Lösung der Grenzflächenproblematik
bei der gemeinsamen Inversion
goelektrischer und seismischer Daten von
oberflächennahen, porösen Schichten

Mai 2001
Die vorliegende Arbeit wurde von der Fakultät für Geowissenschaften der Ruhr-Universität Bochum als Dissertation im Fach Geophysik zur Erlangung des Grades eines Doktors der Naturwissenschaften anerkannt.

1. Gutachter
   Prof. Dr. Dr. h.c. Dresen

2. Gutachter
   Prof. Dr. Harjes

3. Gutachter
   Prof. Dr. Schmitt

# Inhaltsverzeichnis

1 Einführung in die Problematik 1
   1.1 Einführung ................................................. 1
   1.2 Zielsetzung .................................................. 2
   1.3 Aufbau der Arbeit ......................................... 4
   1.4 Symbolliste .................................................. 5

2 Das Gesteinsmodell 9
   2.1 Grundlegende Modellvorstellungen ......................... 10
      2.1.1 Diagenese eines klastischen Sedimentes .............. 10
      2.1.2 Struktur und Textur des Gefüges ...................... 12
      2.1.3 Eigenschaften des Porenraumes ...................... 14
   2.2 Elastische Moduln eines porösen Gefüges .................. 16
      2.2.1 Der einzelne Kornkontakt ............................ 16
      2.2.2 Makroskopische Eigenschaften ....................... 17
      2.2.3 Verhalten trockener Gefüge ........................... 18
      2.2.4 Berechnung der Kornkontaktflächen .................. 20
      2.2.5 Der Einfluß der Porenfüllung ......................... 23
   2.3 Fluide im Porenraum ........................................ 26
      2.3.1 Adsorption an der Kornoberfläche .................... 27
      2.3.2 Wirkung der Kapillarkräfte .......................... 27
2.3.3 Berechnung der Fluidsättigung ........................................ 29
2.3.4 Permeabilität eines Sediments ........................................ 30
2.4 Der elektrische Widerstand des Gefüges ............................... 32
2.5 Vergleich mit experimentellen Daten .................................... 35
2.6 Zusammenfassung .......................................................... 40

3 Modellierung ................................................................. 41
   3.1 Die Geometrie des Untergrundes ....................................... 42
   3.2 Dynamik der Fluide im Porenraum ..................................... 43
   3.3 1-D Geoelektrik .......................................................... 44
   3.4 1-D Refraktionsseismik .................................................. 44
   3.5 Die zuverlässige Berechnung der Dispersionskurven von Rayleigh–Wellen .......................... 45

4 Inversion ................................................................. 49
   4.1 Einführung .................................................................... 49
   4.2 Grundlagen iterativer Verfahren ....................................... 51
   4.3 Das Newton–Verfahren .................................................... 52
   4.4 Das Gauß–Newton–Verfahren ........................................... 53
   4.5 Verallgemeinertes Gradientenverfahren ............................... 54
       4.5.1 Schrittweitenbestimmung .......................................... 54
       4.5.2 Konvergenz des Verfahrens ........................................ 55
   4.6 Anwendung der Verfahren ............................................... 56
   4.7 Singulärwertzerlegung .................................................... 58
       4.7.1 Orthogonale Projektionsoperatoren ............................. 59
       4.7.2 Die generelle Inverse ................................................. 59
       4.7.3 Auflösung und Redundanz .......................................... 60
       4.7.4 Inversion in den Unterräumen .................................... 61
   4.8 Joint Inversion .......................................................... 62
INHALTSVERZEICHNIS

4.9 Inversion von Rayleigh-Wellen ........................................ 67

5 Anwendungen ........................................................................ 75
  5.1 Übersicht ........................................................................ 75
  5.2 Modell eines Grundwasserspiegels im Halbraum ................... 76
  5.3 Einzelinversion geoelektrischer Daten .................................. 81
  5.4 Inversion synthetischer Daten .............................................. 84
  5.5 Inversion eines Felddatensatzes .......................................... 89

6 Resumé ............................................................................... 99
  6.1 Zusammenfassung .............................................................. 99
  6.2 Schlußfolgerungen und Ausblick ....................................... 101

Literaturverzeichnis ................................................................ 103

Danksagung ......................................................................... 109
Kapitel 1

Einführung in die Problematik

1.1 Einführung

Ziel der geophysikalischen Erkundung eines Gebietes ist es, ein möglichst umfassendes und detailliertes Bild des Untergrundes zu gewinnen. Dabei kann das Interesse schwerpunktmäßig sowohl auf die Auflösung des geometrischen Aufbaus als auch auf die Bestimmung der physikalischen Gesteinsparameter ausgerichtet sein.


Für die Erkundung oberflächenaher Strukturen haben sich die Refraktionsseismik und die Gleichstromgeoelektrik im Laufe der Jahrzehnte zu Standardverfahren entwickelt. Beide Methoden können unabhängig voneinander eingesetzt werden, um strukturelle Informationen zu erhalten. Allerdings besitzen beide Verfahren ihre individuellen Stärken und Schwächen. So ist die Methode der Refraktionsseismik an die Voraussetzung gebunden, daß die seismischen Geschwindigkeiten mit zunehmender Tiefe größer werden. Ist eine Zone niedriger Geschwindigkeit im Untergürtel vorhanden, so bildet sich an deren Oberkante keine refraktierte Welle aus, so daß dieses Strukturelement mit dieser Methode nicht detektiert werden kann. Im Gegensatz dazu sind geoelektrische Methoden nicht an solche Randbedingungen der Parameterverteilung gebunden. Schichten hohen und niedrigen elektrischen Widerstandes dürfen in beliebiger Reihenfolge auftreten. Wie bei allen anderen Potentialverfahren auch, wird die Zuverlässigkeit der Interpretation der Geoelektrik durch das Äquivalenzprinzip beeinträchtigt. So können zwei unterschiedliche Schichtun-


1.2 Zielsetzung

Diese Arbeit soll der genaueren Untersuchung der oben beschriebenen Fälle gewidmet werden, in denen der einfache Ansatz zur Joint Inversion versagt. Dabei kann man das Problem auf grundsätzlich unterschiedliche Art und Weise betrachten. Eine Möglichkeit besteht darin, den Inversionsprozeß dahingehend zu erweitern, daß der Fall nicht identischer Grenzflächen behandelbar wird. Damit würde man die Vorteile der Joint Inversion für eine oder mehrere Schichtgrenzen einbüßen. Dennoch bliebe die Möglichkeit erhalten, die übrigen Schichtgrenzen durch die gemeinsame Interpretation zuverlässiger zu bestim-
1.2. ZIELSETZUNG


Die andere Möglichkeit besteht darin, zunächst die physikalische Ursache nicht identischer Grenzflächen qualitativ und quantitativ zu erfassen, bevor eine gemeinsame Interpretation durch einen Joint Inversion Algorithmus durchgeführt wird. Aus dieser Perspektive betrachtet ist offensichtlich das Modellierungsproblem der primäre Ansatzpunkt für alle weiteren Betrachtungen.

Das erste Ziel dieser Arbeit ist demnach die Modellierung der einzelnen geophysikalischen Methoden so zu formulieren, daß sie den folgenden Bedingungen genügen:

- Die geophysikalische Grundlage der Modellierung ist eine klare und realistische geologische Modellvorstellung.

- Die Ergebnisse der geophysikalischen Modellierungen sind mit dem bisherigen Stand der Wissenschaft konsistent. Sie sind darüber hinaus in der Lage, ausgehend von einem gemeinsamen geologischen Modell, die Fälle von nicht identischen und/oder zahlenmäßig verschieden Grenzflächen vorherzusagen.

- Die unterschiedlichen geophysikalischen Methoden sind durch eine gemeinsame Geometrie der Geologie und, nach Möglichkeit, durch weitere physikalische Parameter miteinander verknüpft.

Die letzte dieser drei Forderungen bedingt die Erstellung eines geeigneten Bodenmodells, da die bisherige Annahme eines Schichtmodells mit einer homogenen Parameterverteilung innerhalb einer Schicht diese Bedingung nicht erfüllen kann.

Nach Erreichen dieses Zieles können die gewonnenen Erkenntnisse dazu genutzt werden, das Verhalten konventioneller Inversionsmethoden bei Änderung der Parameter zu studieren, die in die neuen Modellierungsalgorithmen einfließen. Dadurch soll ermittelt werden, unter welchen Bedingungen die Effekte auftreten, die eine erfolgreiche Joint Inversion bisher verhinderten. Als ein weiteres wichtiges Ergebnis dieser Arbeit soll damit die Frage geklärt werden, unter welchen Voraussetzungen an die geologische Situation im Meßgebiet eine konventionelle Joint Inversion durchgeführt werden kann und welche Gegebenheiten eine solche generell unmöglich machen. Diese Betrachtungen geben damit Hinweise für die zu verwendenden Meßkonfigurationen und die anschließende Auswertung.

Abschließend wird die Joint Inversion unter Verwendung des entwickelten Bodenmodells durchgeführt. Damit soll gezeigt werden, daß mit Hilfe des neuen Bodenmodells die Inver-

1.3 Aufbau der Arbeit


Im 5. Kapitel werden die in den vorhergehenden Kapiteln dargelegten theoretischen Grundlagen angewandt, um mit Hilfe geeigneter Modellrechnungen, und durch die Bearbeitung eines Felddatensatzes, die im vorigen Abschnitt aufgeworfenen Fragen zu beantworten. Die Ergebnisse werden abschließend in Kapitel 6 im Hinblick auf die Zielsetzung dieser Arbeit und in der Vorausschau auf neu aufgeworfen Fragen diskutiert.
1.4 Symbolliste

In der folgenden Liste der verwendeten Symbole und Abkürzungen werden nur diejenigen Bezeichnungen aufgeführt, die abschnittsübergreifend, d.h. in mehr als einem Abschnitt verwendet werden. Symbole, die nur an einer Stelle verwendet werden, sind dort entsprechend erklärt und bedürfen nicht der Auflistung in dieser Übersicht. Vektoren und deren einzelne Elemente werden in der Form \( \mathbf{x} \) bzw. \( x_i \) notiert. Analog dazu werden Matrizen und deren Elemente in der Form \( \mathbf{X} \) bzw. \( X_{i,j} \) notiert. In der Liste wird dabei sowohl die Schreibweise der Vektoren oder Matrizen als auch die der einzelnen Elemente aufgeführt, sofern diese Schreibweisen im Text auftauchen.

- \( A_c \) : Kontaktfläche
- \( A_k \) : Oberfläche eines Kornes
- \( A_p \) : Oberfläche einer Pore
- \( A_q \) : Querschnittsfläche
- \( c_k \) : Koordinationszahl
- \( C_k \) : maximale mittlere Koordinationszahl
- \( \mathbf{d}, d_i \) : Datenvektor
- \( \mathbf{ID} \) : Raum aller Datenvektoren
- \( e_r \) : Relativer Fehler
- \( e, e_i \) : Werte der EID
- \( \mathcal{F}_{(x)} \) : Modellierungsfunktion
- \( \mathbf{F}^{i'}, \mathbf{F}''_{i,j} \) : Matrix der partiellen Ableitungen (Jacobi-Matrix)
- \( g \) : Gravitationsbeschleunigung 9,81 m/s\(^2\)
- \( G_m \) : Scherrmodul der trockenen Gefügematrix
- \( G_s \) : Scherrmodul des Kornmaterials
- \( \mathbf{H}, H_{i,j} \) : Haskell-Matrix
- \( h, h_i \) : Schichtmächtigkeiten
- \( h_w \) : Teufe der Grundwasserobenfläche
- \( i \) : Imaginäre Einheit
- \( I \) : Einheitsmatrix
- \( \mathcal{J}_{(x)} \) : Besselfunktion erster Ordnung
- \( \mathbf{J}, J_{i,j} \) : Beliebige \( \mathbf{n} \times \mathbf{m} \)-Matrix
- \( K \) : Kompressionsmodul des feuchten Gesteins
- \( K_m \) : Kompressionsmodul der trockenen Gesteinsmatrix
- \( K_p \) : Kompressionsmodul des Porenraums
- \( K_s \) : Kompressionsmodul des Kornmaterials
- \( K_f \) : Kompressionsmodul des Fluids
- \( K_g \) : Kompressionsmodul des Gases
- \( K_{f,\text{eff}} \) : Kompressionsmodul des Fluid–Gas–Gemisches
- \( K_0 \) : Effektiver Kompressionsmodul
KAPITEL 1. EINFÜHRUNG IN DIE PROBLEMATIK

\( k \) : Wellenzahl
\( l \) : Länge
\( l \) : Schrittrichtung
\( \mathcal{L} \) : Zu minimierende Fehlerfunktion
\( \mathcal{L}_e \) : Relativer Fehler in der Geoelektrik
\( \mathcal{L}_r \) : Relativer Fehler in der Oberflächenwellenseismik
\( \mathcal{L}_s \) : Relativer Fehler in der Refraktionsseismik
\( m_k \) : Masse eines Kornes
\( m, m \) : Modellparametervektor
\( \mathbb{M} \) : Raum aller Modellparametervektoren
\( m_a \) : Zementationsfaktor
\( m \) : Dimension des Modellparameterraumes
\( N \) : Anzahl
\( N_m \) : Anzahl der monomolekularen Schichten
\( N \) : Menge der natürlichen Zahlen
\( n_a \) : Sättigungsfaktor
\( n \) : Dimension des Datenraumes
\( \mathcal{P}_{m(x)} \) : Massenwahrscheinlichkeitsdichte
\( \mathcal{P}_{N(x)} \) : Numerische Wahrscheinlichkeitsdichte
\( \mathcal{P}_{\mathcal{X}} \) : Energiedichte
\( p \) : Druck
\( p_k \) : Kapillardruck
\( p_h \) : Hydrostatischer Druck
\( \Psi \) : Projektionsoperator
\( r \) : Radius
\( r_c \) : Kontaktradius eines Hertz-Mindlin-Kontaktes
\( r_b \) : Initialradius eines Hertz-Mindlin-Kontaktes
\( R_c \) : Kontaktradius zwischen zwei Körnern
\( R_b \) : Initialradius zwischen zwei Körnern
\( r_k \) : Kornradius
\( r_p \) : Porenradius
\( r_a \) : Kornradius eines angelagertes Kornes
\( \mathbb{R} \) : Menge der reellen Zahlen
\( R \) : Elektrischer Widerstand
\( r \) : Dimension des relevanten Daten- / Modellraumes
\( S_w \) : Sättigung mit einem Fluid
\( S \) : Irreduzible Sättigung
\( s_k \) : Breite der Kornverteilung
\( S \) : Diagonalmatrix der SVD, welche die Singulärwerte enthält
\( s \) : Skalenfaktor
1.4. SYMBOLOLISTE

\( t \) : Zeit
\( U \) : Den Datenraum aufspannende Teilmatrix der SVD
\( v_{ph} \) : Phasengeschwindigkeit
\( v_{gr} \) : Gruppengeschwindigkeit
\( v_P \) : Kompressionswellengeschwindigkeit
\( v_S \) : Scherwellengeschwindigkeit
\( V_P \) : Volumen einer Pore
\( V \) : Den Modellraum aufspannende Teilmatrix der SVD
\( x \) : Auslagenposition bei Messungen
\( \hat{\mathbf{x}}_i \) : Einheitsvektor in i-ter Richtung
\( z[t_k] \) : Zeitreihe
\( z \) : Tiefe mit positiver Richtung nach oben
\( \alpha_p \) : Verhältnis von \( A_p \) zu \( 4\pi r_p^2 \) für eine Pore
\( \alpha \) : Schrittweite
\( \epsilon \) : Radius einer Umgebung
\( \eta \) : Viskosität des Porenfluids
\( \Theta_n(x) \) : Stefanescu-Kernfunktion
\( \kappa_n \) : Normalsteifigkeit
\( \kappa_t \) : Tangentialsteifigkeit
\( \kappa_h \) : hydraulische Leitfähigkeit
\( \kappa_p \) : Permeabilität
\( \lambda \) : Eigenwert
\( \mu_s \) : Poissonzahl des Kornmaterials
\( \mu_n \) : Poissonzahl der Gefügematrix
\( \mu \) : Poissonzahl des fluidgefüllten Gesteins
\( \nu \) : Frequenz
\( \theta_s \) : Dichte des Kornmaterials
\( \theta_f \) : Dichte des Fluids
\( \theta_g \) : Dichte des Gases
\( \theta_c \) : Dichte
\( \rho_s, \rho_i \) : Spezifische Widerstände eines Schichtpaketes
\( \rho_{\text{app}} \) : scheinbarer spezifischer Widerstand
\( \rho_f \) : spezifischer Widerstand des Fluids
\( \sigma_{w}^* \) : Oberflächenspannung eines 3-Phasen-Kontaktes
\( \phi \) : Porosität
\( \phi_c \) : kritische Porosität

CWT : Continuous Wavelet Transformation
EID : Effective Independence Distribution
SVD : Singular Value Decomposition (Singulärwertzerlegung)
KAPITEL 1. EINFÜHRUNG IN DIE PROBLEMATIK
Kapitel 2

Das Gesteinsmodell

Zentraler Punkt in der Methodik der Physik ist es, eine Modellvorstellung vom Objekt des Interesses zu schaffen. Im Rahmen der Gültigkeit dieses Modells ist man dann in der Lage, allgemeingültige Aussagen zu machen, die bestehende Beobachtungen erklären und zukünftige Beobachtungen vorhersagen können. Der Umfang und die Genauigkeit, mit der man dieses tun kann, bestimmt die Güte eines Modells.

