@article{gledocs_11858_11140, author = {de Vrese, Philipp and Stacke, Tobias and Caves Rugenstein, Jeremy and Goodman, Jason and Brovkin, Victor}, title = {Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes}, year = {2021-05-14}, volume = {2}, number = {1}, publisher = {Nature Publishing Group UK}, publisher = {}, abstract = {Simple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11140}}, }