@article{gledocs_11858_10409, author = {Shihora, Linus and Balidakis, Kyriakos and Dill, Robert and Dahle, Christoph and Ghobadi‐Far, Khosro and Bonin, Jennifer and Dobslaw, Henryk}, title = {Non‐Tidal Background Modeling for Satellite Gravimetry Based on Operational ECWMF and ERA5 Reanalysis Data: AOD1B RL07}, year = {2022-08-13}, volume = {127}, number = {8}, publisher = {}, publisher = {}, abstract = {The Atmosphere and Ocean De‐Aliasing Level‐1B (AOD1B) product provides a priori information about temporal variations in the Earth's gravity field induced by non‐tidal circulation processes in atmosphere and ocean. It is routinely applied as a background model in the Gravity Recovery and Climate Experiment (GRACE)/GRACE Follow‐On (GRACE‐FO) satellite gravimetry data processing. We here present three new datasets in preparation for the upcoming release RL07 of AOD1B, that are based on either the global ERA5 reanalysis or the ECMWF operational data together with simulations from the Max‐Planck‐Institute for Meteorology general circulation model forced consistently with the fields of the same atmospheric data set. The oceanic simulations newly include an updated bathymetry around Antarctica including cavities under the ice shelves, the explicit implementation of the feedback effects of self‐attraction and loading to ocean dynamics as well as a refined harmonic tidal analysis. Comparison to the current release of AOD1B in terms of GRACE‐FO K‐band range‐acceleration pre‐fit residuals, LRI line‐of‐sight gravity differences and band‐pass filtered altimetry data reveals an overall improvement in the representation of the high‐frequency mass variability. Potential benefits of enhancing the temporal resolution remain inconclusive so that the upcoming release 07 will be sampled again every 3 hr.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10409}}, }