Ziel dieses Kapitels ist es, für unterschiedliche räumliche Größenordnungen Modelle zu entwickeln, um das geophysikalisch messbare Verhalten einer Probe anhand petrophysikalischer Parameter vorherzusagen. Dabei wird das Verhalten des Gefüges im mikroskopischen Maßstab, d.h. in der Größenordnung einzelner Körner und Poren, untersucht, um daraus die messbaren physikalischen Parameter einer Gesteinsprobe anhand makroskopischer geologischer Gefügeparameter abzuleiten.

Dazu wird im Abschnitt 2.1 die behandelte Petrologie auf ein mathematisch fassbares Problem eingeschränkt. Die feste Gesteinsmatrix und der Porenraum werden getrennt betrachtet und jeweils in geeigneter Weise parametrisiert. Darauf aufbauend werden ausgehend von mikroskopischen Betrachtungen in Abschnitt 2.2 die seismischen Geschwindigkeiten und in Abschnitt 2.4 die elektrische Leitfähigkeit eines Gefüges hergeleitet. Die Abhängigkeit dieser Größen von den Gefügeparametern soll im Hinblick auf die gemeinsame Inversion seismischer und geoelektrischer Daten dahingehend untersucht werden, welche Gefügeparameter nur die Seismik oder die Geoelektrik und vor allem, welche Parameter beide Methoden beeinflussen. Da die elastischen und elektrischen Größen unterschiedlich von Fluiden im Porenraum abhängen, wird Abschnitt 2.3 der geometrischen Verteilung der Fluide und deren Einfluß auf die physikalischen Parameter gewidmet. In Abschnitt 2.5 werden die Modellvorhersagen anhand experimenteller Daten überprüft und abschließend werden die Ergebnisse dieses Kapitels in Abschnitt 2.6 zusammengefaßt.
2.1 Grundlegende Modellvorstellungen

2.1.1 Diagenese eines klastischen Sedimentes


Der zweite Schritt in diesem Entwicklungsprozeß ist die Untersuchung von Proben, die repräsentativ für die zu beschreibende Gefügeart sind. Anhand dieser Beobachtungen hat man eine Vorstellung von der Genese klastischer Sedimente gewonnen.

![Computer-generierte Schnitte durch eine Probe](image)

Abbildung 2.1: Computer-generierte Schnitte durch eine Probe. Die Porositäten der einzelnen Schnitte sind a) $\phi = 0.36$, b) $\phi = 0.20$, c) $\phi = 0.10$ und d) $\phi = 0.03$. Nach Roberts et al. (1985)

Die Modellvorstellung von der Konsolidierung illustriert die Abbildungsfolge 2.1 a–d. Die Entstehung eines Sedimentes erfolgt durch lokale Akkumulation einzelner fester Körner aus einer Suspension (Abbildung 2.1a). Der Porenraum, in der Abbildung schwarz dargestellt, ist zunächst mit dem Ablagerungsmedium, d.h. Luft oder Wasser, gefüllt. Der Übergang von einer Suspension zu einer tragfähigen Matrix wird durch die kritische Poro-
2.1. GRUNDLEGENDE MODELIVORSTELLUNGEN

sitäts $\phi_c$ gekennzeichnet. In den Experimenten von Farris (1968) und Marion & Nur (1989) an körnigen Materialien wurden kritische Porositäten von $\phi_c = 0.39$–$0.40$ bestimmt. Obwohl die dichteste Packung identischer Kugeln eine Porosität von $\phi = 0.26$ besitzt, läßt sich die Porosität homodisperser Sande durch Einrütteln kaum auf Werte unter 0,35 reduzieren, da Reibungskräfte an den Berührungsstellen der Körner die Umlagerung verhindern. In diesem frühen Stadium sind Sedimente verhältnismäßig lockere Gefüge mit geringer Dichte und Festigkeit.


Im fortgeschrittenen Stadium bestimmen chemische Prozesse die Diagenese. Beispielsweise entsteht durch Verwitterung ein Zement aus Tonmineralen, die Produkte der Zersetzung von Feldspäten sind. Ferner bilden aus dem Porenwasser ausfallende Minerale einen festen Zement und führen zu einer weiteren Verringerung des Porenraumes. Dies können z.B. schnell wachsende Calcit- oder Aragonitkristalle oder authigener Quarz, d.h. Quarz-
neubildungen aus durch Drucklösung entstandener Kieselsäure, sein. Der Zeitpunkt des Einsetzens und die Art dieser Prozesse bestimmen die Porosität bis zu der die Diagenese durch ein physikalisch-mechanisches Modell beschrieben werden kann. Da ein solches Modell Grundlage der folgenden Betrachtungen darstellt, ist somit gleichzeitig der Gültigkeitsbereich des Modells klar definiert.

2.1.2 Struktur und Textur des Gefüges


Der kleinste Bestandteil des Gefüges, ein einzelnes Korn, wird geometrisch durch seinen Radius \( r_k \) und petrophysikalisch durch die Dichte des Kornmaterials \( \varrho_s \), dessen Schermodul \( G_s \) und Poissonzahl \( \mu_s \) beschrieben. Für die Gesamtheit des Gefüges sind die Anteile von festem Gerüst und Porenraum wohl die wichtigsten Kennzahlen. Quantitativ wird diese Relation durch die Porosität \( \phi \) erfasst, welche das Verhältnis des Porenraumvolumens zum Gesamtvolumen angibt. Der Volumenanteil des festen Korngerüstes ist dann \( 1 - \phi \). Neben der Porosität ist der Anteil der Körner einer bestimmten Größe am Gefüge, also die Kornverteilungskurve, eine wichtige charakteristische Größe eines Sediments. Die Kornverteilungskurve wird experimentell im allgemeinen durch Sieben und Schlämmen ermittelt, wobei die Verteilung in Intervalle von Kornendurchmessern, den sogenannten Fraktionen, diskretisiert wird. Die Fraktionen werden gewogen und in der Regel als kumulative Summe gegen den Kornendurchmesser aufgetragen. Die resultierende Verteilungskurve gibt den Massenanteil der Körner mit einem Durchmesser kleiner als \( 2r_k \) am Gefüge an. Für die in dieser Arbeit durchgeführten numerischen Modellierungen habe ich die Kornmassenverteilung durch die stetige Funktion

\[
m_k(r_k,s_k) = \frac{315}{256} \left[ \frac{1}{9} \xi^9 - \frac{4}{7} \xi^7 + \frac{6}{5} \xi^5 - \frac{4}{3} \xi^3 + \xi \right] + \frac{1}{2} \tag{2.1}
\]

mit \( \xi = \frac{1}{s_k} \log \left( \frac{r_k}{r_{k,50}} \right) \)

und \( \xi \in [-1, 1] \) und \( r_k \in [r_{k,50}10^{-s_k}, r_{k,50}10^{s_k}] \)
in Abhängigkeit vom Kornradius \( r_k \), dem mittleren Kornradius \( r_{k,50} \) und der Verteilungsbreite \( s_k \) definiert.

Durch differenzieren nach \( r_k \) erhält man die Massenverteilungsdichte

\[
P_m(r_k) = \frac{\partial m_k}{\partial r_k} = \frac{315}{256 s_k r_k} \left[ \xi^8 - 4 \xi^6 + 6 \xi^4 - 6 \xi^2 + 1 \right]. \tag{2.2}
\]
2.1. GRUNDLEGENDE MODELLIVORSTELLUNGEN

Abbildung 2.3: Angenommene Kornmassenverteilung. Links: Die Verteilungskurve nach Gleichung (2.1). Rechts: Die Massenverteilungsdichte aus Gleichung (2.2). Beide wurden für \( r_{k,50} = 10^{-2} \) m und \( s_k = 1 \) berechnet.

Durch die in Gleichung (2.1) gewählte Definition der Kornmassenverteilung ist die Massenverteilungsdichte auf 1 normiert.

Damit ist die Struktur des Gefüges durch zwei Parameter charakterisiert, den Kornradius \( r_{k,50} \), der durch die Eigenschaft \( m_k(r_{k,50}) = 0,50 \) definiert ist und die Verteilungsbreite \( s_k \). Dabei legt \( s_k \) die Radien \( r_{k,50} \cdot 10^{-2} \) fest, für die die Massendichte der Verteilung \( P_m(r_k) \) zu Null wird. Die Massen- und Massendichte der Verteilung sind in Abbildung 2.3 dargestellt. Die etwas willkürliche Wahl des Polynoms 9. Grades für die Massenverteilung in Gleichung (2.1) besitzt den Vorteil der Finitheit und damit der effektiveren Implementierung. Da die Betrachtungen in dieser Arbeit nicht an eine spezielle Verteilung gebunden sind, kann Gleichung (2.1) durch eine adäquate Verteilung ersetzt werden.

Die Umrechnung der Massenverteilungsdichte zur normierten Verteilungsdichte \( P_N(r_k) \) der Zahl der Kugeln des Radius \( r_k \) erfolgt über das Kugelvolumen und Dichte eines Kornes durch

\[
P_N(r_k) = \frac{P_m(r_k)r_k^{-3}}{\int P_m(r_k)r_k^{-3} \, dr_k}.
\] (2.3)

Neben der anteiligen Masse oder Anzahl der Körner eines bestimmten Radius am Gefüge ist deren Anordnung im Raum kennzeichnend. Deshalb wird zur Charakterisierung von Kugelpackungen die Koordinationszahl \( c_k \) verwendet. Sie gibt die Anzahl der Nachbarn einer Kugel an und ist in regulären Packungen über das gesamte Volumen konstant. So ist \( c_k = 12 \) für die kubisch dichteste Packung gleich großer Kugeln. Die Koordinationszahl \( c_k \) läßt sich jedoch auch mit Hilfe des Ansatzes berechnen, daß nur so viele Körner mit Radius \( r_a \) ein zentrales Korn mit \( r_k \) umgeben können, bis diese den vollen Raumwinkel
4π abdecken. Daraus folgt:

\begin{equation}
    c_k = \frac{2\pi}{\sin^{-1}\left(\frac{r_a}{r_a + r_k}\right)}.
\end{equation}

In Abbildung 2.4 ist \( c_k \) in Abhängigkeit vom Kornradius \( r_a \) der umgebenden Körner für ein zentrales Korn mit dem Radius \( r_k = 1\, \text{mm} \) aufgetragen.

Abbildung 2.4: \textbf{Links:} Die Koordinationszahl \( c_k \) in Abhängigkeit vom Radius \( r_a \) der umgebenden Kugel. \textbf{Rechts:} Die maximale mittlere Koordinationszahl \( C_k \) in Abhängigkeit von der Verteilungsbreite \( s_k \).

Für zufällige Anordnungen ist \( c_k \) kleiner als die Koordinationszahl der dichtesten Packung, aber über ein makroskopisches Probevolumen konstant. Die mittlere Koordinationszahl ist dann sowohl abhängig von der Korngrößenverteilung als auch von der jeweiligen Schüttung. Einfach zu berechnen ist die maximale mittlere Koordinationszahl \( C_k \) als der Mittelwert aller vorkommenden \( c_k \), d.h.

\begin{equation}
    C_k = \int_0^\infty \int_0^\infty P(r_h) P(r_a) c_k(r_h, r_a) \, dr_a \, dr_k.
\end{equation}

Wie Abbildung 2.4 deutlich macht, erhöht sich die die maximale mittlere Koordinationszahl \( C_k \), je breiter die Korngrößenverteilung bzw. je schlechter die Sortierung ist.

\subsection*{2.1.3 Eigenschaften des Porenraumes}

Analog zur Korngrößenverteilung existiert eine Verteilung der Porengrößen. Während die Geometrie eines einzelnen Körners recht einfach zu beschreiben ist, besitzt eine einzelne Pore eine komplizierte, unregelmäßige Gestalt. Aus diesem Grund ist es zweckmäßig den Porenradius über das Porenvolumen zu definieren. In den folgenden Betrachtungen ist...
2.1. GRUNDLEGENDE MODELLVORSTELLUNGEN

dahe unter dem Porenradius $r_p$ immer der Radius der volumenäquivalenten Kugel mit $r_p = (3V_p / 4\pi)^{1/3}$ zu verstehen.

Das Gesamtvolumen des Porenraumes steht zum Gesamtvolumen der Kornmatrix bei gegebener Porosität in einem festen Verhältnis, so daß

$$\frac{1}{\phi} \int_0^\infty P_N(r_p) r_p^3 \, dr_p = \frac{1}{1-\phi} \int_0^\infty P_N(r_k) r_k^3 \, dr_k$$

(2.6)
gilt. Ferner kann man eine starke Korrelation zwischen den Verteilungen von Korn- und Porenradien unterstellen (siehe z.B. Busch & Luckner (1973)). Mit der Annahme, daß sich beide Verteilungen nur durch einen konstanten Faktor im Argument unterscheiden, besteht der einfache Zusammenhang

$$r_p = \left( \frac{\phi}{1-\phi} \right)^{1/3} \frac{N_k}{N_p} r_k,$$

(2.7)
wobei $N_k$ und $N_p$ die Anzahl der Körner bzw. der Porenräume sind.

Die der Gleichung (2.7) zugrunde liegende Annahme ist nur gültig, solange die Kornverteilungsbreite $s_k$ klein genug ist, so daß $r_{p\text{,max}} \leq r_{k\text{,min}}$. Ist diese Bedingung erfüllt, so ist ein beliebiges Korn stets größer als ein bestehender Porenraum. So wird ein halboffener Porenraum während des Sedimentationsprozesses durch ein neu sedimentiertes Korn unter Bildung einer Pore geschlossen, woraus $N_k/N_p = 1$ folgt. Auch eine nachträgliche Unterteilung eines Porenraumes in mehrere Poren durch Suffixion kleinerer Körner in eine Pore ist damit ausgeschlossen. Die maximale Kornverteilungsbreite für diesen Fall kann für die durch Gleichung (2.1) definierte Kornverteilung unter Verwendung von Gleichung (2.7) leicht zu

$$s_k \leq \frac{1}{6} \log_{10} \left( \frac{1-\phi}{\phi} \right)$$

(2.8)
bestimmt werden. Für Porositäten von 0,05-0,39 liegt $s_k$ im Bereich von 0,21-0,03. Das Kriterium $r_{p\text{,max}} \leq r_{k\text{,min}}$ wird auch für größere Verteilungsbreiten $s_k$ als durch Gleichung (2.8) hinreichend genau erfüllt sein, da die Anteile der Korn- bzw. Porenradien in den Randbereichen der Verteilung recht gering sind, und der einem Korn zur Verfügung stehende Radius kleiner ist als der durch das äquivalente Volumen definierte Porenradius.

