 
be observed in experiments assessing the fossil fuel CO2 distribution by measurements of Δ 14C on deciduous 
leaves (Santos et al., 2019). For slow cycling pools, we would expect that the variability of Δ 14C experimental 
data will be broader.

Carbon pools that cycle slowly can be very important for climate change mitigation, since they could store carbon 
for a longer time. Therefore, an accurate understanding of their dynamics is crucial. A valuable tool to assess 
these dynamics is using radiocarbon as a tracer to further constrain models. However, based on our results and 
interpretations, we believe that future research work should attempt at better capturing the spread of radiocarbon 
values in such pools.

We recognize that the variability in the observations includes measurement uncertainty in addition to the 
expected variability due to the age distribution of carbon and the atmospheric radiocarbon history. Nevertheless, 
the comparison of the variability between measurements and the theoretical distributions help to contextualize 
the origin of the observed variance and interpret measurements performed in different years.

5.3. What Insights Can These Distributions Provide for Experimental and Sampling Design for 
Improving Model-Data Comparisons by Capturing the Entire Variability of Δ 14C Values?

Overall, our results have implications for the interpretation of measured radiocarbon data. The radiocarbon distri-
butions computed here can also give useful insights for the design of empirical studies. The number of samples 
required to adequately represent the internal variability in radiocarbon depends on the year of observation and the 
particular compartment of interest. Our results suggest that fast cycling pools can have their Δ 14C mean deter-
mined with a low sample size. For example, this would be the case for dead roots and Oi pools in the HFS model; 
foliage and fine litter in the Porce model; and non-woody tree parts and ground vegetation in the Emanuel model. 
A priori, determining exact sample sizes may be a suitable approach for future studies. For samples already 
collected, caution must be taken in interpreting the results, since a bulk measurement may not capture the whole 
distribution of possible radiocarbon values.

Our study opens up new opportunities to empirically determining radiocarbon distributions in compartmental 
systems. For example, this could be achieved by sampling designs that are representative of the compartments 
with higher variance, making sure the number of samples catches the entire potential variability. This way, it 
should be possible to determine empirical radiocarbon distributions. Consequently, empirical determination of 
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radiocarbon distributions in compartmental systems could be used to obtain age and transit time distributions 
using inverse statistical methods. This offers tremendous opportunities for accurate estimations of time metrics, 
incorporating the complexity of biological systems through multiple interconnected compartments. However, 
more research is still needed to determine whether radiocarbon distributions map to unique age and transit time 
distributions. To guarantee the uniqueness of the age and transit time distributions from compartmental systems, 
one should be able to assure that only one combination of rates in the compartmental matrix builds the estimated 
distributions.

Moreover, as pointed out by Gaudinski et al. (2000), limited information about the cycling rates are obtained 
by  14C measurements of bulk SOM made at a single point in time. Therefore, being able to compute radiocarbon 
distributions for different years of observation could improve the interpretations of the time-evolution of carbon 
in compartmental systems.

6. Conclusion
We introduced here a new method to obtain probability distributions of radiocarbon in open compartmental 
systems based on previous knowledge on the age distribution of carbon and the time history of atmospheric 
Δ 14CO2. By applying this method to different models, we were able to infer potential shapes of radiocarbon 
distributions in compartments that strongly change over time and depend on how fast carbon cycles within each 
compartment.

Radiocarbon distributions (formally distributions of Δ 14C) cannot be interpreted directly as distributions of age of 
carbon. Distinctively to age, Δ 14C values in a pool do not increase/decrease monotonically; in addition, the Δ 14C 
mean value changes over time due to inputs from the atmospheric signal and mixing inside and among compart-
ments even for systems at steady-state—in contrast to age distributions, which do not change with the year of 
observation for such systems. This implies that we can have two or more different calendar years with the same 
Δ 14C. Therefore, despite age and transit time distributions for systems in steady-state being static, radiocarbon 
distributions’ shape, expected value, mode, and variance are expected to vary greatly over time, especially since 
the beginning of the Anthropocene epoch.

Radiocarbon distributions can be used together with the known changes in atmospheric Δ 14CO2 to evaluate 
how models predict the changing distributions of radiocarbon in each compartment and its output over the last 
decades. This provides a reliable and consistent method to test models against observations of systems in equilib-
rium and to refine model representations of C dynamics in soils and ecosystems.

Appendix A: Additional Study Cases
In this work, we also computed the radiocarbon distributions for two additional compartmental models. One 
model represents the carbon cycle of an old-growth tropical forest ecosystem based on measurements made at 
the Porce region in Colombia. The model parameters were obtained through a data assimilation procedure on the 
empirical data. We denote it here as the Porce model (Sierra et al., 2021). Another model represents the global 
carbon cycle, and it is based on the simple model described by Emanuel et al. (1981). We refer to it here as the 
Emanuel model.

