TY - JOUR A1 - Liu, T. A1 - Luther, R. A1 - Manske, L. A1 - Wünnemann, K. T1 - Melt Production and Ejection From Lunar Intermediate‐Sized Impact Craters: Where Is the Molten Material Deposited? Y1 - 2022-08-06 VL - 127 IS - 8 JF - Journal of Geophysical Research: Planets DO - 10.1029/2022JE007264 PB - N2 - Differently aged impact melt in lunar samples is key to unveiling the early bombardment history of the Moon. Due to the mixing of melt products ejected from distant craters, the interpretations of the origin of lunar samples are difficult. We use numerical modeling for a better quantitative understanding of the production of impact‐induced melt and in particular its distribution in ejecta blankets for lunar craters with sizes ranging from 1.5 to 50 km. We approximate the lunar stratigraphy with a porosity gradient, which represents the gradual transition from upper regolith via megaregolith to the solid crustal material. For this lunar setting, we quantify the melt production relative to crater volume and derive parameters describing its increasing trend with increasing transient crater size. We found that about 30%–40% of the produced melt is ejected from the crater. The melt concentration in the ejecta blanket increases almost linearly with distance from the crater center, while the thickness of the ejecta blanket decreases following a power law. Our study demonstrates that if in lunar samples the concentration of a melt with a certain age is interpreted to be of a nonlocal origin, these melts could be the impact products of a large crater (>10 km) located hundreds of kilometers away. N2 - Plain Language Summary: Lunar samples contain abundant impact‐induced melt that crystallized at different ages. The melt ages record the formation time of its source craters and are key for a better understanding of the lunar bombardment history. In samples, there is not only the melt derived from the sampling region but also some that originate far away by being entrained in the ejecta of distant craters. Recognizing the distant‐derived melt is essential for the more credible sample interpretation, which requires knowledge of the melt distribution in the ejecta. We use numerical modeling to quantify the production of impact‐induced melt and in particular its distribution in ejecta blankets for lunar craters. We found that the melt concentration in the ejecta blanket increases with distance from the crater center. If the concentration of distant‐derived melt of a certain age in lunar samples is rather high (>30%), it could originate from large craters (>10 km) located hundreds of kilometers away. N2 - Key Points: The melt concentration in the ejecta blanket increases almost linearly with distance from the crater center. Near‐surface porosity causes an increase in melt production. Due to decreasing porosity with depth, it is more prominent at small craters. The melt concentration in distal ejecta of crater of 10's km is rather high (>30%). UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10345 ER -