Bei der Anwendung von Gleichung (2.7) muß man berücksichtigen, daß der Porenradius \( r_p \) durch die mit der Pore volumenäquivalente Kugel definiert wurde. In einem realen Gefüge ist ein Porenraum nicht kugelförmig, sondern besitzt eine geometrisch recht komplizierte Gestalt, näherungsweise etwa die des in der nebenstehenden Abbildung gezeigten Körpers. Daher wird die tatsächliche Oberfläche einer Pore immer größer sein als die Oberfläche der volumenäquivalenten Kugel. Bei Berechnungen, in die die Oberflächen der Poren involviert sind, muß dieser Tatsache Rechnung getragen werden.

Um die Diskrepanz zwischen den beiden Oberflächen zu quantifizieren, definiere ich den Geometriefaktor \( \alpha_p \), der das Verhältnis der Porenoberfläche zur Oberfläche der volumenäquivalenten Kugel beschreibt. Offensichtlich ist \( \alpha_p > 1 \), z. B. gilt \( \alpha_p = 1,24 \) für eine würzelförmige Porengestalt. Abbildung 2.5 zeigt beispielhaft einen Körper, der in etwa meiner Vorstellung von der Geometrie einer Pore entspricht. Durch numerische Integration über die Oberfläche dieses Körpers wurde für diese Geometrie ein \( \alpha_p \) von 1,35 bestimmt. Für das zugrundeliegende Modell kann der exakte Wert von \( \alpha_p \) mit Hilfe der kritischen Porosität \( \phi_c \) berechnet werden. Da die Bestimmung von \( \alpha_p \) gleichsam als Nebenprodukt der Berechnungen in Abschnitt 2.2.4 gelingt, soll an dieser Stelle auf diesen Abschnitt verwiesen werden.

### 2.2 Elastische Moduln eines porösen Gefüges

#### 2.2.1 Der einzelne Kornkontakt

Wie in Abbildung 2.2 skizziert, umfaßt eine intergranulare Kontaktregion des Radius \( R_c \) eine Anzahl „punktförmiger“ elastischer Kontakte und eine geringe Menge elastischen Zementes. Jeder einzelne dieser „punktförmigen Kontakte“ wird durch seine Normal- und Tangentialsteifigkeiten repräsentiert. Für den einfachen Fall zweier sich berührender elastischer Kugeln mit den Radien \( r_k, r_a \), wie er in Abbildung 2.6 dargestellt ist, ergeben sich einfache Ausdrücke für die Steifigkeiten.
Wie Mindlin (1949) gezeigt hat, hängen die Steifigkeiten dieses sogenannten Hertz-Mindlin-Kontaktes vom Schermodul $G_s$ und der Poissonzahl $\mu_s$ der Kugeln, sowie vom Radius des Hertz-Mindlin Kontaktes $r_c$ bzw. dem initialen Bindungsradius $r_b$ ab. Die Normal- und Tangentialsteifigkeiten eines Kontaktes zweier Kugeln sind dann

$$\kappa_n = \frac{4G_s r_c}{1 - \mu_s}$$

(2.9)

und

$$\kappa_t = \frac{8G_s r_b}{2 - \mu_s}.$$ (2.10)

Abbildung 2.6: Hertz-Mindlin-Kontakt.

Dabei wird angenommen, daß die Kugeln anfänglich auf einer Kreisfläche mit Radius $r_b$ miteinander verbunden sind. Dies mag zum Beispiel auf eine Zementation, Sinterung oder ähnliches zurückzuführen sein. Bei Einwirkung einer äußeren Kraft, z.B. durch Erhöhung des hydrostatischen Drucks auf die Kugeln, vergrößert sich der Hertz-Mindlin-Kontakt auf den Radius $r_c \geq r_b$. Im Falle einer unconsolidierten Anordnung von Kugeln existiert keine anfängliche Bindung, d.h. $r_b = 0$. In diesem Fall besitzt der Kontakt keine Tangentialsteifigkeit und das Verhalten des Kontaktes wird bei gegebenem Material nur durch den Radius $r_c$ beeinflußt. Dieser ist nach Tutuncu & Sharma (1992) unmittelbar von der externen Auflast $F$ abhängig und kann mit der Beziehung

$$r_c^3 = \frac{3(1 - \mu_s)}{4G_s} \frac{r_k r_a}{r_k + r_a} F$$

(2.11)

berechnet werden. Dabei sind $r_k$ und $r_a$ die Radien der sich berührenden Kugeln. Wirkt nur ein Druck $p_h$ auf die Kugeln, so ist die Kraft $F = 4\pi r_k^2 p_h$. Sei $r_k$ der Radius eines Kornes und $r_a$ der Radius einer Rauhigkeit, d.h. das Größenverhältnis der Radien sei $r_k \gg r_a$, so ist der Radius

$$r_c = \left(\frac{3\pi (1 - \mu_s) p_h r_a}{G_s \frac{r_a}{r_k}}\right)^\frac{1}{3} r_k.$$ (2.12)

### 2.2.2 Makroskopische Eigenschaften

Kontaktsteifigkeiten wie folgt berechnen:

\[
(1 - \phi) g_s v_s^2 = G_m = \frac{(1 - \phi) C_k}{20 \pi r_k} \left( \kappa_n + \frac{3}{2} \kappa_t \right)
\]
\[
(1 - \phi) g_s (v_p^2 - \frac{4}{3} v_s^2) = K_m = \frac{(1 - \phi) C_k}{20 \pi r_k} \frac{5}{3} \kappa_n.
\]

(2.13)  \hspace{5cm} (2.14)


Diese Kontaktregion ist dann durch die Kontaktlichtdicthe \(n_c\) charakterisiert, die die Anzahl der Hertz–Mindlin–Kontakte pro Einheitsfläche angibt. Daher erweiterte ich \(C_k\) aus Gleichung (2.14) zu \(C_k n_c A_c(\phi)\). Dabei gehe ich davon aus, daß die Fläche \(A_c(\phi)\) der Kontaktregionen anhand der Porosität \(\phi\) ableitbar ist. In der bisherigen Literatur wird \(A_c(\phi)\) als näherungsweise linear angenommen (Nolen–Hoeksema (1993), Murphy et al. (1993)), obwohl ein nichtlinearer Verhalten in experimentellen Daten (Murphy et al. (1993)) ersichtlich ist. In Abschnitt 2.2.4 werde ich daher die funktionale Abhängigkeit der Fläche \(A_c\) von \(\phi\) für eine Körnerverteilung herleiten. Mit Hilfe dieser Erweiterung lassen sich die elastischen Moduln aus den Gleichungen (2.13–2.14) gemeinsam mit den Gleichungen (2.9–2.12) wie folgt schreiben:

\[
G_m = \sqrt{\frac{3}{250 \pi^2 r_k}} \left( \frac{r_a}{G_s} \right)^\frac{1}{3} \left( \frac{1 - \phi}{(1 - \mu_s)^\frac{1}{3}} + \frac{3(1 - \mu_s)^\frac{1}{3} - \frac{3}{5} r_b}{(2 - \mu_s) \frac{1}{3}} \right) C_k n_c A_c(\phi) (1 - \phi)
\]
\[
K_m = \sqrt{\frac{3}{5^4 \pi^2 r_k}} \left( \frac{r_a}{G_s} \right)^{\frac{1}{3}} (1 - \mu_s)^{-\frac{2}{3}} C_k n_c A_c(\phi) (1 - \phi)
\]

(2.15)  \hspace{5cm} (2.16)

D.h. die zwei elastischen Moduln der Gefügeasymetrie sind abhängig von den mikroskopischen Parametern \(G_s, \mu_s, r_b, C_k, n_c\) und dem Verhältnis \(\frac{r_a}{G_s}\), das als Maß für die Oberflächenrauhigkeit der Körner angesehen werden kann. Ferner besteht eine Abhängigkeit von den makroskopischen Parametern \(\phi, p_h\) und den aus ihnen abgeleiteten Größen \(A_c(\phi)\) und \(r_c(\rho_s)\). Dabei wird die Kontaktregionfläche \(A_c\) einen dominierenden Einfluß auf die elastischen Moduln der Gefügemechanik haben.

### 2.2.3 Verhalten trockener Gefüge

Nachdem im vorhergehenden Abschnitt die elastischen Moduln für die Kornmatrix aus den mikroskopischen Gefügeparametern hergeleitet wurden, sollen im folgenden die makroskopischen Eigenschaften näher untersucht werden. Dazu zählen insbesondere die un-
2.2. ELASTISCHE MODULN EINES PORÖSEN GEFÜGES

terschiedliche Sensitivität der Moduln auf einzelne Parameter, sowie die Möglichkeit, die Berechnung der Moduln zu vereinfachen.

Zahlreiche Parameter in Gleichung (2.16) entziehen sich unserer Kenntnis. Die elastischen Eigenschaften der einzelnen Körner und das Druckregime können aber als zeitlich konstant angesehen werden. Aus diesem Grund können diese Parameter zu einer für das Gefüge und dessen Lagerungsort charakteristischen Konstanten $K_0$ zusammengefasst werden. Dadurch läßt sich der Kompressionsmodul vereinfacht durch

$$K_m = K_0 \left( 1 - \phi \right) \hat{A}_c(\phi)$$

als Funktion der Porosität schreiben. Für die neu eingeführte Funktion der relativen Kontaktregionfläche $\hat{A}_c(\phi)$ gilt: $\hat{A}_c(\phi) \sim C_k A_c$. Sie sei auf den Funktionswert für $\phi = 0$ normiert, so daß sie die Aufgabe einer Skalierungsfunktion mit

$$\lim_{\phi \to 0} K_m = K_0 \quad \text{und} \quad \lim_{\phi \to \phi_c} K_m = 0$$

erfüllt.


Bildet man das Verhältnis der Geschwindigkeitsquadrat, so ergibt sich

$$\frac{v_P^2}{v_S^2} = \frac{K_m}{G_m} + \frac{4}{3} = \frac{3 \kappa_n + 2 \kappa_t}{\kappa_n + \frac{2}{3} \kappa_t} = \frac{3 \left( 2 - \mu_s \right) + 4 \frac{\kappa}{r_b} (1 - \mu_s)}{(2 - \mu_s) + 3 \frac{\kappa}{r_0} (1 - \mu_s)} = \frac{1 - \mu_m}{0,5 - \mu_m}.$$  \hspace{1cm} (2.19)

Anhand dieser Gleichung erkennt man, daß die Poissonzahl $\mu_m$ der Gefügematrix unmittelbar nur von der Poissonzahl $\mu_s$ des Körnmaterials und vom Verhältnis des initialen Bindungsradius $r_b$ zum Radius $r_0$ der Hertz–Mindlin–Kontakte abhängig ist. Daher ist es möglich, den Schermodul der Gefügematrix

$$G_m = \frac{3 \left( 1 - 2 \mu_m \right)}{2 \left( 1 + \mu_m \right)} \cdot K_m$$  \hspace{1cm} (2.20)

mit Hilfe der Poissonzahl $\mu_m$ direkt aus dem Kompressionsmodul zu berechnen, so daß die Abhängigkeit von den strukturellen Parametern erhalten bleibt.

Wie aus Gleichung (2.12) hervorgeht, besteht weiterhin eine mittelbare Abhängigkeit des Radius $r_c$ von Schermodul $G_s$ des Körnmaterials und dem hydrostatischen Druck $p_h$. Für einen Hertz–Mindlin–Kontakt ohne anfängliche Bindung durch einen Zement oder ähnliches ($r_b = 0$) ist das Verhältnis $v_P/v_S = \sqrt{3}$ und somit die Poissonzahl $\mu_m = 0,25$. Dies
gilt völlig unabhängig von allen weiteren Parametern, insbesondere der Poissonzahl des Kornmaterials. Da weiterhin $r_b \leq r_c$ gilt, kann die Poissonzahl der trockenen Gesteinsmatrix nur in einem Bereich $0 \leq \mu_m \leq 0.25$ liegen. Für ein Gefüge, welches zusätzlich eine Bindung durch einen Zement zwischen den Kornkontakten besitzt, ist die Poissonzahl von dem Verhältnis $r_b/r_c$ abhängig. Mit Erhöhung des Druckes verringert sich dieses Verhältnis, so daß die Poissonzahl gegen 0,25 strebt. Die Abbildung 2.7 verdeutlicht den Zusammenhang zwischen der resultierenden Poissonzahl des Kornrasters und den beiden mikroskopischen Parametern $\mu_s$ und $r_b/r_c$.

![Abbildung 2.7: Zusammenhänge zwischen der Poissonzahl der Kornmatrix $\mu_m$ in Abhängigkeit von der Poissonzahl der Körner $\mu_s$ und dem Anteil $r_b/r_c$ des Zementes am Kontaktradius.](image)

### 2.2.4 Berechnung der Kornkontaktflächen


Für eine gegebene Kornradienverteilung $\mathcal{P}(r_k)$ und unter der Verwendung des in Abschnitt
2.2. ELASTISCHE MODULN EINES PORÖSEN GEFÜGES

2.1.3 definierten Geometriefaktors \( \alpha_p \) ist die Gesamtkontaktfläche

\[
A_s = A_k - A_p = \int_0^\infty 4\pi r_k^2 \mathcal{P}(r_k) \, dr_k - \int_0^\infty 4\pi \alpha_p r_p^2 \mathcal{P}(r_p) \, dr_p
\]

\[
= 4\pi \left( 1 - \alpha_p \left( \frac{\phi}{1 - \phi} \right)^{\frac{2}{3}} \right) \left( r_k^2 \right).
\]  

(2.21)

Nimmt \( \phi \) den Wert der kritischen Porosität \( \phi_c \) an, so bilden die einzelnen Körner keine feste Gesteinsmatrix mehr und das Gefüge geht in eine Suspension über. In diesem Fall ist \( A_s = 0 \), woraus

\[
\alpha_p = \left( \frac{1 - \phi_c}{\phi_c} \right)^{\frac{2}{3}}
\]  

(2.22)

resultiert. Wie in Abschnitt 2.1.1 erläutert wurde, beträgt die kritischen Porosität \( \phi_c \approx 0,39 \) für das hier betrachtete Gefügemodell, so daß \( \alpha_p = 1,34 \).

