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Abstract 

This communication clarifies the relationships between sand addition and the sustainability of 

iron/water systems for environmental remediation. It is shown that any enhanced contaminant 

removal in an iron/sand/water relative to an iron/water system is related to the 

avoidance/delay of particle cementation by virtue of the inert nature of sand. The argument 

that sand dissolution produces protons (H+) to sustain iron corrosion is disproved by the very 

low dissolution kinetics solubility of SiO2-bearing minerals under environmental conditions. 

This demonstration corroborates the concept that aqueous contaminant removal in iron/water 

systems is not a process mediated by electrons from Fe0. 

 

Keywords: Adsorption, Co-precipitation, Dissolution kinetics, Sand admixture, Zerovalent 

iron. 
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The use of metallic iron (Fe0) has become an established technology for environmental 

remediation and water treatment in recent years (O´Hannesin and Gillham, 1998; 

Odziemkowski and Simpraga, 2004; Bartzas et al., 2006; Li et al., 2006; Henderson and 

Demond, 2007; Hussam and Munir, 2007; Hussam, 2009; Noubactep et al. 2009a; O et al., 

2009; Bartzas and Komnitsas, 2010; Li and Benson, 2010; Comba et al., 2011; Gheju, 2011; 

Gunawardana et al., 2011; Jeen et al., 2011; Allred, 2012; Ingram et al., 2012; Jeen et al., 

2012; Huang et al., 2012; Noubactep et al., 2012a; Ruhl et al., 2012a; Ruhl et al., 2012b; Ruhl 

et al., 2012c). The processes governing contaminant removal are considered widely 

understood (Cong et al., 2010; Henderson and Demond, 2011; ITRC, 2011; Chen et al. 2012a; 

Jeen et al., 2012; Huang et al., 2013a; Huang et al., 2013b). Meanwhile, reported studies are 

focused on ways to enhance the Fe0 reactivity such as using nano-sized particles and 

bimetallic systems (Ghauch et al., 2011; Crane and Scott, 2012; Noubactep et al., 2012a), 

using other reactive metallic elements (e.g. Al0, Ti0, Zn0) (Bojic et al., 2007; Sarathy et al., 

2010; Guo et al., 2012; Lee et al., 2012; Salter-Blanc et al., 2012) or using hybridized systems 

like Fe0/Fe3O4/FeII (Huang et al., 2012; Huang et al., 2013a; Huang et al., 2013b). However, 

the validity of the current paradigm has been seriously questioned as the relevance of direct 

reduction (reduction by electrons from Fe0) for observed efficiency of Fe0/H2O systems was 

challenged (Lavine et al., 2001; Noubactep, 2007; Noubactep, 2008; Jiao et al., 2009; Ghauch 

et al., 2010; Noubactep, 2010a; Noubactep, 2010b; Ghauch et al., 2011; Gheju and Balcu 

2011; Noubactep, 2011a; Noubactep, 2011b; Noubactep, 2012a; Liu et al., 2013). The 

problem is well worthy to be discussed further. The present contribution focuses on the use of 

sand as additive material in Fe0 filtration systems.  

The idea that sand/quartz (SiO2) admixture enhances the extent/efficiency of contaminant 

removal in Fe0/H2O systems has significant support in the literature (Powell et al., 1995; 

Kaplan and Gilmore, 2004; Song et al., 2005; Wu et al., 2005; Guo et al., 2011). This idea co-
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exists with concerns that SiO2 addition is a ‘dilution’ of reactive materials and is necessarily 

accompanied by slower kinetics and lower extent of the decontamination process (Devlin and 

Patchen, 2004; Bi et al., 2009; Ruhl et al. 2012a). Each of this argument is seemingly  

supported by strong experimental evidence and has let to the recent statement that “there is no 

conclusive evidence that a sand/iron mix is better or worse than a pure iron barrier” (Ulsamer, 

2011). Moreover, although the efficiency of Fe
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0 PRBs was demonstrated with a 22:78 

Fe0:sand w/w mixture for the removal of TCE (O´Hannesin and Gillham, 1998), Ruhl et al. 

(2012a) recently demonstrated the inefficiency of dual Fe:additive mixtures for the removal of 

the same compound (e.g. TCE) from a contaminated groundwater. Tested additives included 

anthracite, gravel, pumice and sand.  