A1. Porce Model

The Porce model consists of seven compartments representing x1: Foliage, x2: Wood, x3: Fine roots, x4: Coarse 
roots, x5: Fine litter, x6: Coarse woody debris, and x7: Soil carbon (0–30 cm). Carbon enters the foliage compart-
ment in the form of gross primary production, with an average value of 23.7 MgC ha −1 yr −1. From the foliage 
(x1), carbon is transferred to the wood and root pools (x2, x3, x4), and from these live biomass pools, carbon is 
subsequently transferred to the dead biomass and soil pools (x5, x6, x7). A pictorial structure of this compart-
mental system can be visualized on Figure A1. In compartmental form, the Porce model can be expressed as 
Equation A1.
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The age and transit time distributions of this compartmental model can be observed in Figures A2a and A3a, 
respectively. Additionally, from the age and transit time distributions, we have also computed the radio-
carbon distributions for the years 1965, 2027, and 2100 (Figures  A2b–A2d,  A3b, and S7–S9 in Supporting 
Information S1), as well as the radiocarbon distributions of the whole system and its total outflux for the period 
between 1955 and 2100 (Videos S3 and S4). The arguments of the functions used to compute the theoretical radi-
ocarbon distributions are the same ones used for the HFS model, following Section 3.3. Therefore, the bin size b 
of the distributions for the year 1965 is b = 40‰, while for 2027 and 2100 it is set as b = 10‰.

Figure A1. Scheme representing the connection between compartments in Porce model (Sierra et al., 2021). The pools 
are identified as x1: Foliage, x2: Wood, x3: Fine roots, x4: Coarse roots, x5: Fine litter, x6: Coarse woody debris, and x7: Soil 
carbon (0–30 cm). Pools x1–x4 are live biomass pools, while dead biomass and soil pools correspond to compartments x5, x6, 
and x7.
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As observed in the HFS model, the probability distribution of radiocarbon for the whole system has the mode on 
Δ 14C values of the main contributor, a slow cycling pool: Soil carbon (0–30 cm) (Figures A2b–A2d and S7–S9 
in Supporting Information S1). Moreover, for the year 2100, where the atmospheric Δ 14CO2 will most likely have 
largely dropped due to the Suess effect (Graven, 2015), the distribution of radiocarbon of slow pools is wide.

In the outflux of the Porce model (Figures A3b and S7–S9 in Supporting Information S1), the peaks are related 
to the fast dynamics of pools, such as foliage and fine litter. The expected Δ 14C values in the year of observation 
of the fast pools will change according to the atmospheric radiocarbon signals detected for the contemporaneous 
years of sampling (Figures S7–S9 in Supporting Information S1).

A2. Emanuel Model

The Emanuel model was published in 1981 and consists of a 5-box model of the global terrestrial carbon cycle. 
The boxes represent the pools x1: Non-woody tree parts, x2: Woody tree parts, x3: Ground vegetation, x4: Detri-
tus/Decomposers, and x5: Active soil carbon. There are inputs from the atmosphere to two pools (x1 and x3). 
From x1 carbon is partitioned into pools x2 and x4. Carbon from x3 partition into pool x5, which also receives 
the transfers from pools x2 and x4. All the stocks (in PgC) and transfers among the compartments (in PgC yr −1) 
can be visualized in the scheme on Figure A4. In compartmental form, the Emanuel model is represented by 
Equation A2.

Figure A2. (a) Pool age distributions for the Porce model computed in a span of 1,000 yr with a resolution of 0.1 yr. Mean 
system age is 40.7 yr. Mean pool ages vary from 0.3 yr (for foliage pool) to 55.3 yr (for soil carbon pool). (b) Mass density 
distribution of radiocarbon for 1965—just after the  14C bomb peak in 1964. Distribution was computed over 1,000 yr, 
discretized by 0.1 yr. Bin size b = 40‰. The expected Δ 14C and sd of the whole system in 1965 is 62.3 ± 193‰. (c) 
Mass density distribution of radiocarbon for 2027. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin 
size b = 10‰. The expected Δ 14C and sd of the whole system in 2027 is 85.4 ± 151‰. (d) Mass density distribution of 
radiocarbon for 2100. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin size b = 10‰. The expected Δ 14C 
and sd of the whole system in 2100 is −147.9 ± 131‰.
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As pointed out by Emanuel et al. (1981), the active soil carbon compartment x5 has a turnover time much smaller 
than 1,000 yr. Therefore, the choice of nyears parameter equals to 1,000 yr is plausible and sufficient for the 
coverage of the entire variability in the computation. The radiocarbon data used to initialize the algorithm was 
the same used for the HFS model, discussed in Section 3.3.1. The arguments of the functions used to compute the 
theoretical radiocarbon distributions are the same ones used for the HFS and Porce models, following Section 3.3. 
Particularly for the aggregation step, it means the bin size b of the distributions for the year 1965 is b = 40‰, 
while for 2027 and 2100 it is set as b = 10‰.