Die in Gleichung (2.21) berechnete Fläche \( A_s \) besitzt eine sphärische Form. Daher ist diese Gleichung nur für den Übergang aus der Suspension zum Gerüst exakt gültig, also für \( \phi = \phi_c \) und \( A_s = 0 \). Mit abnehmender Porosität infolge der Kompaktion werden zwischen den einzelnen Körnern Teile der sphärischen Oberflächen zu ebenen Kontaktregionen deformiert, siehe auch Abbildung 2.1. Dabei reduziert sich eine einzelne sphärische Fläche \( A_s \) zur eibenen Kontaktregionfläche

\[
A_c = A_s - A_s^2 A_k^{-1}.
\]  

(2.23)

In einer Packung sei jedes Korn mit \( C_k \) anderen Körnern umgeben, d.h. die Fläche \( A_s \) wird auf diese Anzahl von Kontaktregionen verteilt. Somit ist in Gleichung (2.23) \( A_s \) durch \( A_s/C_k \) zu ersetzen. Abhängig von der Kornradienverteilung wird die Koordinationszahl \( C_k \) mit Gleichung (2.5) berechnet und es ergibt sich für den Erwartungswert der relativen Kontaktregionfläche:

\[
\hat{A}_c(\phi) \sim \langle C_k A_c \rangle = \left\langle A_s \left( 1 - A_s C_k^{-1} A_k^{-1} \right) \right\rangle.
\]  

(2.24)

Der Erwartungswert für die kritische Porosität ist gleich 0. Mit einer Normierung von Gleichung (2.24) auf \( \phi = 0 \) erhalte ich die relative Kontaktregionfläche:

\[
\hat{A}_c(\phi) = \left[ 1 - \alpha_p \left( \frac{\phi}{1 - \phi} \right)^{\frac{2}{3}} \right] \left[ 1 + \alpha_p \left( \frac{\phi}{1 - \phi} \right)^{\frac{2}{3}} \right] \frac{\int_0^\infty \int_0^\infty r_k^2 \sin^{-1}\left( \frac{r_k r_a}{r_k + r_a} \right) \mathcal{P}_N(r_a) \mathcal{P}_N(r_k) \, dr_a \, dr_k}{\int_0^\infty \int_0^\infty \left\{ 2\pi - \sin^{-1}\left( \frac{r_k r_a}{r_k + r_a} \right) \right\} \mathcal{P}_N(r_a) \mathcal{P}_N(r_k) \, dr_a \, dr_k}.
\]  

(2.25)
Die relative Kontaktregionfläche \( \hat{A}_c \in [0,1] \) beschreibt die sukzessive Lockerung des Gefüges beim Übergang vom soliden Körper hin zur Auflösung des Korngerüstes in eine Suspension. Gleichung (2.25) impliziert die Annahme, daß sich die Porengestalt mit abnehmender Porosität nicht ändert, d.h. es wird \( \alpha_p = \text{const.} \) gefordert. Wie aus dem einleitenden Abschnitt 2.1 dieses Kapitels hervorgeht, sind die hier verwendeten Modellvorstellungen nicht für beliebig kleine Werte von \( \phi \) gültig. Neben den dort beschriebenen Gründen schränkt eine geometrische Verformung der Poren durch die diagenetischen Prozesse den Gültigkeitsbereich der Betrachtungen ein. Roberts et al. (1985) geben für ihre Modellierungen von Kugelpackungen eine untere Porosität von 0,04 an, ab der sich das geometrischen Verhalten der Poren bei weiterer Kompaktion wesentlich ändert.

Im Gültigkeitsbereich von Gleichung (2.25) läßt sich der elastische Kompressionsmodul der Gefügematrix durch Gleichung (2.17) beschreiben. Ferner wird aus Gleichung (2.25) ersichtlich, daß die relative Kontaktregionfläche \( \hat{A}_c \) und damit die elastischen Moduln nichtlinear von der Porosität \( \phi \) und der Kornradienverteilung \( P(r_k) \) abhängig sind.

Abbildung 2.8: Die Änderung der Kontaktfläche in Abhängigkeit von der Porosität \( \phi \) und der Verteilungsbreite \( s_k \) relativ zur Kontaktfläche für Kornradienverteilung \( s_k = 0 \).

Der Einfluß der Verteilungsbreite der Kornradien \( s_k \) auf die relative Kontaktregionfläche soll anhand der Abbildung 2.8 aufgezeigt werden. Dort wurde \( \hat{A}_c(\phi, s_k) \) für verschiedene Parameterpaare berechnet und auf die zugehörigen Funktionswerte von \( \hat{A}_c(\phi, 0) \) normiert. Somit ist der alleinige Einfluß der Verteilungsbreite sichtbar.

Wie aus der Abbildung 2.8 ersichtlich wird, geht eine systematische Verringerung von \( \hat{A}_c \) und damit der elastischen Moduln mit einer Verbreiterung der Kornverteilung einher. Dieser Effekt ist umso größer, je höher die Porosität des Gefüges ist. Insgesamt ist der Einfluß aber gering und liegt um 7 Prozent für ein sehr poröses, schlecht sortiertes Sediment.
2.2.5 Der Einfluß der Porenfüllung

In Abschnitt 2.2.2 wurde der funktionale Zusammenhang der elastischen Moduln bzw. der seismischen Geschwindigkeiten von den petrophysikalischen Parametern für ein trockenes, poröses, körniges Medium hergeleitet. Im allgemeinen sind die Poren eines natürlichen Gefüges aber zum Teil mit einem Fluid, meistens Wasser, gefüllt. Der Anteil des Fluids am Porenraum ist die Fluidsättigung \( S_w \), dementsprechend ist der Anteil am Gesamtvolumen \( S_w \phi \). Ein Gefüge mit \( S_w = 1 \) heißt daher gesättigt. Daher reduziert sich der gasgefüllte Anteil des Porenraumes zu \( (1 - S_w)\phi \). Durch die Füllung des Porenraumes werden die seismischen Geschwindigkeiten durch die Veränderung der Dichte und der elastischen Moduln beeinflußt.

Die Gesamtdichte \( \rho_c \) ergibt sich aus den Dichten der festen, flüssigen und gasförmigen Phase \( \rho_s, \rho_f \) und \( \rho_g \), die gemäß ihres Anteils am Gesamtvolumen gewichtet werden, zu

\[
\rho_c = (1 - \phi) \rho_s + S_w \phi \rho_f + (1 - S_w) \phi \rho_g.
\]  

(2.26)

Die in Gleichung (2.26) definierte Dichte beeinflußt die beiden seismischen Geschwindigkeiten \( v_P \) und \( v_S \) in gleicher Weise, abhängig von der Porosität \( \phi \) und der Sättigung \( S_w \).

Das Verhältnis \( v_P/v_S \) wird durch die Variation der Dichte nicht beeinflußt.

Die Porenfüllung wirkt aber auch direkt und in unterschiedlicher Weise auf die elastischen Moduln. Um den Einfluß auf die makroskopischen Parameter berechnen zu können, müssen einige Anforderungen an das physikalische Verhalten im mikroskopischen Maßstab gestellt werden:

1. Das System aus Korngerüst und Porenfüllung kann durch zwei Verschiebungsfelder, eines für die solide, das andere für die fluide Phase, beschrieben werden. D.h. beide Phasen sind vermischt und bilden jeweils ein Kontinuum.

2. Das Fluid befindet sich in miteinander verbundenen Porenräumen, so daß Fluidfluß stattfindet.

3. Das Fluid verfügt über keine Scherfestigkeit.


5. Die Porosität ist makroskopisch gleichförmig verteilt.

6. Die Wellenlängen der betrachteten elastischen Wellen sind sehr viel größer als die größte vorkommende Poren- oder Korngöße. Eine Forderung, die für die Belange der Seismik sicherlich erfüllt sein dürfte.
Da es sich in dem hier betrachteten Fall um ein Gas oder Fluid handelt, wird der Schermodul $G$ aufgrund der per definitionem fehlenden Scherfestigkeit der Porenfüllung nicht beeinflußt. Der durch Messung von $v_S$ bestimmmbare Schermodul ist also sowohl für ein gesättigtes wie für ein trockenes Medium gleich dem Schermodul der Gesteinsmatrix $G_m$. Der Einfluß der Porenfüllung auf die Scherwellengeschwindigkeit

$$\varrho_c v_S^2 = G_m$$

ist dadurch auf die Dichte $\varrho_c$ beschränkt und folglich recht gering.

Im Gegensatz dazu besteht eine starke Abhängigkeit der Kompressionswellengeschwindigkeit $v_p$ vom Sättigungsgrad, da der Kompressionsmodul des Porenfluids $K_f$ in der Größenordnung des Kompressionsmoduls $K_m$ der Gefügematrix liegt. In Gleichung 2.14 wird $K_m$ durch $K$ ersetzt, so daß

$$\varrho_c v_p^2 = K + \frac{4}{3} G_m,$$

gilt. Der beobachtbare Kompressionsmodul $K$ ist nun eine Funktion der Moduln der festen, flüssigen und in sehr geringem Maße der gasförmigen Phase. Diesen funktionalen Zusammenhang liefert die Biot–Theorie (Biot (1956a) und Biot (1956b)). Das Verhalten des Systems aus fester Matrix und teils flüssiger, teils gasförmiger Porenfüllung ist frequenzabhängig. In der Seismik ist es dabei hinreichend, die Biot–Gassmann Gleichungen nach Gassmann (1951a) als Näherung für niedrige Frequenzen zu verwenden. Die Grenzfrequenz $\nu_{krit}$ bis zu der die Gassmann–Näherung gültig ist, wurde von Johnson et al. (1987) anhand der Porosität $\phi$ und der Permeabilität $\kappa_p$ des Gesteins, sowie der Dichte $\varrho_f$ und der Viskosität $\eta$ des Fluids berechnet:

$$\nu_{krit} \approx \frac{\eta \phi}{\kappa_p \varrho_f}.$$  

Mit Wasser als Porenfluid kann man so für einen lockeren Sand mit $\phi = 0,37$ eine kritische Frequenz von 5kHz berechnen, für einen Sandstein mit $\phi = 0,2$ ergeben sich schon 140kHz.

Für $\nu \ll \nu_{krit}$ ist der Kompressionsmodul durch die Gassmann–Gleichungen

$$K = K_s \frac{\phi K_m + Q}{\phi K_s + Q} \quad \text{mit} \quad Q = \frac{K_{f,eff} (K_s - K_m)}{(K_s - K_{f,eff})}$$

beschrieben. In Gleichung (2.30) werden die Moduln für die gasförmige und fluide Phase zu einem effektiven Modul

$$K_{f,eff} = \left( \frac{S_w}{K_f} + \frac{1 - S_w}{K_g} \right)^{-1}$$

des Fluid–Gas–Gemisches eines partiell gesättigten Porenraums zusammengefaßt. Für den Grenzfall $S_w \to 0$ und unter Vernachlässigung des Kompressionsmoduls des Gases wird
2.2. ELASTISCHE MODULN EINES PORÖSEN GEfüGES


$Q = 0$, so daß Gleichung (2.30) der Gleichung (2.17) für die trockene Kornmatrix entspricht. Für den Grenzfall $\phi \rightarrow 0$ resultiert für $K$ der Modul eines festen Kernes $K_s$.

Der Einfluß des Porenfluids auf die seismischen Geschwindigkeiten ist je nach Sättigungsgrad sehr unterschiedlich. In Abbildung 2.9 sind $v_P$ und $v_S$ eines Sediments mit $\phi = 0,30$ als Funktion der Sättigung dargestellt. Die S-Wellengeschwindigkeit $v_S$ wird aufgrund der geforderten fehlenden Scherfestigkeit nur über die mit der Fluidsättigung zunehmende Dichte beeinflußt und nimmt linear mit der Sättigung ab. Da die P-Wellengeschwindigkeit in gleicher Weise von der Dichte abhängt, folgt sie dem Verhalten der Scherwelle, so daß das Verhältnis $v_P/v_S$ fast über den gesamten Sättigungsbereich konstant bleibt. Für Sättigungen von 0,99 bis 1 findet ein sehr starker, schon als sprunghaft zu bezeichnender Anstieg von $v_P$ statt.

Damit einhergehend steigt das Verhältnis $v_P/v_S$ beim Übergang zur vollständigen Sättigung an. Im folgenden soll untersucht werden, welche $v_P/v_S$-Verhältnisse in einer gesättigten Probe zu erwarten sind. Dazu wurde die Porosität im Bereich $[0, \phi_c]$ variiert und das $v_P/v_S$-Verhältnis berechnet. Das Ergebnis ist ebenfalls in Abb. 2.9 dargestellt. Dort ist zu erkennen, daß eine merkliche Erhöhung dieses Verhältnisses erst für Porositäten ab 0,30 festzustellen ist. Dies ist nicht in erster Linie auf den wachsenden Volumenanteil des Porenfluids zurückzuführen, sondern vielmehr auf die stark abnehmende Festigkeit des Korngerüstes für $\phi \rightarrow \phi_c$. Für den Grenzfall des Übergangs zur Suspension strebt die Scherfestigkeit gegen 0 und daher $v_P/v_S$ gegen unendlich.

Im Abschnitt 2.2.3 wurden die Poissonzahlen von trockenen Gefüge untersucht und ge-
zeigt, daß das Korngerüst eine von der Porosität unabhängige Poissonzahl $\mu_m$ besitzt, die den Wert 0,25 nicht übersteigt. Die meßbare Poissonzahl $\mu$ eines gesättigten Gefüges ist dagegen sehr wohl von der Porosität abhängig. In Abbildung 2.10 sind die Zusammenhänge zwischen der meßbaren Poissonzahl $\mu$, der Poissonzahl der Kornmatrix $\mu_m$ und der Porosität $\phi$ dargestellt.

Abbildung 2.10: Poissonzahl einer gesättigten Probe als Funktion der Porosität und der Poissonzahl der trockenen Kornmatrix.


2.3 Fluide im Porenraum

2.3. **FLUIDE IM PORENRAUM**


Der Sättigungsgrad eines Gesteins ist definiert als das Verhältnis des Volumens der fluidgefüllten Poren zum Gesamtvolumen des Porenraumes.

### 2.3.1 Adsorption an der Kornoberfläche

Neben den mobilen Fluiden im Porenraum ist ein Anteil des Wassers im Porenraum an die Mineralpartikel des Komgerüstes gebunden. Dieses Adsorptionswasser bildet eine geschlossene Schicht von nur einigen Lagen Wassermoleküle auf der Oberfläche des Porenraumes, welche die Eigenschaften bei geringen Sättigungsgraden dominiert (Knight & Dvorin (1992)). Mit wachsendem Abstand zur Kornoberfläche lassen die Wechselwirkungen zwischen Wasser- und Mineralmolekülen nach, so daß sie ab der 4. monomolekularen Schicht (Fripiat et al. (1982)) vernachlässigt werden können. Thorp (1959) bestimmte die Dicke einer monomolekularen Wasserschicht zu 0,35 nm. Der Anteil des Adsorptionswassers am Porenraum läßt sich anhand der Oberfläche des Porenraumes und der Anzahl der monomolekularen Wasserschichten berechnen:

\[
S_w = \frac{3,5 \cdot 10^{-10} N_m A_p}{V_p}. \tag{2.32}
\]

Dabei bezeichnen \( A_p \) und \( V_p \) die Oberfläche bzw. das Volumen des Porenraums und \( N_m \) ist die Anzahl der Wassermolekülschichten.

### 2.3.2 Wirkung der Kapillarkräfte


Im Porenraum eines Gesteins sind drei Phasen vorhanden. Wie in Abbildung 2.11 gezeigt, treten drei unterschiedliche Grenzflächen mit ihren jeweiligen spezifischen Grenzflächenenergien auf: flüssig-fest \( \sigma_{fs} \), gasförmig-flüssig \( \sigma_{gf} \) und gasförmig-fest \( \sigma_{gs} \) auf. An der Grenzlinie aller drei Phasen, müssen die Spannungen im Gleichgewicht sein, d.h. \( \sigma^*_w = \sigma_{fs} - \sigma_{gs} = -\sigma_{gf} \cos(\vartheta) \), wobei \( \sigma^*_w \) die sogenannte Haftspannung und \( \vartheta \) der Randwinkel ist, den die Flüssigkeitsoberfläche mit der Porenwand einschließt. Für gut benetzende Flüssigkeiten ist dieser Winkel sehr klein, so daß \( \cos(\vartheta) \approx 1 \) gilt. Für die in dieser Arbeit betrachteten Fälle verwende ich \( \sigma^*_w = 7.42 \cdot 10^{-2}\text{Nm}^{-1} \) für eine Wasser-Quarz-Grenzfläche bei einer Temperatur von 10\(^{\circ}\) Celsius.

Für einen zylindrischen Porenraum läßt sich aus dem Spannungsgleichgewicht leicht der Kapillardruck ableiten. Sei der Radius des Zylinders \( r_p \), so wirkt die Haftspannung \( \sigma^*_w \) auf einen Rand der Länge \( 2\pi r_p \). Normiert man die resultierende Kraft auf die Zylinderquerschnittsfläche, so erhält man den Kapillardruck

\[
p_k = \frac{2\pi \sigma^*_w r_p}{\pi r_p} = \frac{2\sigma^*_w}{r_p},
\]

(2.33)
der dem hydrostatischen Druck entgegenwirkt. Der hydrostatische Druck eines Fluids ist abhängig von der Höhe \( h_w \) der Wassersäule \( p_h = g \varrho f h_w \), so daß die Steighöhe des Fluids

\[
h_w = \frac{2\sigma^*_w}{g \varrho f r_p}
\]

(2.34)

ist.