The objective of this paper is to clarify the impact of sand addition on the long term efficiency 

(or sustainability) of  Fe0/H2O systems using a mathematical modelling. The discussion starts 

by a careful analysis of the Fe0/sand/H2O system on a pure chemical perspective. 

2. The chemistry of the Fe0/sand/H2O system 

The presentation in this section is limited to an ideal anoxic system (absence of oxygen). 

Under such conditions Fe0 is oxidized by protons (H+) from water dissociation after Eq. 1: 

Fe0  +  2 H+  ⇒  Fe2+  +  H2     (1) 

 After the Lechatelier’s Principle, Eq. 1 is sustained/enhanced in a system if: (i) H+ is 

produced, (ii) Fe2+  is consumed and (iii) H2  is consumed or escapes out of the system. 

Is the view that sand sustains the efficiency of Fe0 supported by Lechatelier’s Principle? It is 

obvious that sand is not a reservoir of H2. Accordingly, H2 may escape or be used for 

microbial activities. Sand may potentially adsorb Fe2+ but its adsorption capacity is limited 

and any redox reaction of adsorbed FeII-species is only indirectly coupled with the parent Fe0. 

The last discussed option is that sand may produced protons. The ability of sand to produce 

protons has been documented in the Fe0 literature (Powell et al., 1995; Blowes et al., 1997; 

Powell and Puls, 1997). In this context a ‘buffering effect’ of SiO2-bearing materials has been 
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reported. However, because of the very slow rate of SiO2 dissolution (Rimstidt and Barnes, 

1980; Kehew, 2001), it is doubtful whether any significant acidification by SiO
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2 dissolution 

may occur (Eq. 2). The observed pH decrease in short-term batch experiments can be 

attributed to hydrodynamic effects (mixing operations) dissolving weathered fines from the 

surface of used materials. After this initial dissolution observed in Batch experiments, no 

quantitative SiO2 dissolution could be expected at pH ≥ 4.5. 

SiO2(s)  +  2 H2O ⇒ H4SiO4(aq)        (2) 

The presentation until now shows that sand admixture can not actively sustain the efficiency 

of Fe0/H2O systems in the long-term. Therefore, the observed enhanced efficiency (Song et 

al., 2005; Bi et al., 2009; Gottinger et al., 2010) should be explained by other processes. 

3. The operating mode of Fe0/sand/H2O 

3.1 Descriptive aspects 

Sand is a geo-material conventionally used for water treatment (Darcy, 1856; Weber-Shirk 

and Dick, 1997; Ngai et al., 2007; Kubare and Haarhoff, 2010; Gottinger et al., 2011). Sand is 

mostly considered a non reactive material for media filtration. In some cases, this material is 

mixed with reactive natural materials to sustain selective removal of some species (Yao et al., 

1971; Ali, 2012). Tested natural reactive materials include iron ores (e.g. siderite, hematite), 

manganese ores, volcanic stones, and zeolites (Guo et al., 2007a; Guo et al., 2007b; Doula, 

2009). In other cases, sand is artificially coated with reactive media such as iron or manganese 

oxides (Gupta et al., 2005). While filtration on pure sand bed is termed ‘media filtration’ 

(size-exclusion of suspended particles), adsorption on coated sand is known as ‘adsorptive 

filtration’ (Edwards and Benjamin, 1989; Dermatas and Meng, 2004). This classification is 

operational as sand may adsorb some species more strongly than iron oxides. A classical 

example was reported by Mitchell et al. (1955). These authors demonstrates that some iron 

oxide coated sands are worse adsorbents for methylene blue than original materials (non-

coated). The observation of Mitchell et al. (1955) is very important for the design of Fe0 
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filtration systems. In fact, species that are not readily removed by iron oxide coated sand 

should be removed before the Fe
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0-containing zone, for instance on a granular carbon or sand 

layers. For the purpose of this communication it is sufficient to consider that in a 

Fe0/sand/H2O system, iron-oxide-coated sand is generated in-situ. 

