@article{gledocs_11858_9886, author = {Baatz, R. and Hendricks Franssen, H. J. and Euskirchen, E. and Sihi, D. and Dietze, M. and Ciavatta, S. and Fennel, K. and Beck, H. and De Lannoy, G. and Pauwels, V. R. N. and Raiho, A. and Montzka, C. and Williams, M. and Mishra, U. and Poppe, C. and Zacharias, S. and Lausch, A. and Samaniego, L. and Van Looy, K. and Bogena, H. and Adamescu, M. and Mirtl, M. and Fox, A. and Goergen, K. and Naz, B. S. and Zeng, Y. and Vereecken, H.}, title = {Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis}, year = {2021-08-18}, volume = {59}, number = {3}, publisher = {}, publisher = {}, abstract = {A reanalysis is a physically consistent set of optimally merged simulated model states and historical observational data, using data assimilation. High computational costs for modeled processes and assimilation algorithms has led to Earth system specific reanalysis products for the atmosphere, the ocean and the land separately. Recent developments include the advanced uncertainty quantification and the generation of biogeochemical reanalysis for land and ocean. Here, we review atmospheric and oceanic reanalyzes, and more in detail biogeochemical ocean and terrestrial reanalyzes. In particular, we identify land surface, hydrologic and carbon cycle reanalyzes which are nowadays produced in targeted projects for very specific purposes. Although a future joint reanalysis of land surface, hydrologic, and carbon processes represents an analysis of important ecosystem variables, biotic ecosystem variables are assimilated only to a very limited extent. Continuous data sets of ecosystem variables are needed to explore bioticā€abiotic interactions and the response of ecosystems to global change. Based on the review of existing achievements, we identify five major steps required to develop terrestrial ecosystem reanalysis to deliver continuous data streams on ecosystem dynamics.}, note = { \url {http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9886}}, }