Eine Pore bleibt fluidgefüllt, solange der hydrostatische Druck den Kapillardruck nicht übersteigt, d.h. wenn \( p_k - p_h > 0 \). Mit diesem Kriterium kann man eine erste Abschätzung

Abbildung 2.11: Gleichgewichtszustand der Grenzflächenspannungen.
Nach Gerthsen et al. (1989).
machen, ab welchem Porenradius Kapillarkräfte berücksichtigt werden müssen, da das Porenfluid nicht mehr aufgrund des Eigengewichtes aus der Pore ausfließt. Gegeben sei eine kugelförmige, unten offene Kapillare mit Radius \( r_p \), gefüllt mit einem Fluid, so daß der Fluiddruck an der Unterkante \( 2g \rho_f r_p \) beträgt. Für die Radien, bei denen sich eine gefüllte Pore entleert, gilt dann:

\[
2g \rho_f r_p - \frac{2\sigma^*}{r_p} \geq 0 \quad \Leftrightarrow \quad r_p \geq \sqrt{\frac{0,0742 \text{Nm}^{-1}}{g \rho_f}} = 2,75 \text{ mm}.
\]

### 2.3.3 Berechnung der Fluidsättigung


Dabei beträgt die Wahrscheinlichkeit, daß eine Pore mit \( r_p \) von \( c_p \) Poren des Radius \( r_{ai} \) mit \( r_p < r_{ai} \) für alle \( i \in 1...c_p \) umgeben ist

\[
\mathcal{P}_H(r_p) = \left( 1 - \int_{r_p}^{\infty} \mathcal{P}_N(r_a) \ dr_a \right)^{c_p}.
\]  

(2.35)

Die Gleichungen (2.33, 2.35) beschreiben den Effekt der Kapillarität für die mikroskopische Größenordnung einzelner Poren. Um die makroskopischen Auswirkungen zu bestimmen, wird über alle Poren der unterschiedlichen Größen und deren Auftrittswahrscheinlichkeit integriert. Unter Berücksichtigung der irreduziblen Sättigung und des an den Kornoberflächen adsorbierten Fluids durch Gleichung (2.32) kann folgende Gleichung zur Berechnung der Fluidsättigung \( S_w \) aufgestellt werden:

\[
S_w = \frac{\int_0^{r_s'} r_p^3 \mathcal{P}_N(r_p) \ dr_p + \int_{r_s'}^{\infty} (r_p^3 \mathcal{P}_H(r_p) + 3\alpha_p a \ r_p^2 (1 - \mathcal{P}_H(r_p))) \mathcal{P}_N(r_p) \ dr_p}{\int_0^{\infty} r_p^3 \mathcal{P}_N(r_p) \ dr_p}.
\]  

(2.36)
Nach einigen elementaren Umformungen und der Umrechnung eines Poren- in einen Kornradius erhält man eine Abhängigkeit von der Kornverteilungskurve:

\[
S_w = m_k(r_k) + \int_{r_k}^{\infty} \left( P_H(r_k') + \frac{3\alpha_p d_a}{r_k'} (1 - P_H(r_k')) \right) P_m(r_k') \, dr_k' \quad (2.37)
\]

mit \( r_k = \left( \frac{\phi}{1-\phi} \right)^{\frac{1}{3}} \frac{0.1484 \, \text{Nm}^{-1}}{p_h} \).

Gleichung (2.37) verdeutlicht die direkte Abhängigkeit der Wassersättigung vom hydrostatischen Druck und der Korngrößenverteilung. In Abbildung 2.12 werden die nach dieser Gleichung berechneten Sättigungskurven für Gefüge mit den mittleren Kornradien \( r_k = 10, 50 \) und \( 100 \, \mu\text{m} \), sowie für die Verteilungsbreiten \( s_k = 0,5, 1,0 \) und 1,5 gezeigt. Der Anschaulichkeit halber wird anstelle des hydrostatischen Druckes die äquivalente Höhe der Wassersäule angegeben, um abschatzen zu können, innerhalb welcher Bereiche eine Beeinflussung der Fluidsättigung durch die Kapillarkräfte zu erwarten ist.

**Abbildung 2.12: Sättigungskurven in Abhängigkeit vom mittleren Kornradius \( r_k \) und der Verteilungsbreite \( s_k \).**

2.3.4 **Permeabilität eines Sedimentes**

zu der nach ihm benannten Formel

\[
\frac{\mathrm{d}V_f}{\mathrm{d}t} = \frac{\kappa_h A_q}{g g_f} \frac{\partial p}{\partial x}
\]  

(2.38)

zusammen. Die Durchflußmenge als Volumen pro Zeiteinheit ist proportional zum Druckgefälle zwischen den Enden des durchfließenden Körpers entlang des Weges \(x\). Der Proportionalitätsfaktor setzt sich dabei aus der Querschnittsfläche der Probe \(A_q\), der Gravitationsbeschleunigung \(g\), der Dichte des Fluids \(g_f\) und einer Konstanten \(\kappa_h\), der hydraulischen Leitfähigkeit, zusammen. Wie schon in den vorhergehenden Abschnitten sollen die durch die Darcy–Formel beschriebenen makroskopischen Eigenschaften eines Sandkörpers mit Hilfe von Betrachtungen im mikroskopischen Maßstab erklärt werden. In diesem Fall wird angenommen, daß der Fluidfluß durch den Porenraum durch das Gesetz von Hagen–Poiseuille für die laminare Rohrströmung adäquat beschrieben werden kann. Das heißt, daß sich in einer als Zylinder approximierten Wegsamkeit des Porenraumes ein parabolisches Geschwindigkeitsprofil \(v_f(x) = \frac{(r - r_0)^2}{r_0} \frac{\partial p}{\partial x}\) ausbildet. Das Fluid wird dabei im Zentrum des Zylinders am schnellsten transportiert, während es an den Porenwänden haften bleibt. Damit folgt:

\[
\frac{\mathrm{d}V_f}{\mathrm{d}t} = \int_0^r 2\pi \alpha_p r' v_f(r') \, \mathrm{d}r' = \frac{\pi \alpha_p}{8\eta} r_p^4 \frac{\partial p}{\partial x}.
\]  

(2.39)

Für die Berechnungen in Abschnitt 2.2.4 wurde der Parameter \(\alpha_p\) eingeführt, um die Diskrepanz zwischen der Oberfläche der volumenäquivalenten Kugel mit Radius \(r_p\) und der tatsächlichen Oberfläche der Pore zu quantifizieren. Erfolgt ein zweidimensionaler Schnitt durch das Gefüge, so vergrößert sich der Umfang des betrachteten Zylinders in Gleichung (2.39) um \(\alpha_p\). Durch die Kombination der Formel von Darcy (2.38) und des Hagen–Poiseuille–Gesetzes (2.39) ist es möglich, die hydraulische Leitfähigkeit \(\kappa_h\) zu bestimmen. Es gilt:

\[
\kappa_h = \frac{\pi g g_f \alpha_p}{8\eta A_q} r_p^4.
\]  

(2.40)

Ersetzt man die Probenquerschnittsfläche \(A_q\) durch den äquivalenten Ausdruck \(A_f/\phi\) und führt die Porenradien wie gewohnt auf die Massenverteilung der Körner zurück, so ergibt sich nach einigen Umformungen:

\[
\kappa_h = \frac{g g_f \alpha_p}{8\eta} \frac{\phi^{5/3}}{(1 - \phi)^{2/3}} \int_0^\infty r_k \mathcal{P}_m(r_k) \, \mathrm{d}r_k \left[ \int_0^\infty \frac{1}{r_k} \mathcal{P}_m(r_k) \, \mathrm{d}r_k \right]^{-1}.
\]  

(2.41)

Weitere Vereinfachungen der Gleichung (2.41) hängen von der Kornradienverteilung ab. Die in Gleichung (2.1) definierte Kornverteilung besitzt die Eigenschaft, daß die hydraulische Leitfähigkeit unabhängig von der Verteilungsbreite \(s_k\) ist. Somit kann Gleichung
(2.41) zur wohlbekannten Kozeny–Carman–Gleichung

\[ \kappa_h = \frac{g \theta f \alpha_p}{8 \eta} \frac{\phi^{5/3}}{(1 - \phi)^{2/3}} r^2 k_{50} \]  

(2.42)

vereinfacht werden. Dabei ist anzumerken, daß der Faktor \( \frac{\alpha_p}{\phi} \) in Abhängigkeit von der kritischen Porosität sehr gut mit dem durch Carman (1937) experimentell bestimmten Wert von \( \frac{1}{3} \) übereinstimmt. Statt der hydraulischen Leitfähigkeit wird auch die Permeabilität

\[ \kappa_p = \frac{\eta}{g \theta f \kappa_h} \]  

(2.43)

zur Charakterisierung angegeben. Da die Permeabilität um die Eigenschaften des Fluids bereinigt ist, hängt ihr Wert nur von den Eigenschaften der Gesteinsmatrix ab.

Bei der obigen Herleitung der Leitfähigkeit wurde angenommen, daß der Porenraum vollständig gesättigt ist. Mit abnehmender Sättigung wird auch die hydraulische Leitfähigkeit sinken, da immer weniger Porenkanäle zum Durchfluß zur Verfügung stehen. Die Situation ist theoretisch nur schwer zu beschreiben, weshalb man auf experimentell ermittelte Formeln zurückgreift. Folgende einfache und von weiteren Parametern unabhängige Formel wurde von Irnay (1954) gefunden:

\[ \kappa_h(S_w) = \kappa_h(1) \left( \frac{S_w - S_t}{1 - S_t} \right)^3. \]  

(2.44)

Danach wird die durch Gleichung (2.41) berechnete hydraulische Leitfähigkeit \( \kappa_h(1) \) für eine gesättigte Probe durch einen Faktor erweitert, der von der Sättigung \( S_w \) und der irreduziblen Sättigung \( S_t \) abhängig ist.

### 2.4 Der elektrische Widerstand des Gefüges

Die in dieser Arbeit betrachteten Materialien der Gefügematrix sind schlechte Leiter mit einem hohen spezifischen Widerstand von \( \rho > 10^6 \Omega m \). Für die Leitfähigkeit des Gesteins zeichnen daher die Eigenschaften des Porenraumes verantwortlich, das heißt in diesem Falle die Porosität \( \phi \), der Sättigungsgrad der Poren \( S_w \) und der spezifische elektrische Widerstand \( \rho_f \) des Porenfluids, abhängig von der Art und Konzentration der gelösten Ionen. Der Zusammenhang zwischen diesen Größen und dem meßbaren spezifischen Widerstand wurde für poröse Gesteine zuerst von Smith–Rose (1934) und Archie (1942) untersucht. Das wesentliche Ergebnis dieser Arbeiten ist die bekannte empirische Formel von Archie:

\[ \rho = \rho_f \phi^{-m_a} S_w^{-n_a}. \]  

(2.45)

Die Abhängigkeit des spezifischen elektrischen Widerstands einer Probe von der Porosität \( \phi \) und der Sättigung \( S_w \) des Porenraumes wurde dabei als durch ein Potenzgesetz
beschreibbar angenommen. Dabei sind die Exponenten \( m_a \) und \( n_a \) empirisch zu bestimmen. Für Sande und Sandsteine wurde für den Zementationsexponent 1,3 \( \leq m_a \leq 2,5 \) und für den Sättigungs exponent 1,7 \( \leq n_a \leq 2,8 \) ermittelt. Der Sättigungsexponent \( n_a \) ist dabei umso kleiner, je breiter die Komradienverteilungskurve ist.

Die Verwendung empirischer Formeln als Grundlage zur Modellierung synthetischer Daten, insbesondere innerhalb eines Inversionsalgorithmus, ist allerdings heikel. Da die genauen Zusammenhänge zwischen den Parametern \( m_a \), \( n_a \) und den einzelnen Gesteinseigenschaften nicht genau bekannt sind, ist eine Anwendung nur in den Fällen möglich, in denen schon eine breite Datenbasis besteht, aus der diese Parameter bestimmt werden können. Diese sind dann teilweise nur für eine spezielle Art von Gesteinen, oder auch nur für eine bestimmte Formation, d.h. lokal eingeschränkt, gültig. Die Übertragung auf andere Untersuchungsgebiete ist in der Regel nicht möglich. Die theoretische Behandlung des Problems gestaltet sich indes sehr schwierig. Zwar konnten Sen et al. (1981) in der Theorie und De la Rue & Tobias (1959) durch Experimente \( m_a = \frac{3}{2} \) für zufällige Kugelanordnungen bei Porositäten \( \phi > 0,60 \) nachweisen, ein exaktes Verständnis und eine analytische Formulierung dieser Zusammenhänge konnte für geologisch realistische Materialien bisher aber noch nicht erreicht werden.


Abbildung 2.13: Aufbau eines Widerstandnetzwerks

Zur praktischen Berechnung des Einflusses der Fluidsättigung auf den spezifischen Widerstand des Gefüges werden die einzelnen Widerstände des in Abbildung 2.13 gezeigten Netzwerkes nach der numerischen Häufigkeit und der Sättigungswahrscheinlichkeit der einzelnen Poren und deren Widerstand belegt. Der Widerstand einer einzelnen Pore wird unter Annahme einer zylindrischen Geometrie berechnet, so daß für eine gesättigte Pore
gilt:

\[ R_t = \rho_f l/A_q = \frac{\sqrt{3} \rho_f}{\sqrt{2} \pi r_p}. \]  

(2.46)

Dabei sind \( l \) die Länge und \( A_q \) die Querschnittsfläche der Pore. Eine leere Pore besitzt durch das an den Kornpartikeln adsorbierte Wasser eine geringe restliche Leitfähigkeit, so daß in Abhängigkeit von der Anzahl \( N_m \) der monomolekularen Wasserschichten gilt:

\[ R_t = \frac{\sqrt{3} \rho_f}{\sqrt{2} \pi N_m 0.35 \cdot 10^{-9} \text{m}}. \]  

(2.47)


Abbildung 2.14: Der spez. Widerstand ungesättigter Gefüge relativ zum spez. Widerstand bei vollständiger Sättigung abhängig von der Kornverteilungsbreite \( s_k \).
2.5 Vergleich mit experimentellen Daten


Abbildung 2.15: Daten aus Experimenten mit einem Druck von 5 MPa. Siehe auch die Beschreibung zu Abbildung 2.17.
Tabelle 2.1: Für die Anpassungen in den Abbildungen 2.15–2.17 verwendete Parameter.

<table>
<thead>
<tr>
<th>$p$ [MPa]</th>
<th>$K_0$ [GPa]</th>
<th>$\varrho_s$ [kg/m$^3$]</th>
<th>$\mu_m$</th>
<th>$s_k$</th>
<th>$\alpha_p$</th>
<th>$\phi_c$</th>
<th>relater Fehler in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>2650</td>
<td>0.20</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.34</td>
<td>0.391</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>2650</td>
<td>0.20</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.34</td>
<td>0.389</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
<td>2650</td>
<td>0.19</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.34</td>
<td>0.391</td>
</tr>
<tr>
<td>30</td>
<td>37</td>
<td>2650</td>
<td>0.17</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.34</td>
<td>0.391</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>2650</td>
<td>0.17</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.35</td>
<td>0.389</td>
</tr>
<tr>
<td>50</td>
<td>37</td>
<td>2650</td>
<td>0.11</td>
<td>10$^{-3}$</td>
<td>0.5</td>
<td>1.46</td>
<td>0.361</td>
</tr>
</tbody>
</table>

2.5. VERGLEICH MIT EXPERIMENTELLEN DATEN


Abbildung 2.17: Daten aus Hochdruck-Experimenten. In den Abbildungen 2.15 bis 2.17 sind die Messungen wassergesättigter (trockener) Proben mit + (o) gekennzeichnet und die entsprechende theoretische Kurve mit einer durchgezogenen (gepunkteten) Linie dargestellt. Dargestellt sind jeweils oben links die Kompressionswellengeschwindigkeit \( v_P \), oben rechts die Scherwellengeschwindigkeit \( v_S \), unten links der Kompressionsmodul \( K_m \) und unten rechts der Schermodul \( G_m \), jeweils in Abhängigkeit von der Porosität \( \phi \).
Im rechten Teil der Tabelle 2.1 befinden sich die bei der Anpassung resultierenden relativen Fehler $e_r$ in Prozentpunkten, die nach

$$
e_r = 100 \left( \frac{1}{N} \sum_{i=1}^{N} \left( \frac{d_i - d_i^*}{d_i} \right)^2 \right)^{1/2} \tag{2.48}$$

berechnet wurden, wobei $d_i$ die vorhergesagten und $d_i^*$ die gemessenen Observablen bezeichnen. Anhand dieser Resultate kann man konstatieren, daß das hergeleitete Modell das physikalische Verhalten verschiedener Gesteine recht gut beschreibt. Hervorzuheben ist dabei, daß der von der Anschauung hier eingeführte Parameter $\alpha_p$ über einen großen Bereich nicht verändert werden muß. Die Abweichung dieses Parameters für die Daten für Gesteine unter 50 MPa Druck ist möglicherweise dadurch erklärbar, daß diese Versuche überwiegend an Gefügen aus künstlichen Materialien durchgeführt wurden.


