publisher = {Selbstverlag Fachbereich Geowissenschaften, FU Berlin}, abstract = {The present study considered calcareous nannofossils from material represented by outcrops of Flysch successions of the External Hellenides belt in the area of the Ionian Zone (I.Z.), northwestern Greece. The studied outcrops are located in Epirus mainland and the Ionian island Korfu. Three subdivisions have been traditionally in literature distinguished in the I.Z., the Internal, Middle and External (moving from east to the west), each of which was subsequently recognized in the Flysch deposits as well. Aim of the study was, a refinement of the current biostratigraphic resolution of the area through detailed taxonomic descriptions and consequently, a reliably better correlation of the investigated sedimentary deposits with the help of calcareous nannofossils. The biostratigraphic data were also processed semiquentitatively (frequency variations and distributions), in order to accurately determine important biohorizons. For this purpose, the nannofossils were studied under the LM and the SEM, from ten closely sampled sections representing clastic sequences of all the three subdivisions of the I.Z. The investigated sections are situated at about 39° northern mid latitudes, a fact which resulted to mixed nannoflora assemblages of low and high latitudes character. The sections are namely: Elatos, Korfovouni (Internal I.Z. subdivision), Kato Despotiko, Strouga Goumenou and Ekklisia (Middle I.Z. subdivision), lower and upper Argyrotopos, National Road, Monos and Anacharavi (External I.Z. subdivision). They were found to range in age from the latest Eocene to the Early Miocene. Based on the systematic palaeontology, 107 species of calcareous nannofossils were observed and documented in the studied material. Among them, a new species Rhabdosphaera epirotica sp. nov. was described, and four recombinations were proposed. Moreover, two calcareous dinoflagellate cysts, Cervisiella saxea and Obliquipithonella sp. were reported for the first time from the I.Z. in Greece. Despite the mid latitude palaeogeographic position of the sections, all the conventional calcareous nannofossil zonal markers for the Oligocene and Early Miocene were recorded, although some in fewer abundances than in low latitudes. Improving the biostratigraphic reliability, a new zonational scheme was here developed and proposed for the Oligocene to Early Miocene interval. It was mainly established on use of redefined biohorizons and composed of five zones and five subzones following below: 1. Latest Eocene: Ericsonia formosa Partial-range Zone, 2. Oligocene: llselithina fusa / Ericsonia formosa Concurrent-range Zone, Ericsonia formosa-Reticulofenestra umbilicus/R. hillae Interval Zone, Cyclicargolithus abisectus Partial-range Zone, including the subzones: Rhabdosphaera spp. Interval Subzone, and Sphenolithus predistentus Interval Subzone, Reticulofenestra scissura Interval Zone, including the Sphenolithus delphix Abundance Subzone, and 3. Earliest Miocene: Triquetrorhabdulus spp. Partial-range Subzone Sphenolithus conicus Interval Subzone. Based on a new biohorizon of the absolute First Occurrence (FO) of llselithina fusa, the Eocene/Oligocene (E/O) boundary was identified in the lower part of the Argyrotopos section. On the absence of disc-shaped discoasters, the I. fusa biohorizon represented a better approximation of the boundary, which was clearly correlated with the other studied sections of the three subdivisions of the I.Z. The Oligocene/Miocene (O/M) boundary was identified in the Monos section located in the Plataria syncline (External I.Z.), but Early Miocene strata were recorded in the Middle I.Z. as well. This boundary was placed at the Last Common Occurrence (LCO) biohorizon of the Reticulofenestra scissura. Moreover, six associate bioevents were reported near the O/M boundary, among them the highest occurrence of I. fusa, located above the boundary, in the Anacharavi section of Korfu island (western part of the External I.Z.). For the first time were evaluated reworked together with „autochton“ taxa of calcareous nannofossils in Greece. Maximum diversity values along each of the studied sections, have shown increased reworking and erosional processes in the Internal subdivision of the I.Z. than in the Middle and the External ones. This is interpreted to be connected with the higher tectonic instability along the Pindos thrust to the east, in relation to the central and western parts of the Ionian basin mainly during the Oligocene.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11584}}, note = { \url {http://dx.doi.org/10.23689/fidgeo-5966}}, }