TY - JOUR A1 - Placidi, Luca A1 - Greve, Ralf A1 - Seddik, Hakime A1 - Faria, Sérgio T1 - Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor Y1 - 2009 VL - 22 IS - 3 SP - 221 EP - 237 JF - Continuum Mechanics and Thermodynamics JF - Continuum Mechanics and Thermodynamics DO - 10.1007/s00161-009-0126-0 DO - 10.23689/fidgeo-2793 PB - Springer-Verlag N2 - A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen’s flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/7106 ER -