Um die Messungen an den unterschiedlichen Proben miteinander vergleichen zu können, wurden die Meßwerte in geeigneter Weise normiert. Die durch die Archie-Formel gegebenen Schranken wurden als Linien der Abbildung hinzugefügt. Der Zementationsexponent wurde auf den Bereich $1.3 \leq m_a \leq 2.3$ und der Sättigungsexponent auf das Intervall $0.7 \leq n_a \leq 2.1$ eingeschränkt.

Wie aus Abbildung 2.18 ersichtlich wird, läßt sich die Abhängigkeit des spez. elektrischen Widerstands gut durch ein Potenzgesetz beschreiben. Eine systematische Abweichung von dem Verhalten, das durch die Archie-Formel vorhergesagt wird ist nicht zu erkennen. Im Gegensatz dazu wird der funktionale Zusammenhang zwischen Widerstand und Fluidsättigung durch die Archie-Formel nur sehr schlecht erklärt. Einzig die in Abbildung 2.18 durch Quadrate gekennzeichnete Probe eines Berea Sandsteins kann durch sie adäquat beschrieben werden. Alle anderen Proben zeigen ein Verhalten, wie es in Abschnitt 2.4 durch Berechnungen mittels eines Widerstandnetzwerkes vorhergesagt wird (siehe auch Abbildung 2.14).

Der Übersicht halber sind in der Tabelle 2.2 noch einmal alle für die konkreten Berechnungen benötigten physikalischen Eigenschaften des Kornmaterials, des Porenfluids und der gasförmigen Phase zusammengefaßt.

<table>
<thead>
<tr>
<th>Kornmaterial</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompressionsmodul von Quarz $K_s$</td>
<td>$37,3 \cdot 10^9$ Pa</td>
<td></td>
</tr>
<tr>
<td>Schermodul von Quarz $G_s$</td>
<td>$44,3 \cdot 10^9$ Pa</td>
<td></td>
</tr>
<tr>
<td>Poissonzahl von Quarz $\mu_s$</td>
<td>$0,075$</td>
<td></td>
</tr>
<tr>
<td>Dichte von Quarz $\rho_s$</td>
<td>$2650$ kg/m$^3$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porenfluid</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompressionsmodul von Wasser $K_f$</td>
<td>$2,25 \cdot 10^9$ Pa</td>
<td></td>
</tr>
<tr>
<td>Dichte von Wasser $\rho_f$</td>
<td>$998$ kg/m$^3$</td>
<td></td>
</tr>
<tr>
<td>Viskosität von Wasser, 20°C $\eta$</td>
<td>$1,025 \cdot 10^{-3}$ Pa s</td>
<td></td>
</tr>
<tr>
<td>Spez. elektr. Widerstand von Wasser $\rho_f$</td>
<td>$0,1-10$ Ω m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porengas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompressionsmodul von Luft $K_g$</td>
<td>$10^5$ Pa</td>
<td></td>
</tr>
<tr>
<td>Dichte von Luft $\rho_g$</td>
<td>$0,85$ kg/m$^3$</td>
<td></td>
</tr>
<tr>
<td>Viskosität von Luft, 0,1MPa, 0°C $\eta$</td>
<td>$1,74 \cdot 10^{-5}$ Pa s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weitere Parameter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spez. Oberflächenspannung eines Quarz-Wasser-Luft-Kontaktes $\sigma_w$</td>
<td>$7,42 \cdot 10^{-2}$ N m$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Kritische Porosität $\phi_c$</td>
<td>$0,39$</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.2: Die in dieser Arbeit verwendeten Materialparameter.
2.6 Zusammenfassung

Ausgehend von einer einfachen geometrischen Beschreibung eines Gefüges als regellose Anordnung einzelner kugeliger Körner, wurden die verschiedenen physikalischen Eigenschaften eines Probekörpers hergeleitet. In Abschnitt 2.2 wurden die seismischen Geschwindigkeiten für trockene und feuchte Gefüge berechnet. Dabei wurden zahlreiche Größen, die für das Verständnis der mikroskopischen Eigenschaften nötig waren, aber praktisch nicht zu bestimmen sind, in geeigneter Weise zusammengefaßt, um die makroskopische Beschreibung zu vereinfachen. Dabei werden die elastischen Eigenschaften trockener Gefüge durch die Gleichungen (2.17), (2.20) und (2.25) beschrieben. Ist zusätzlich ein Porenfluid zu berücksichtigen, so sind zusätzlich die Gleichungen (2.26), (2.30) und (2.31) anzuwenden. Im weiteren wurde der charakteristische Einfluß des Porenfluids herausgearbeitet, welches im wesentlichen nur die P-Wellengeschwindigkeit beim Übergang zur vollständigen Sättigung beeinflußt. Sind durch geeignete Erkundungsverfahren Informationen sowohl über die S- als auch die P-Wellengeschwindigkeit verfügbar, so eröffnet sich die Möglichkeit die Einflüsse von Kompressibilität und Porenraum zu separieren. Der spezifische elektrische Widerstand eines Gefüges wurde in Abschnitt 2.4, durch eine ähnliche Verfahrensweise wie die elastischen Parameter, hergeleitet. Hier wurde konstatiert, daß der elektrische Widerstand von Gefüge vor allem von den geometrischen Eigenschaften des Porenraumes sowie der Fluidsättigung abhängt.

Um seismische und elektrische Messungen miteinander zu verknüpfen, sind gemeinsame Parameter für beide Methoden nötig. In der in diesem Kapitel darstellten Betrachtungsweise sind dies die Porosität $\phi$ und die Fluidsättigung $S_w$, welche die drei messbaren Größen $v_p$, $v_s$ und $\rho$ auf sehr unterschiedliche Weise beeinflussen. Demnach werden gemeinsame Schichtgrenzen durch eine Änderung der Porosität oder durch eine Grundwasserüberflächenfläche definiert. Diese führen nach den Erkenntnissen aus Abschnitt 2.3 nicht zu gleich lokalisierter Schichtgrenze der elastischen und elektrischen Parametern, eine Vorhersage, die mit Beobachtungen in der Natur in Einklang steht.
Kapitel 3

Modellierung


3.1 Die Geometrie des Untergrundes


3.2 Dynamik der Fluide im Porenraum

Wie in Kapitel 2 deutlich wird, hängen alle physikalischen Parameter von der Verteilung des Fluids im Porenraum des Gesteins ab. Da diese zeitlich variiert, ist es notwendig, Kenntnis über die Dynamik des Fluids zu haben, die durch Diffusion im Porenraum, durch das gravitationsbedingte Einsickern, Regenfälle und Grundwasserab- oder zufuß bestimmt wird. Das zeitliche Verhalten der Sättigung $S_w$ wurde durch Richards (1931) als Differentialgleichung formuliert:

$$
\phi \frac{\partial S_w}{\partial t} = \frac{1}{\varrho_f} \nabla (\kappa_h \nabla p_h) - \frac{\partial \kappa_h}{\partial z}
$$

(3.1)

Dabei ist $\kappa_h$ die hydraulische Leitfähigkeit, $t$ die Zeit und $z$ die Tiefenachse. In dieser Form der Gleichung sind schon zwei Vereinfachungen enthalten. Erstens die zeitliche Konstanz der Porosität und zweitens die Inkompressibilität des Fluids.


Betrachtet man ein eindimensionales Modell, so lautet die Richards-Gleichung in Abhängigkeit von $z$:

$$
\varrho_f \phi \frac{\partial S_w}{\partial t} = \frac{\partial \kappa_h}{\partial z} \frac{\partial p_h}{\partial z} + \kappa_h \frac{\partial^2 p_h}{\partial z^2} - \varrho_f \frac{\partial \kappa_h}{\partial z}.
$$

(3.2)

Für ein lineares Druckregime, wie es $p_h = \varrho_f z$ beschreibt, verschwindet die zweite Ableitung nach $z$ und auf der rechten Seite der Gleichung steht $0$, d.h., daß ein statischer Zustand besteht.

Das Einsickern von Wasser in trockene Böden ist schwierig zu modellieren, da aufgrund der geringen initialen Sättigung die hydraulische Leitfähigkeit nach Gleichung (2.44) sehr gering ist, was zu steilen Druckgradienten führt. Diese führen zu Instabilitäten bei der numerischen Ableitung, so daß diese über eine Umgebung der Tiefe $z_0$ geglättet werden muß. Ähnliches gilt für sprunghafte Änderungen der hydraulischen Leitfähigkeit an einer Schichtengrenze. Dort kann $\frac{\partial \kappa_h}{\partial z}$ nicht gebildet werden, weshalb ein geglätteter, stetig ableitbarer Übergang verwendet wird. Verfahren dazu werden in Havrankamp et al. (1977), Hills et al. (1989) und Gottardi & Venutelli (1992) beschrieben. Zudem ist die Beziehung zwischen Sättigung und Druck höchst nichtlinear, weshalb eine feine Diskretisierung in Raum und Zeit notwendig ist.
3.3 1-D Geoelektrik


Der scheinbare spezifische Widerstand $\rho_{app}$ variiert in Abhängigkeit vom Abstand $x$ der Stromelektroden zum Sondierungspunkt. Aufgrund der zylindrischen Symmetrie des eindimensionalen Problems, ist dieses durch die Integraltransformation

$$\rho_{app}(x) = \rho_i x^2 \int_0^\infty \left(1 + 2\Theta(\zeta, \rho_i h)\right) J_1(\zeta x) \, d\zeta$$  

berechenbar, wobei $J_1(\zeta)$ die Bessel-Funktion erster Ordnung ist. Dabei beinhaltet die Kernfunktion $\Theta(\zeta, \rho, h)$ die Abweichungen von der Lösung des Problems für den Halbraum. In die Kernfunktion fließen die Informationen über die spez. Widerstände $\rho$ und die Mächtigkeiten $h$ der einzelnen Schichten ein. Für $N - 1$ Schichten über einem Halbraum läßt sich die Stefanescu Kernfunktion für die Erdoberfläche rekursiv berechnen. Ausgehend vom Halbraum mit dem Schichtindex $N$ und der Kernfunktion $\Theta_N(\zeta) = 0$ wird sukzessive eine Schicht $i$ auf die bisherige Schichtfolge addiert, wobei der Einfluß der neuen Schicht mit der Mächtigkeit $h_i$ und dem spez. Widerstand $\rho_i$ durch

$$\Theta_i(\zeta) = \left[\left(\frac{\rho_{i+1} - \rho_i}{\rho_{i+1} + \rho_i} \Theta_{i+1}(\zeta)\right)^{-1} + 1\right]^{-1} \cdot e^{-2\zeta h_i}$$  

gegeben ist. Der spez. Widerstand wird innerhalb einer Schicht als konstant angenommen. Um Modelle mit einem Widerstandsgradienten effektiv berechnen zu können, entwickelten Kim & Lee (1996) ein Verfahren, das die Gleichungen (3.3) und (3.4) für den Fall erweitert, daß sich der spez. Widerstand innerhalb einer Schicht durch eine Exponentialfunktion beschreiben läßt. Gradienten, deren Verlauf sich nicht durch eine Exponentialfunktion approximieren lassen, müssen durch mehrere Schichten angenähert werden.

3.4 1-D Refraktionsseismik

Eine der wohl gebräuchlichsten Methoden zur Erkundung oberflächennaher Strukturen ist die Refraktionsseismik. Die Interpretation erfolgt aufgrund der relativ einfach zu bestimmenden Ersteneinsatzzeiten des registrierten Wellenfeldes, also der Laufzeit der sich im Untergrund am schnellsten fortpflanzenden Wellenfront. Damit genügt diese Wellenfront
dem Fermat-Prinzip, so daß Laufweg und Zeit bei gegebener Geschwindigkeitsverteilung im Untergrund eindeutig festgelegt sind. Die Eindeutigkeit wird durch das Extremalprinzip des schnellsten Laufwegs $\ell$, mit

$$t = \int_{\ell} \frac{1}{v_p(\ell)} \, d\ell = \min$$

(3.5)


Für den einfachen Fall von $N$ schildig gelagerten Schichten, wobei die $N$-te Schicht den Halbraum darstellt, lassen sich die Ersteinsatzzeiten leicht durch die Konstruktion der Strahlenwege mit Hilfe des Brechungsgesetzes von Snellius herleiten. Summiert man alle Längen der Teilwege von der Quelle zur $j$-ten Schicht und weiter zum Empfänger im Abstand $x$ von der Quelle und dividiert die Längen durch die Wellengeschwindigkeiten $v_{P_i}$ in den jeweiligen Schichten, so erhält man für die Laufzeit

$$t_j(x) = \frac{x}{v_{P_j}} + \frac{1}{v_{P_j}} \sum_{i=1}^{j-1} \left[ h_i \sqrt{v_{P_j}^2 - v_{P_i}^2} \right] v_{P_i}^{-1}.$$  

(3.6)

Für jede Entfernung gilt dann für die Ersteinsatzzeit

$$t(x) = \min \{ t_j(x) \}.$$  

(3.7)

3.5 Die zuverlässige Berechnung der Dispersionskurven von Rayleigh–Wellen


Das dem Verfahren zugrundeliegende Modell besteht aus N−1 sächlich gelagerten Schichten über einem Halbraum, der wiederum mit der Schichtnummer N gekennzeichnet wird. Die obere Grenzfläche der 1. Schicht ist die freie Oberfläche der Erde. An den jeweiligen Grenzflächen zwischen den Schichten und an der freien Oberfläche müssen die Randbedingungen für die Wellenausbreitung erfüllt werden. Diese Randbedingungen sind die Stetigkeit der Normal- und Tangentialsspannungen sowie der Horizontal- und Vertikalverschiebungen zwischen den Schichtpaketen, die Spannungsfreheit an der freien Oberfläche und die vollständige Absorption im Halbraum. Die Verknüpfung zweier Grenzflächen durch das dazwischenliegende Schichtpaket erfolgt durch eine Matrix, in die beide seismischen Geschwindigkeiten \( v_p \) und \( v_s \), die Dichte \( \rho_c \) und die Schichtmächtigkeit \( h \) einfließen.