The age and transit time distributions of this compartmental model can be observed in Figures A5a and A6a. 
Moreover, from the age and transit time distributions, we have also computed the radiocarbon distributions for 
the years 1965, 2027, and 2100 (Figures A5b–A5d, A6b, S10–S12 in Supporting Information S1), as well as 
the radiocarbon distributions of the whole system and its total outflux for the period between 1955 and 2100 
(Videos S5 and S6).

Figure A3. (a) Transit time distribution for the Porce model computed in a span of 1,000 yr with a resolution of 0.1 yr. Mean transit time is 11.3 yr. (b) Mass density 
distributions of radiocarbon for the output flux (total respiration) in the years 1965, 2027, and 2100. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin 
size b equals 40‰ for all the years of observation. The expected Δ 14C values and standard deviations of the outflux are: 532 ± 292‰ in 1965; 1.1 ± 90‰ in 2027; and 
−227 ± 80‰ in 2100.
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Figure A5. (a) Pool age distributions for the Emanuel model computed in a span of 1,000 yr with a resolution of 0.1 yr. 
Mean system age is 72.8 yr. Mean pool ages vary from 0.5 yr (for non-woody tree parts pool) to 108 yr (for active soil 
carbon pool). (b) Mass density distribution of radiocarbon for 1965—just after the  14C bomb peak in 1964. Distribution 
was computed over 1,000 yr, discretized by 0.1 yr. Bin size b = 40‰. The expected Δ 14C and standard deviation (sd) of the 
whole system in 1965 is 98 ± 255‰. (c) Mass density distribution of radiocarbon for 2027. Distribution was computed over 
1,000 yr, discretized by 0.1 yr. Bin size b = 10‰. The expected Δ 14C and sd of the whole system in 2027 is 53 ± 146‰. (d) 
Mass density distribution of radiocarbon for 2100. Distribution was computed over 1,000 yr, discretized by 0.1 yr. Bin size 
b = 10‰. The expected Δ 14C and sd of the whole system in 2100 is −116 ± 161‰.
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Figure A4. Scheme representing the stocks (in PgC) and fluxes (in PgC yr −1) among compartments in Emanuel model 
(adapted from Emanuel et al., 1981). Pools are numbered as x1: Non-woody tree parts, x2: Woody tree parts, x3: Ground 
vegetation, x4: Detritus/Decomposers, and x5: Active soil carbon.
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Figure A6. (a) Transit time distribution for the Emanuel model computed in a span of 1,000 yr with a resolution of 0.1 yr. Mean transit time is 15.6 yr. (b) Mass 
density distributions of radiocarbon for the output flux (total respiration) in the years 1965, 2027, and 2100. Distribution was computed over 1,000 yr, discretized by 
0.1 yr. Bin size b equals 40‰ for all the years of observation. The expected Δ 14C values and standard deviations of the outflux are: 467 ± 354‰ in 1965; 2.2 ± 78‰ 
in 2027; and −225 ± 80‰ in 2100.
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As observed for the other two models, slower pools also show a wider Δ 14C distribution in the Emanuel model. 
The widest distributions are from woody tree parts and active soil carbon (Figures S10–S12 in Supporting Infor-
mation S1). This might reflect the slow incorporation of the input radiocarbon signal to those pools.

In the Emanuel model, the largest outflux back to atmosphere comes from the detritus/decomposers pool (45 PgC 
yr −1; Figure A4). Analogously to the HFS model, the Emanuel model has its outflux radiocarbon distribution 
(Figure A6b) similar to the distributions of the fast cycling pools, such as detritus/decomposers (Figures S10–S12 
in Supporting Information S1), however, the expected Δ 14C values are evidently different (Figures S10–S12 in 
Supporting Information S1).

Data Availability Statement
The atmospheric Δ 14CO2 data sets used in this research are available through Graven (2015), Graven et al. (2017), 
and Reimer et al. (2020) or http://intcal.org. Data on the compartmental model presented in this research as HFS 
model, including the independent Δ 14C data used for comparisons with our estimations are available through 
Sierra, Trumbore, et al. (2012). The coefficients used for the Porce model are available in Sierra et al. (2021). 
The global carbon cycle compartmental model used here, namely Emanuel model, can be accessed in Emanuel 
et al. (1981). The algorithm developed to estimate the radiocarbon distributions in the individual compartments, 
the whole system and the outflux, as well as an R script to plot the distributions and calculate the expected 
values of the distributions have been permanently archived in Zenodo with the digital object identifier https://doi.
org/10.5281/zenodo.6373329 (Chanca, 2022).
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