@article{gledocs_11858_10686, author = {Hadas, Tomasz and Hobiger, Thomas and Hordyniec, Pawel}, title = {Considering different recent advancements in GNSS on real-time zenith troposphere estimates}, year = {2020-07-30}, volume = {24}, number = {4}, publisher = {Springer Berlin Heidelberg}, publisher = {}, abstract = {Global navigation satellite system (GNSS) remote sensing of the troposphere, called GNSS meteorology, is already a well-established tool in post-processing applications. Real-time GNSS meteorology has been possible since 2013, when the International GNSS Service (IGS) established its real-time service. The reported accuracy of the real-time zenith total delay (ZTD) has not improved significantly over time and usually remains at the level of 5–18 mm, depending on the station and test period studied. Millimeter-level improvements are noticed due to GPS ambiguity resolution, gradient estimation, or multi-GNSS processing. However, neither are these achievements combined in a single processing strategy, nor is the impact of other processing parameters on ZTD accuracy analyzed. Therefore, we discuss these shortcomings in detail and present a comprehensive analysis of the sensitivity of real-time ZTD on processing parameters. First, we identify a so-called common strategy, which combines processing parameters that are identified to be the most popular among published papers on the topic. We question the popular elevation-dependent weighting function and introduce an alternative one. We investigate the impact of selected processing parameters, i.e., PPP functional model, GNSS selection and combination, inter-system weighting, elevation-dependent weighting function, and gradient estimation. We define an advanced strategy dedicated to real-time GNSS meteorology, which is superior to the common one. The a posteriori error of estimated ZTD is reduced by 41%. The accuracy of ZTD estimates with the proposed strategy is improved by 17% with respect to the IGS final products and varies over stations from 5.4 to 10.1 mm. Finally, we confirm the latitude dependency of ZTD accuracy, but also detect its seasonality.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10686}}, }