Previous theoretical studies have argued that a Fe0-containing zone must be situated after one 

or several biosand filters to operate under anoxic conditions where less expansive corrosion 

products are generated (Noubactep et al., 2009a; Noubactep, 2010c; Noubactep and Caré, 

2010; Noubactep and Schöner, 2010; Noubactep et al., 2010; Noubactep et al. 2012b; 

Noubactep et al. 2012c). Methylene blue can be regarded as proxies for all species with low 

adsorptive affinity to iron oxides. This observation of Mitchell et al. (1955) corroborates the 

view that, in a multi-barriers system, a Fe0-containing zone must never be implemented at the 

beginning of the chain. Moreover, the fact that methylene blue is quantitatively removed in 

Fe0/sand systems (Noubactep, 2009; Chen et al., 2012b; Miyajima and Noubactep, 2012; 

Btatkeu et al., 2013; Miyajima and Noubactep, 2013) confirms that adsorption, co-

precipitation and enhanced size-exclusion are the fundamental mechanisms of contaminant 

removal in Fe0/H2O systems. Accordingly, despite the low affinity of MB for adsorbing 

species in Fe0/H2O systems, quantitative MB removal can be achieved upon proper system 

design (Btatkeu et al., 2013). Recent calculations have demonstrated that using the same mass 

of Fe0, the best treatment system is achieved in using the column with the smallest diameter 

(Noubactep et al. 2012c). In such beds/columns  Fe0 is mixed with a non expansive material, 

e.g. sand. The most favourable Fe0 volumetric proportions are bellow 50 % (Miyajima, 2012; 

Miyajima and Noubactep, 2013), but the intrinsic reactivity of Fe0 and the relative geometry 

of Fe0 and sand should be considered as well (O et al., 2009; Caré et al. 2012, Btatkeu et al. 

2013). It is hoped that all these aspects will be considered in future system design. 

3.2 Sand as dispersant 
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Aqueous iron corrosion at pH > 4.5 is a cycle of (i) oxidative dissolution (Fe0 ⇒ Fe2+), (ii) 

solvatation (Fe(H
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2O)6
2+), (iii) volumetric expansion (formation of Fe(OH)n colloids), (iv) 

volumetric contraction (Fe hydroxides/oxides) processes. The overall process is known as 

‘volumetric expansion’ (Noubactep, 2010c; Noubactep and Schöner, 2010; Noubactep, 

2011c). The volume of any iron Fe hydroxide or oxide is higher than that of the original metal 

(Fe0) (Pilling and Bedworth, 1923; Caré et al., 2008). The ratio between the volume of 

expansive corrosion product and the volume of iron consumed in the corrosion process is 

called ‘‘rust expansion coefficient’’. However, this coefficient does not reflect the 

intermediary expansive stage of the process which yield volumetric colloids that are capable 

of enmeshing foreign species during their further transformation to oxides (Noubactep, 2010a; 

2010c; 2011c, 2012a). More importantly, these volumetric colloids have the ability to 

‘cement’ or ‘compact’ granular particles (Mackenzie et al., 1999; Kaplan and Gilmore, 2004). 

The cementation process results in limited access to all three potential removing agents: non 

corroded Fe0, iron oxides and sand. Thus contaminant removal by adsorption and/or co-

precipitation is inhibited. On the contrary, in fest bed filtration systems, adsorptive size-

exclusion is enhanced but the system permeability is reduced (permeability loss). This is the 

first reason why pure Fe0 systems (100 % Fe0) are efficient but not sustainable (Hussam, 

2009; Noubactep et al., 2010). 

Regarding Fe0 particles as ‘cement generators’ suggests that the first tool to limit 

cementation/compaction is to decrease the proportion of Fe0 (Caré et al., 2012; Noubactep et 

al., 2012b). In other words, batch and column systems with 100 % Fe0 leave no room for solid 

phase expansion (Miyajima and Noubactep, 2012). Such systems will ‘clog’ rapidly and iron 

corrosion and the corresponding contaminant removal will be minimal. In other words, sand 

and other non expansive additives should not be regarded as material slowing the mass 

transport of reactants to the Fe0 surface but rather as a dispersant sustaining the system’s 

efficiency (more Fe0 is consumed, more adsorbing agents are produced) (Noubactep et al., 
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2012b). The use of non-reactive materials to sustain Fe0 efficiency is current at nano-scale 

