publisher = {Reimer}, abstract = {Die Toskana ist die stärkste geothermische Anomalie auf dem europäischen Kontinent. In dieser Anomalie finden sich zahlreiche lokale geothermische Felder mit hoher Enthalpie, wie z.B. das Feld von Travale. In diesem geothermischen Feld, das im Era-Graben liegt, wurden in den Jahren 1980/81 elektromagnetische Messungen durchgeführt. Es war das Ziel der Untersuchungen, die Quelle und die Ursache dieser teilweise bekannten Anomalie zu finden. Hierzu sollte die Verteilung der elektrischen Leitfähigkeit in der Erdkruste bis in Tiefen der Kruste-Mantel-Grenze mit den Methoden der Magnetotellurik und Erdmagnetischen Tiefensondierung untersucht werden. Parallel dazu wurde die geothermische Anomalie von Travale mit einer Vielzahl weiterer elektromagnetischer, seismischer und geochemischer Methoden untersucht. Das Ziel, die geothermische Anomalie in der Erdkruste zu lokalisieren, war nicht einfach zu erreichen. Deshalb war es notwendig, ein Modell der Anomalie zu erarbeiten, aus dem die Lokalität folgen sollte. Vor angegangene elektromagnetische Untersuchungen (HAAK & SCHWARZ 1981) hatten gezeigt, daß nahezu das gesamte Gebiet der Toskana als eine Anomalie der elektrischen Leitfähigkeit anzusehen ist: Gutleitende Deckschichten, mit bis zu 10 km Mächtigkeit, werden von einem hochohmigen Basement unterlagert. An einigen Meßorten deutet sich der Übergangsbereich Kruste / Mantel - in einer Tiefe zwischen 20 und 30 km - durch eine Zone hoher Leitfähigkeit an. Dieser Bereich zeichnet sich durch Lamellen hoher und extrem niedriger seismischer Wellengeschwindigkeiten aus. Petrologisch kann dieses durch eine Wechsellagerung von basischem und saurem Material gedeutet werden. Die zeitlichen Variationen des elektrischen und magnetischen Feldes wurden im geothermischen Feld von Travale in einem breiten Periodenbereich von 6 - 10.000 s registriert. Die Meßorte liegen überwiegend auf zwei Profilen, eines verläuft parallel zum Era-Graben aus der Anomalie heraus nach NW, das zweite schneidet die Anomalie senkrecht zum Graben. Der Meßpunktabstand war mit einigen hundert Metern bis zu mehreren Kilometern sehr dicht, um möglichst alle lateralen Variationen der scheinbaren spezifischen Widerstände beobachten zu können. Es zeigte sich, daß die lateralen Variationen der spezifischen Widerstände im Gebiet von Travale sehr groß waren. Bis zu Perioden von 50-100 s ist der Era-Graben die dominierende zweidimensionale Leitfähigkeitsstruktur. Die gemessenen scheinbaren spezifischen Widerstände sind bei längeren Perioden durch dreidimensionale Leitfähigkeitsstrukturen verzerrt. Die scheinbaren elektrischen Widerstände sind innerhalb der geothermischen Anomalie mit Werten bis zu 50 Qm äußerst klein, während sie nördlich des geothermischen Feldes auf 100-300 Qm ansteigen, um dann etwa 7 km NW der Anomalie wieder deutlich abzufallen. Selbst in der tieferen Kruste werden keine höheren Widerstände angetroffen. Die integrierte Leitfähigkeit weist das geothermische Feld ebenso als eine Anomalie der elektrischen Leitfähigkeit aus, während nördlich davon die "hochohmige Barriere" bestätigt wurde. Aus den Ergebnissen der Seismik und Magnetotellurik wurde ein Modell für die geothermische Anomalie von Travale und die Toskana abgeleitet, das sich in drei Stockwerke gliedert: - Das unterste Stockwerk, die Übergangszone zwischen Oberem Mantel und Unterkruste in 20-30 km Tiefe ist die Quelle auf steigender heißer Gase und Flüssigkeiten. Die Temperatur beträgt etwa 700° C. - Das mittlere Stockwerk ist von tief reichenden, vertikalen Störungen durchsetzt, die einen konvektiven Wärmetransport durch die hydrothermalen Phasen in das oberste Stockwerk erlauben. Im Gebiet von Travale hat sich durch längs- und zum Era-Graben querstreichende Störungen eine ausgeprägte Schwächezone in der Kruste gebildet, die einen besonders intensiven Wärmetransport zuläßt. Der Temperaturgradient wird mit 15° C/km angenommen. - Das oberste Stockwerk besteht aus Sedimenten und kristallinen Formationen, die im wesentlichen von horizontalen Abscherungs- und Störungsflächen durchzogen sind, in denen hydrothermale Phasen zirkulieren. Innerhalb der Basements hat sich so ein zweites Reservoir ausgebildet, welches das bekannte geothermische Reservoir in den Karbonaten in Tiefen von 1-2 km durch ein ausgeprägtes Bruchsystem speist. Die Temperatur ist in 4 km Tiefe mit 400° C sehr hoch. Die augenblicklich geförderten heißen Gase und Wässer sind meteorologischen Ursprungs und werden an der Oberkante des toskanischen Basements aufgeheizt. Aus tektonischer Sicht besteht das oberste Stockwerk aus allochthonen Decken, die während der Orogenese über die Toskana hinweggeschoben wurden. Dieser tektonischen Kompressionsphase folgte eine Phase starker lateraler Dehnungen, die bis heute andauern. Das System von Grabenbrüchen und tiefgreifenden Verwerfungen ist Ausdruck dieser Dehnungstektonik. Die damit verbundenen Störungszonen tragen zu einer Entwässerung und Entgasung der tiefen Erdkruste bei und lassen die hydrothermalen Phasen in das oberste Stockwerk aufs teigen. In ausgeprägte Schwächezonen, die die gesamte Kruste durchziehen und die durch undurchlässige Schichten nach oben abgeschlossen werden, kann sich so ein geothermisches Reservoir ausbilden.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11717}}, note = { \url {http://dx.doi.org/10.23689/fidgeo-6049}}, }