Durch das Multiplizieren der einzelnen Schichtmatrizen zu einer Matrix \( H \), werden die Randbedingungen des Halbraumes durch das aufliegende Schichtpaket hindurch mit den Randbedingungen an der freien Oberfläche verknüpft. Die durch die Matrix \( H \) definierten Randbedingungen sind an allen Schichtgrenzen für den Fall erfüllt, wenn gilt:

\[
F_H(\nu, k) = \frac{H_{3,2} - H_{4,2}}{H_{3,1} - H_{4,1}} \frac{H_{1,2} - H_{2,2}}{H_{1,1} - H_{2,1}} = 0. \tag{3.8}
\]

Neben den elastischen und geometrischen Parametern der Schichten gehen in die Matrix \( H \) sowohl die Frequenz \( \nu \) als auch die Wellenzahl \( k \) ein, welche hier als Kehrwert der Wellenlänge ohne den Faktor \( 2\pi \) definiert ist. Die durch Gleichung (3.8) definierte sogenannte Haskell-Funktion \( F_H(\nu, k) \) bildet eine implizite Funktion zwischen Frequenz und Wellenzahl. Die Mächtigkeit des Schichtpaketes über dem Halbraum in der Größenordnung mehrerer Wellenlängen des betrachteten seismischen Signals, so neigt das Thomson-Haskell-Verfahren zu numerischen Fehlern bei der Bestimmung der Haskell-Funktion aufgrund der systembedingten endlichen Rechgangenaugigkeit (Schwab (1970)). Für sehr hohe Frequenzen und dementsprechend kurze Wellenlängen muß daher das zuverlässigeren Verfahren von Schwab & Knopoff (1970) eingesetzt werden, was aber für die in dieser Arbeit betrachteten Modelle nicht nötig ist.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( v_p )</td>
<td>( v_s )</td>
<td>( \rho_c )</td>
<td>( h )</td>
</tr>
<tr>
<td>250 [m/s]</td>
<td>115 [m/s]</td>
<td>1550 [kg/m³]</td>
<td>1,3</td>
</tr>
<tr>
<td>840 [m/s]</td>
<td>112 [m/s]</td>
<td>1850 [kg/m³]</td>
<td>3,5</td>
</tr>
<tr>
<td>1950 [m/s]</td>
<td>250 [m/s]</td>
<td>2300 [kg/m³]</td>
<td>8,0</td>
</tr>
<tr>
<td>2800 [m/s]</td>
<td>1600 [m/s]</td>
<td>2600 [kg/m³]</td>
<td>( \infty )</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Das den Modellierungen in den Abbildungen 3.2 und 3.3 zugrundeliegende Schichtenmodell.
Abbildung 3.2: Vorzeichen der Haskell-Funktion $F_R(\nu, k)$. Die Bedingungen für die Existenz der Rayleigh-Welle sind an den Nullstellen der Funktion erfüllt, hier zu sehen als Übergänge zwischen weiß und schwarz.

Mit der obigen Definition der Wellenzahl lassen sich die Phasen- und Gruppengeschwindigkeit durch folgende Beziehungen bestimmen:

$$v_{ph(\nu)} = \frac{\nu}{k(\nu)} \quad \text{und} \quad v_{gr(\nu)} = \frac{\partial \nu}{\partial k(\nu)}.$$  (3.9)

Somit kann die Haskell-Funktion auch in Abhängigkeit von Frequenz und Phasengeschwindigkeit geschrieben werden, was in vielen Fällen zu einer anschaulicheren Darstellung führt.

Abbildung 3.3: Phasen- und Gruppengeschwindigkeitskurven der im Frequenzbereich bis 40 Hz enthaltenen Moden.


$$v_{gr} = \frac{1}{\frac{\partial k(\nu)}{\partial \nu}} = \frac{v_{ph(\nu)}^2}{v_{ph(\nu)} - \nu \frac{\partial v_{ph(\nu)}}{\partial \nu}}$$  (3.10)

benutzt, wobei die Phasengeschwindigkeit als bijektive Funktion der Frequenz betrachtet werden muß, damit diese Gleichung gilt. Betrachtet man das Aussehen der Haskell-Matrix in Abbildung 3.2 so erkennt man, daß die Annahme der Bijektivität verletzt wird. Da dort nicht nur die Berechnung der Gruppengeschwindigkeit unmöglich ist, sondern ferner der funktionale Zusammenhang $v_{ph(\nu)}$ und damit auch die Taylor-Entwicklung nicht existiert, bricht ein iterativer Algorithmus an dieser Stelle ab. Der in dieser Arbeit verwendete verbesserte Algorithmus dagegen stützt sich auf Gleichung (3.9) und betrachtet die Dispersionskurven zum Teil als Funktion $v_{ph(\nu)}$ oder $\nu(v_{ph})$, abhängig von der Lage der Tangente an die Dispersionskurve. Durch dieses hybride Verfahren ist es möglich, die Dispersionskurve einer Mode zuverlässig und schnell über die gesamte Geschwindigkeits-Frequenzebene zu verfolgen.
Kapitel 4

Inversion

4.1 Einführung

Die Grundlage des allgemeinen geophysikalischen Inversionproblems ist ein Datensatz \( \mathbf{d}_{\text{obs}} = (d_1, d_2, \ldots, d_n) \in \mathbb{ID} \), bestehend aus \( n \) einzelnen Observablen \( d_i \), die den Meßwert einer beliebigen geophysikalischen Methode an einem bestimmten Ort zu einer bestimmten Zeit darstellen. Im vorangehenden Kapitel wurden Methoden beschrieben, die anhand eines gegebenen geologischen Modells, welches durch einen Modellvektor \( \mathbf{m} = (m_1, m_2, \ldots, m_m) \in \mathbb{IM} \) parametriert ist, einen synthetischen Datensatz \( \mathbf{d}_{\text{mod}} \) erzeugen. Unter der Voraussetzung, daß die Modellvorstellungen, auf denen diese Modellierungen beruhen, korrekt sind, kann man erwarten, im Rahmen der Meßgenauigkeit und zusätzlich auftretender Meßfehler, im Experiment ein mit den synthetischen Daten in Einklang stehendes Ergebnis zu erhalten. Die Modellvorstellungen beinhalten sowohl die zugrundegelegten physikalischen Gesetzmäßigkeiten als auch die darin einfließenden Modellparameter. Die Funktionale \( \mathcal{F} : \mathbb{IR}^m \rightarrow \mathbb{IR}^n, \mathbf{d}_{\text{mod}} = \mathcal{F}(\mathbf{m}) \), die einen Datensatz aus den Modellparametern erzeugen, werden als bekannt angenommen. Das klar definierte Ziel eines Inversionsalgorithmus ist es nun, ein optimales \( \mathbf{m}^* \) zu finden, so daß der modellierte Datensatz mit den gemessenen Daten möglichst gut übereinstimmt, also im Idealfall \( \mathbf{d}_{\text{mod}} = \mathbf{d}_{\text{obs}} \). Der Modellvektor \( \mathbf{m}^* \) gilt dann als Lösung des geophysikalischen Problems.

Es gibt unterschiedliche Strategien, um die Lösung \( \mathbf{m}^* \) zu ermitteln:


2. Reguläre Suchverfahren: Die einfachste Methode der Inversion besteht in einer Pa-


4.2 Grundlagen iterativer Verfahren

In den meisten Fällen sind globale Optimierungsstrategien aufgrund der großen Anzahl der zu überprüfenden Modelle nicht in angemessener Zeit durchführbar. Zudem sind in der Regel a priori Informationen vorhanden, so daß die generelle Struktur des Untersuchungsobjektes bekannt sind. Daher kann man versuchen, das Inversionsproblem mit Hilfe iterativer Methoden anzugehen. Ausgehend von einem initialen Startmodell $\mathbf{m}_0$ wird die an die gemessenen Daten bestangepaßte Modellierung in einem Bereich des Modellparameterraumes gesucht. Mit jeder Iteration wird ein Modell $\mathbf{m}_k$ gesucht, das die gemessenen Daten mit einem verringerten Fehler erklärt kann. Es entsteht eine Folge von Modellvektoren $\mathbf{m}_k$, von der gefordert wird, daß sie gegen den Lösungsvektor $\mathbf{m}^*$ konvergiert.

Die Stärke der Konvergenz läßt sich durch folgendes Quotientenkriterium quantifizieren. Sei $\mathbf{m}$ ein normierter Raum und $\mathbf{m}_k$ eine Folge in IM. Die Folge heißt konvergent von mindestens $q$-ter Ordnung falls gilt:

1. $\mathbf{m}_k$ konvergiert gegen ein $\mathbf{m}^* \in \text{IM}$.

2. Es gibt ein $C \geq 0, q > 1$ und ein $k_0 \in \mathbb{N}$, so daß für alle $k > k_0$ gilt:

$$||\mathbf{m}_{k+1} - \mathbf{m}^*|| \leq C||\mathbf{m}_k - \mathbf{m}^*||^q.$$  \hspace{1cm} (4.1)

Eine Folge besitzt mindestens lineare Konvergenz für $q = 1$ und mit einer Konvergenzrate $C \in [0, 1]$.

Ist die Konvergenz der Folge $\mathbf{m}_k$ gesichert, muß ein geeignetes Abbruchkriterium der Iteration definiert werden. Da die exakte Lösung in der Regel nicht erreicht wird, kann man festlegen, wie genau die Lösung bestimmt werden soll, d.h. $||\mathbf{m}_k - \mathbf{m}^*|| \leq \epsilon$ mit $\epsilon > 0$. Dieses Kriterium ist sicherlich nur theoretischer Natur, da die Lösung nicht bekannt ist. Stattdessen verwendet man als Abbruchkriterium eine hinreichend kleine Veränderung des aktuellen Modellvektors, d.h. $||\mathbf{m}_{k+1} - \mathbf{m}_k|| \leq \epsilon$ und/oder eine hinreichend genaue Anpassung der gemessenen Daten $\mathbf{d}$, so daß $||\mathcal{F} (\mathbf{m}_k) - \mathbf{d}|| \leq \epsilon$.

Das Prinzip der im folgenden vorgestellten Verfahren eine konvergierende Folge von $\mathbf{m}_k$ zu berechnen, beruht auf einer Linearisierung des Vorwärtsproblems. Entwickelt man die Funktion $\mathcal{F}$ in einer Taylor-Reihe um ein Modell $\mathbf{m}_k$, so erhält man, bei Vernachlässigung der Terme mit höherer als erster Ordnung, eine Approximation von $\mathcal{F}$ für einen Modellvektor $\mathbf{m}$ durch

$$\mathcal{F}(\mathbf{m}) = \mathcal{F}(\mathbf{m}_k) + (\nabla \mathcal{F}(\mathbf{m}_k))^T (\mathbf{m} - \mathbf{m}_k).$$ \hspace{1cm} (4.2)

Dabei sei der Gradient durch $\nabla = (\frac{\partial}{\partial m_1}, \frac{\partial}{\partial m_2}, \ldots, \frac{\partial}{\partial m_n})^T$ definiert. Der in Gleichung (4.2) auftauchende Gradient der Modellierungsfunktion ist im allgemeinen nicht analytisch berechenbar, so daß in Näherung ein Differenzenquotient verwendet wird. Die numerischen
Ableitungen der \( i \)-ten Komponente des Datenvektors nach der \( j \)-ten Komponente des Modellparametervektors werden zur Matrix \( F' \) zusammengefaßt, wobei die einzelnen Elemente durch
\[
F'_{i,j} = \frac{\mathcal{F}_i(m + h \cdot \hat{x}_j) - \mathcal{F}_i(m - h \cdot \hat{x}_j)}{2h}
\] (4.3)
berechnet werden. Dabei bezeichnet \( \hat{x}_j \) den \( j \)-ten Einheitsvektor des Modellparameterraumes. Die zu lösende Gleichung läßt sich somit kurz schreiben als
\[
\Delta d = F' \Delta m = 0. \quad (4.4)
\]

### 4.3 Das Newton–Verfahren

Das Newton–Verfahren ist ein wohlbekanntes Verfahren zur Bestimmung von Nullstellen differenzierbarer Funktionen \( \mathcal{F} : \mathbb{R} \to \mathbb{R} \). Mit Hilfe der Linearisierung in Gleichung (4.2) läßt sich das Newton–Verfahren direkt auf Abbildungen \( \mathcal{F} : \mathbb{R}^n \to \mathbb{R}^n \) übertragen. Die schnelle Konvergenz bleibt dabei erhalten. Nach der Wahl eines Startpunktes \( m_0 \in \text{IM} \) wird für \( k \in \mathbb{N} \) der Nachfolger \( m_{k+1} \) von \( m_k \) als eine Nullstelle der Linearisierung
\[
\mathcal{F}_k(m_{k+1}) = \mathcal{F}(m_k) + F'(m_k)(m_{k+1} - m_k) = 0 \quad (4.5)
\]
von \( \mathcal{F} \) an der Stelle \( m_k \) gesucht. Existiert die Inverse \( F^{-1} \) an der Stelle \( m_k \), so gilt für die neue Iterierte:
\[
m_{k+1} = m_k - F^{-1}(m_k) \mathcal{F}(m_k). \quad (4.6)
\]

Die schnelle Konvergenz ist mit einer Regularitätsbedingung verknüpft. Für Funktionen soll die Steigung der Tangente an der Nullstelle verschieden von Null sein. Für mehrdimensionale Abbildungen wird man dann fordern, daß die Steigung vom Punkt \( m^* \) ausgehend in jeder Richtung verschieden von Null ist. Daraus folgt die Regularität von \( F' \), bzw. die Forderung des vollen Ranges.

Mit der Definition des diskreten Gradienten durch Gleichung (4.3) beweisen Dennis & Schnabel (1983) die Konvergenz des Newton–Verfahrens. Die Voraussetzungen sind, daß \( \text{IM} \subset \mathbb{R}^m \) und \( \mathcal{F} : \text{IM} \to \mathbb{R}^n \) differenzierbar sei. Ferner sei die Lösung \( m^* \in \text{IM} \), so daß \( \mathcal{F}(m^*) = 0 \). Die Ableitung \( F' \) aus Gleichung (4.3) sei lokal stetig und invertierbar. Dann existiert ein \( \epsilon > 0 \) mit \( ||m_0 - m^*|| < \epsilon \) und ein \( h_0 > 0 \), so daß für jede Folge \( h_k \) in \( \mathbb{R} \) mit \( 0 < h_k < h_0 \) die durch Gleichung (4.6) definierte Folge \( m_k \) gegen \( m^* \) linear konvergiert. Gilt zusätzlich \( \lim_{k \to \infty} h_k = 0 \), so ist die Konvergenz superlinear.
4.4 Das Gauß–Newton–Verfahren

Ist man nicht in der Lage, Gleichung (4.4) exakt zu lösen, so soll doch der resultierende Fehler minimiert werden, um ein bestangepaßtes Modell zu finden. Dazu muß eine geeignete Fehlerfunktion definiert werden, die es zu minimieren gilt. Wählt man die Summe der Quadrate der Fehler in den einzelnen Observablen $d_i$, führt dies zur quadratischen Fehlerfunktion

$$\mathcal{L} = \frac{1}{2}(\Delta d - F^T \Delta m)^T(\Delta d - F^T \Delta m)$$

$$= \frac{1}{2} \Delta m^T F^T F \Delta m - \Delta m^T F^T \Delta d + \text{const.} \quad (4.7)$$

Die Matrix $F^T F$ ist symmetrisch und positiv definit. Daher ist die Fehlerfunktion für jeden Entwicklungspunkt $m_k$ konvex und besitzt exakt ein Minimum an der Stelle $m^*$. Damit lautet die notwendige und hinreichende Bedingung für das Minimum

$$\nabla \mathcal{L} = F^T F \Delta m - F^T \Delta d = 0. \quad (4.8)$$

Zur Bestimmung des Minimums von $\mathcal{L}$ ist also die Gleichung $F^T F \Delta m = F^T \Delta d$ zu lösen. $F^T F$ ist eine $m \times m$-Matrix, unabhängig von der Dimension $n$ des Datenaumes. Daher können überbestimmte Probleme mit $n > m$ im Sinne der kleinsten Fehlerquadrate gelöst werden. Besitzt $F^T(m)$ vollen Rang, so ist $F^T F$ invertierbar und die Lösung der Gleichung (4.8) ist durch

$$m_{k+1} = m_k - \left[ F^T F \right]^{-1} F^T \Delta d \quad (4.9)$$


Für ein Modell $m^* \in \mathbb{R}^m$ mit $\mathcal{F}(m^*) = 0$ und unter der Bedingung, daß $F^T F$ invertierbar ist, existiert eine Umgebung um $m^*$, so daß das durch Gleichung (4.9) bestimmte Verfahren für jeden Startpunkt innerhalb dieser Umgebung durchführbar ist. Die gesamte Iterationsfolge bleibt innerhalb der Umgebung und konvergiert superlinear gegen $m^*$. Die schnelle Konvergenz des Gauß–Newton–Verfahrens folgt nur für den Fall, daß die Minimallösung der Fehlerfunktion $\mathcal{L}$ zugleich eine Nullstelle von $\mathcal{F}$ ist. Sonst braucht das Gauß–Newton–Verfahren nicht einmal lokal konvergent zu sein.
4.5 Verallgemeinertes Gradientenverfahren

Das klassische Gradientenverfahren vermutet, ausgehend von einem Punkt $\mathbf{m}_k$, die Lösung des Minimierungsproblems $\mathbf{m}^*$ in Richtung des größten „Gefälles“. Die Richtung des steilsten Abstiegs ist durch den negativen Gradienten definiert, weshalb die Iteration des klassischen Gradientenverfahrens durch

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \nabla \mathcal{L}(\mathbf{m}_k)$$  \hspace{1cm} (4.10)

mit einer Schrittweite $\alpha_k \in \mathbb{R}^+$ gegeben ist. Im Gegensatz zum Newton- und Gauß-Newton-Verfahren werden an $\nabla \mathcal{L}(\mathbf{m}_k)$ keine weiteren Anforderungen gestellt. Insbesondere muß $\mathbf{F}'$ weder invertierbar sein noch den vollen Rang aufweisen. Läßt man neben dem negativen Gradienten auch andere Richtungen $\mathbf{l}_k$ zu, so erhält man teilweise effektivere Verfahren. Man kann also ein allgemeines Gradientenverfahren durch

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \mathbf{l}_k$$  \hspace{1cm} (4.11)

mit der Abstiegsrichtung $\mathbf{l}_k$ und der Schrittweite $\alpha_k > 0$ beschreiben. Die Richtung $\mathbf{l}_k$ heißt Abstiegsrichtung im Punkt $\mathbf{m}_k$, wenn die zu minimierende Funktion $\mathcal{L}$ an der Stelle differenzierbar ist und dort eine positive Richtungsableitung besitzt, d.h. $\mathbf{l}_k^T \nabla \mathcal{L}(\mathbf{m}_k) > 0$.