(Gheju, 2011; ITRC, 2011; Crane and Scott, 2012; Noubactep et al., 2012a). On the other 

hand, the efficiency of the hybridized Fe
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0/Fe3O4/FeII presented by Huang et al. (2012; 2013a; 

2013b) can be attributed to the non/less expansive nature of Fe3O4 (magnetite) and the 

enhanced reactivity of FeII adsorbed onto magnetite and nascent iron hydroxides (Charlet et 

al., 1998; Liger et al., 1999; Noubactep, 2007; Noubactep, 2008; Noubactep, 2011a). 

Regarding sand and other non-expansive additives as useful tools to sustain Fe0 efficiency 

explains all reported discrepancies on the effect of sand addition on the efficiency of Fe0/H2O 

systems. In particular, the statement of Ulsamer (2011) that “there is no conclusive evidence 

that a sand/iron mix is better or worse than a pure iron barrier” is due to the fact that results 

have been compared with little care on the operational conditions of their production (Crane 

and Noubactep, 2012; Noubactep, 2012b). Additionally, there is still no index to characterize 

the intrinsic reactivity of  Fe0 material (Noubactep et al., 2009b; Miyajima and Noubactep, 

2012; Btatkeu et al., 2013; Miyajima and Noubactep, 2013). For example, a filtration system 

(e.g. a column) containing 100 % of a less reactive material (material A) may not experience 

clogging while a readily reactive material (material B) could induce clogging even at 40 % 

volumetric proportion within similar working conditions. In other words, the suitability of 

admixing additive to iron can not be accessed before the intrinsic reactivity is properly 

characterized. Beside the Fe0 intrinsic reactivity, other relevant factors influencing the 

porosity of filtration beds should be considered (Kubare and Haarhoff, 2010; Caré et al., 

2012; Btatkeu et al., 2013; Miyajima and Noubactep, 2013). Factors influencing the 

efficiency of Fe0 filtration systems include: (i) the particle size and form of reactive materials, 

(ii) the dimensions of the treatment systems and (ii) the chemistry of raw waters (Noubactep 

et al., 2012c; Caré et al., 2012; Crane and Noubactep, 2012; Ruhl et al., 2012b; Togue-Kamga 

et al., 2012a, Togue-Kamga et al., 2012b; Btatkeu et al., 2013; Miyajima and Noubactep, 

2013). 
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4. Discussing the process of permeability loss in Fe0/H2O systems 175 
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In this section, an evaluation of permeability loss in a series of filters (e.g. reactive zones) 

with an initial pore volume Vp = 100 mL is given. Assuming an initial porosity of 40 % the 

volume of the filter is Vrz = 250 mL and the volume of solid is Vsolid = 150 mL. This volume 

can be occupied by 1170 g of granular Fe0 (density: 7.8 g/cm3). It is assumed that this filter is 

used to (electro)chemically reduce CrO7
2- to Cr3+ (Eq. 1) which is then precipitated as Cr2O3 

(unit cell volume: 289.85 A°3 corresponding to 174.6 mL/mol) (Prewitt et al., 1969) under 

anoxic conditions (Fe3O4 is the major iron corrosion product). 

3 Fe0  +  Cr2O7
2-  + 14 H+  ⇒ 3 Fe2+  + 2 Cr3+  + 7 H2O   (1) 

The initial pore volume (Vp = 100 mL) is completely filled when 570 g of Fe0 (10.17 moles) 

is oxidized and precipitated as Fe3O4. Accordingly, using a 100 % Fe0 bed corresponds to a 

51.3 % material wastage with the additional disadvantage that the system is not sustainable. 

Assuming that Fe0 oxidation is coupled to chemical CrVI reduction (Eq. 1), the initial pore 

volume is filled by only 0.57 mole of Cr2O3. This corresponds to the oxidation of 1.72 moles 

of Fe0 (by 0.57 mole of Cr2O7
2-). 0.57 mole is contained in 29,640 L of a 1 mg/L Cr2O7

2-. In 

other words, up to 30 m3 of water containing 1 mg/L Cr2O7
2- can be treated by only 600 g (0.6 

kg) of Fe0. These calculations corroborate the huge potential of Fe0/H2O systems for water 

treatment while disapproving the current expression of the removal capacity (in mg 

contaminant per g Fe0) partly derived from batch experiments.  

Summarized, Vp = 100 mL is completely clogged when (i) 10.17 moles of Fe0 is oxidized by 

water and subsequently precipitated as Fe3O4 or (ii) 1.72 moles of Fe0 is oxidized by 0.57 

mole Cr2O7
2- to form 0.57 mole of Cr2O3. However, it should be kept in mind that Cr2O7

2- can 

be removed without reduction and corrosion products are always oxides/hydroxides mixtures. 

4.1 Permeability loss resulting from expansive corrosion 

The methodology for the assessment of the permeability loss is explicitly presented in Caré et 

al. (2012). Fe0/sand systems with Fe0 volumetric ratios (τZVI) varying from 0 to 100 % are 
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considered. A Fe0 filter is made up of granular solid materials (Fe0, sand) and the voids 

between the grains (pore volume, V
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p). The volume of the reactive zone is given by (Eq. 2): 

Vrz = VZVI + Vsand + Vp    (2) 

Ideally, a reactive zone is clogged when Vp is completely filled with retained solutes, 

suspended particles and/or in-situ generated species. However, clogging is usually observed 

only at the entrance zone of Fe0 systems (Mackenzie et al., 1999; Kaplan and Gilmore, 2004; 

O et al., 2009). 

Upon oxidative dissolution and subsequent precipitation, the volume of each corrosion 

product (e.g. Fe3O4; η = 2.08) is higher than that of the original metal (Pilling and Bedworth, 

1923). The excess volume contributing to system clogging is given by Vexcess in Eq. 3 (Caré et 

al., 2012).  

(η - 1) * τZVI*Vsolid = Vexcess    (3) 

Where τZVI (0 ≤ τZVI ≤ 1) is the volumetric fraction of metallic iron relative to the solid phase 

in the bed or the reactive layer. 

The Fe0 filtration system is clogged when the volume Vexcess is equal to the initial inter-

granular voids (Vp).  

(η - 1) * τZVI*Vsolid = Vp    (3a) 

Eq. 4 suggests that, for every η value (i.e. every oxide), Vp is a linear function of τZVI (Fig. 1). 

Negative values of Vp are not considered as they have no physical meaning. In other words, 

Vp < 0 indicates an excess of Fe0 and system clogging occurred before complete Fe0 

depletion. 

4.2 Contaminant accumulation and permeability loss 

The calculations in this work consider solely the initial state (Fe0) and the final state (Fe3O4). 

The kinetics of the corrosion reaction is difficult to access. In the oil industry, the corrosion 

rates of external line pipe are expected to be < 10 μmyr-1 but could increase to up to 700 
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μmyr-1 in the presence of sulfate reducing bacteria (Sherar et al., 2011). In the Fe0 remediation 

industry, no such experience-based guide values have been published. The paramount factors 

determining the corrosion kinetics include: (i) the intrinsic reactivity of Fe
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0 materials, (ii) the 

water chemistry (pH, dissolved O2, nature and extent of contamination) and (iii) water flow 

rate.  

In this section, the occupation of the pore volume by removed Cr (as crystalline Cr2O3) is 

discussed. The evolution of a system initially containing 50 % Fe0 (τZVI = 0.5) is characterized 

as the extent of Fe0 depletion (αZVI) varies from 0 to 100 %. It is assumed that corrosion 

products results solely from Fe0 oxidation by CrVI (Fe0:CrIII = 3:2 or Fe0:Cr2O3 = 3:1). 

Fig. 2 summarizes the results and shows unambiguously that porosity loss due to pore filling 

with insi-situ generated corrosion products is significant. While considering the pore 

occupation by Cr2O3 it is seen that Vp is completely clogged when only 5 % of the initial 

amount of Fe0 has reacted with CrVI to form crystalline Cr2O3. Considering Fe3O4 alone, 

complete clogging occurred when about 75 % of the initial amount of iron is consumed. This 

conclusion seem to underscore the impact of iron corrosion products in filling the initial 

porosity. However, one should remember that water oxidizes Fe0 and contaminants are 

present in trace amounts (Henderson and Demond, 2011; Kümmerer, 2011). Iron oxides 

certainly quantitatively precipitate (at pH > 5.0). In other words, the calculated volume 

occupation by Fe3O4 is very conservative and even unrealistic because strict stoichoimetric 

reduction by Fe0 has never been reported (Gould et al., 1982).  In other words, stoichoimetric 

CrVI reduction by Fe0 is unlikely to occur under environmental conditions. Fig. 2 presents the 

line for a reaction efficiency of 33 % meaning that for 3 moles of dissolved Fe2+, ‘only’ one 

mole induces CrVI reduction. In this case, system clogging is observed just at 20 % Fe0 

consumption. 

The last important issue from Fig. 2 is the representation of the percent consumption of Fe0. 

At αZVI = 0, the system behaves like a pure sand filter. As αZVI increases, the efficiency of the 
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system virtually increases. Fe0 corrosion stops when the residual porosity is zero. Fig. 2 

shows clearly that any Fe
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0-amended sand filter, has to find a compromise between (i) 

increased efficiency by virtue of the Fe0 reactivity and (ii) reduced porosity as result of 

expansive iron corrosion. Fig. 2 suggests that for a system containing 50 % (vol/vol) Fe0, and 

working under anoxic conditions, this optimum system is around 40 %. Given the difference 

in density between Fe0 (7.8 g cm-3) and sand (2.6 g cm-3) the corresponding weight ratio is 

necessarily lower than 1:1 (50 % w/w) which has been commonly tested and used (Miyajima, 

2012). In other words, suitable Fe0/sand systems are yet to be tested. However, it is certain 

that enhanced contaminant removal in Fe0/sand/H2O relative to Fe0/H2O systems is related to 

the delay of particle cementation by virtue of the inert nature of sand.  

5. Concluding remarks 

Decrease of the hydraulic conductivity (permeability loss) in Fe0 filtration systems has not 

been attributed to volumetric expansive iron corrosion. The calculations presented here 

demonstrate that gas (H2) evolution and foreign solid precipitation may not be responsible for 

the majority of permeability loss (Fig. 2). The kinetics and the extent to which permeability 

loss occurs at a given site depends both on the intrinsic reactivity of used Fe0 and on the water 

chemistry. However, it is certain that pure Fe0 filtration systems are not sustainable as little 

room is left for iron corrosion (volumetric expansion). Accordingly, any argumentation that 

sand addition avoid the passivation of the Fe0 surface or acts as buffering agent thanks to 

production of silicic acid is faulty. This evidence can only be acknowledged when the whole 

Fe0 remediation community has considered the overall theory of the system. Without a theory 

of the system, new data will be produced but significant advance in knowledge will not be 

achieved. 

An essential prerequisite for the universal acceptance of Fe0 as a remediation technology is a 

fundamental understanding of processes occurring in Fe0/H2O systems. The introduction of 

this promising technology was based on a false explanation of good experimental 
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observations. The original error was identified and widely presented in the international 

literature since 2007. The scientific community has not yet dealt with the issue and is 

presently virtually divided into two schools: pro and contra “reductive transformation” or 

“adsorption, co-precipitation, size-exclusion”. However, the latter concept was clearly 

presented as a revision of the former. The long-lasting sterile discussion should stop now and 

efforts should focus on developing the chemistry free Fe
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0 technology. 
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Figure Caption 564 
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Figure 1: Evolution of the residual porosity (Vp) as function of the Fe0 volumetric ratio (τZVI) 

in the reactive zone for various iron corrosion products. It is seen that Fe0 ratios > 

60 % are pure material wastage. The more sustainable systems are those working 

under anoxic conditions (Fe3O4 as major corrosion product). 

 

Figure 2:  Evolution of the porosity loss (PL) and the theoretical extent of iron oxidation as 

function of the % consumed Fe (αZVI) in an anoxic system initially containing 50 

% Fe0 particles (and 50 % quartz). It is assumed that Fe0 is oxidized solely by 

Cr2O7
2- and produce crystalline Cr2O3. PL is due both to pore filling by Cr2O3 and 

Fe3O4. In one case an efficiency of 33 % is assumed (3 Fe3O4). 
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