4.5.1 Schrittweitenbestimmung

Neben einer sinnvollen Bestimmung der Abstiegsrichtung ist für die Konvergenz eines Gradientenverfahrens auch die Schrittweitenregelung entscheidend, da ein allgemeines Gradientenverfahren auch bei absteigenden Funktionswerten nicht gegen die Minimallösung zu konvergieren braucht.

Die einfachste Methode zur Schrittweitenbestimmung ist die Minimierungsregel, welche den Nachfolger der aktuellen Lösung $\mathbf{m}_{k+1}$ entlang des durch die Abstiegsrichtung festgelegten Strahles bestimmt, so daß $\mathcal{L}(\mathbf{m}_{k+1})$ minimal wird. Das heißt, es wird durch Auswertung der Funktion $\mathcal{L}$ die Schrittweite $\alpha_k$ bestimmt für die gilt:

$$\mathcal{L}(\mathbf{m}_k - \alpha_k \mathbf{l}_k) = \min \left\{ \mathcal{L}(\mathbf{m}_k - \alpha \mathbf{l}_k) \mid \alpha \in [0, \infty) \right\}.$$  \hspace{1cm} (4.12)

Der Nachteil der Minimierungsregel besteht darin, daß sie im allgemeinen unendlich viele Funktionsauswertungen benötigt. Demnach wird eine Realisierung der Minimierungsregel der Einschränkung unterliegen, daß nur ein lokales Minimum näherungsweise bestimmt werden kann.

Eine weitere Schrittweitenregel ist $\alpha_k = [\mathbf{F}'^T \mathbf{F}']^{-1}$. Da $[\mathbf{F}'^T \mathbf{F}']^{-1} \nabla \mathcal{L}$ wegen

$$([\mathbf{F}'^T \mathbf{F}']^{-1} \nabla \mathcal{L})^T \nabla \mathcal{L} = (\nabla \mathcal{L})^T [\mathbf{F}'^T \mathbf{F}]^{-1} \nabla \mathcal{L} > 0$$  \hspace{1cm} (4.13)
4.5. VERALLGEMEINERTES GRADIENTENVERFAHREN

Eine Abstiegsrichtung ist, geht das verallgemeinerte Gradientenverfahren in das Newton-Verfahren über.

Eine gebräuchliche Schrittweitenregel wurde von Armijo (1966) und Goldstein (1966) entwickelt. Sie setzen die Steigung des Gradienten mit der Steigung der Sekante der Funktion \( \mathcal{L} \) an den Stellen \( \mathbf{m}_k \) und \( \mathbf{m}_k - \alpha_k \mathbf{l}_k \) in Verhältnis. Gesucht ist dann eine Schrittweite \( \alpha_k > 0 \), so daß für das Sekanten-/Tangentialverhältnis gilt:

\[
1 - \varsigma \geq \frac{\mathcal{L}(\mathbf{m}_k) - \mathcal{L}(\mathbf{m}_k - \alpha_k \mathbf{l}_k)}{\alpha_k \mathbf{l}_k^T \nabla \mathcal{L}(\mathbf{m}_k)} \geq \varsigma, \tag{4.14}
\]

wobei \( \varsigma \in [0, \frac{1}{2}] \) eine Konstante ist. Diese Schrittweitenregel führt immer zu einem echten Abstieg \( \mathcal{L}(\mathbf{m}_{k+1}) < \mathcal{L}(\mathbf{m}_k) \).

4.5.2 Konvergenz des Verfahrens

Wird der verallgemeinerte Gradientenalgorithmus zusammen mit der Minimierungsregel aus Gleichung (4.12) zur Lösung des quadratischen Optimierungsproblems aus Gleichung (4.7) verwendet, dann existiert während jedem Schritt \( k \) eine symmetrische positiv definite Matrix \( \mathbf{L}_k \), so daß die Beziehung

\[
\mathbf{l}_k = \mathbf{L}_k \nabla \mathcal{L} \tag{4.15}
\]

zwischen dem Gradienten an der Stelle \( \mathbf{m}_k \) und der Abstiegsrichtung \( \mathbf{l}_k \) besteht. Unter Verwendung der Kantorowitsch-Ungleichung (Kantorowitsch & Akilow (1964)) beweist Luenberger (1973) für den Anpassungsfortschritt des Algorithmus zwischen zwei Iterationen folgende Abschätzung:

\[
||\mathbf{m}_{k+1} - \mathbf{m}^*|| \leq \frac{\lambda_1 - \lambda_m}{\lambda_1 + \lambda_m} ||\mathbf{m}_k - \mathbf{m}^*||. \tag{4.16}
\]

Dabei sind die Werte \( \lambda_{1...m} \) die in absteigender Reihenfolge sortierten Eigenwerte der Matrix \( \mathbf{L}_k \mathbf{L}_k^T \mathbf{F} / \mathbf{F}^T \mathbf{L}_k^T \mathbf{L}_k \). Das heißt, daß das Konvergenzverhalten durch das Verhältnis zwischen dem größten Eigenwert \( \lambda_1 \) und dem kleinsten Eigenwert \( \lambda_m \) bestimmt wird. Sind alle Eigenwerte von der gleichen Größenordnung so wird die Lösung \( \mathbf{m}^* \) innerhalb weniger Iterationen gefunden. Ist das Verhältnis \( \lambda_1 / \lambda_m \), auch als Konditionszahl bekannt, sehr groß oder ist \( \lambda_m = 0 \), so ist die Konvergenz nur sehr langsam oder die Iterationsfolge konvergiert nicht gegen die Lösung, sondern verharrt beim Startmodell. Durch den Vergleich von Gleichung (4.16) mit der Definition von Konvergenzrate und -ordnung in Gleichung (4.1) ist offensichtlich, daß ein verallgemeinertes Gradientenverfahren nur linear gegen die Lösung konvergiert.
4.6 Anwendung der Verfahren

Zur Veranschaulichung der bisherigen theoretischen Ausführungen soll ein einfaches Inversionsproblem gelöst werden. Dabei handelt es sich um die refraktionsseismische Erkundung für das einfache Modell einer Schicht mit der Mächtigkeit $h_1 = 5$ m und der p-Wellengeschwindigkeit $v_{p1} = 400$ m/s über einem Halbraum mit $v_{p2} = 750$ m/s. In den oberen Figuren der Abbildung 4.1 wird der Fehler zwischen der modellierten Laufzeitkurve dieses Modells und den modellierten Laufzeitkurven für veränderte Werte von $h_1$ und $v_{p2}$ durch die Konturlinien der Fehlerfunktion $\mathcal{L}$ dargestellt. Die Folge der Modellvektoren $\mathbf{m}_k$ ist durch jeweils eine rote und eine grüne Linie in diese Darstellung integriert worden. Dabei bezeichnen rote Linien den Verlauf des verallgemeinerten Gradientenverfahrens und grüne Linien den des Gauß-Newton-Verfahrens. Darunter sind die Werte der Fehlerfunktion $\mathcal{L}(\mathbf{m}_k)$ gegen die Anzahl $k$ der Iterationen aufgetragen, wobei die jeweiligen Verfahren wie oben beschrieben gekennzeichnet sind.

Die genauere Betrachtung der Abbildung 4.1 läßt dreierlei erkennen:

1. Die Fehlerfunktion $\mathcal{L}$ ist offensichtlich nicht convex.
2. Die Konvergenz ist abhängig vom Startmodell.
3. Die Konvergenzordnung des Gauß-Newton-Verfahren ist erwartungsgemäß höher als die des Gradientenverfahrens.

Punkt 1 bedeutet, daß sich die Fehlerfunktion $\mathcal{L}$ nicht überall, wie in Abschnitt 4.4 gefordert, durch eine positiv definite quadratische Form approximieren läßt. Diese Tatsache ist Ausdruck der Nichtlinearität des Inversionsproblems. Daraus folgt für Punkt 2 nicht nur, daß die Konvergenzrate vom Startmodell abhängig ist, sondern auch die Konvergenz insgesamt. Dies wird durch den Vergleich der rechten und linken Hälfte von Abbildung 4.1 verdeutlicht. Die Situation in beiden Fällen ist bis auf die Wahl eines leicht unterschiedlichen Startmodells identisch. Beim Gauß-Newton-Verfahren besteht eine Abhängigkeit des neuen Modellvektors $\mathbf{m}_{k+1}$ von der Krümmung der Funktion $\mathcal{L}$ an der Stelle $\mathbf{m}_k$. Das führt zunächst dazu, daß der Modellverbesserungvektor $\Delta \mathbf{m}$ nicht in Richtung des Gradienten liegt. Dies ist auch Ursache für die höhere Konvergenzordnung des Gauß-Newton-Verfahrens, was zu einer deutlich geringeren Anzahl von benötigten Iterationen führt, wie Abbildung 4.1 zeigt. Der Nachteil dieses Verhaltens zeigt sich bei Wahl eines ungeeigneten Startmodells, wie dies in der rechten Hälfte der Abbildung 4.1 geschehen ist. Die anschließende Iteration führt zu einem Modellvektor, in dessen Umgebung die Bedingungen zur Durchführung des Gauß-Newton-Verfahrens nicht erfüllt sind, so daß die Iteration abgebrochen wird. Das Gradientenverfahren dagegen konvergiert auch für diesen Fall gegen die Lösung.
**Abbildung 4.1:** O**ben:** Folge der Modellvektoren für das Gradientenverfahren (rote Linien) und das Gauß-Newton-Verfahren (grüne Linien) bei unterschiedlicher Wahl des Startmodells. Die Konturlinien stellen die Fehlerfunktion dar, wobei cyan-farbene Linien niedrige und magenta-farbene Linien hohe Fehler kennzeichnen. Die Lösung ist durch • gekennzeichnet. **Unten:** Abnahme des relativen Fehlers während der Iteration.
4.7 Singulärwertzerlegung

Bei den schnell konvergierenden Newton- bzw. Gauß-Newton-Verfahren wurde die Invertierbarkeit bzw. der volle Rang der Matrix \( F' \) gefordert. Tritt während der Inversion der Fall ein, daß die Variation eines oder mehrerer Modellparameter keinen Einfluß auf das Ergebnis der Modellierung hat, so wird durch die numerische Differentiation eine Nullspalte in der Matrix \( F' \) erzeugt. Ist für einen Punkt \( m_k \) eine Observable \( d_i \) konstant gegenüber der Variation der Modellparameter, so wird in \( F' \) eine Nullzeile erzeugt. Sind zwei oder mehrere Modellparameter voneinander abhängig und existieren keine Datenpunkte, die jeweils von einem einzeln dieser Parameter abhängig sind, so sind die Spalten von \( F' \) linear abhängig. In jedem dieser drei Fälle wird der Rang \( r \) der Matrix reduziert, so daß weder \( F' \) noch \( F'^T \) invertierbar sind. Eine Lösung dieses Problems kann durch den Ansatz der Singulärwertzerlegung gefunden werden.

Die „Singular Value Decomposition“ (SVD) nach Lanczos (1958) kann mit jeder Matrix durchgeführt werden. Durch die SVD werden orthonormale Basen des Datenraumes im \( \mathbb{ID}_\perp \in \mathbb{IR}^n \) und des Modellparameterraumes im \( \mathbb{IM}_\perp \in \mathbb{IR}^m \) erzeugt und die aufspannenden Vektoren werden zu den Matrizen \( U \) bzw. \( V \) zusammengefaßt. Diese Matrizen sind eine Abbildung des erzeugten orthonormierten Raumes auf den verwendeten Daten- bzw. Modellparameterraum.

Jede Matrix \( J \in \mathbb{IR}^{n \times m} \) kann dargestellt werden als

\[
J = USV^T,
\]

wobei die Spalten von \( U \in \mathbb{IR}^{n \times n} \) die Eigenvektoren von \( JJ^T \) und die Spalten von \( V \in \mathbb{IR}^{m \times m} \) die Eigenvektoren von \( J^T J \) enthalten. \( S \in \mathbb{IR}^{n \times m} \) ist eine beliebige Matrix, die auf ihrer Hauptdiagonalen die „Singular Values“, d.h. die Wurzeln der Eigenwerte von \( J J^T \) enthält. Dies sind die gleichen Eigenwerte wie von \( J J^T \). Da \( J^T J \) und \( J J^T \) jeweils reelle symmetrische Matrizen sind, existieren \( r \) reelle Eigenwerte \( \lambda_i > 0 \), wobei \( r \) der Rang der Matrix \( J \) ist.

Es ist wichtig zu unterscheiden, ob ein Eigenvektor mit dem Eigenwert Null gekoppelt ist oder nicht. Seien \( U_r \) und \( V_r \) die Matrizen, deren Spalten die Eigenvektoren enthalten, die zu den \( r \) von Null verschiedenen Eigenwerten gehören. Weiterhin seien \( U_0 \) und \( V_0 \) die Matrizen, deren Spalten die Eigenvektoren enthalten, die zu den Eigenwerten gleich Null gehören. Die mit dem Subskript \( r \) gekennzeichneten Matrizen spannen die Unterräume \( \mathbb{ID}_r \), \( \mathbb{IM}_r \) des Daten- bzw. Modellparameterraumes auf, wobei gilt:

\[
J = [U_r, U_0] \begin{bmatrix} S_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_r^T \\ V_0^T \end{bmatrix} = U_r S_r V_r^T.
\]

Die Komponenten des Daten- bzw. Modellparameterraumes in Richtung der Eigenvektoren in \( U_0 \) oder \( V_0 \) beeinflussen nicht die Abbildungsmatrix \( J \) vom Modellparameterraum
in den Datenraum. Daher heissen die von \( \bigcup_0 \) und \( V_0 \) aufgespannten Räume \( D_0, M_0 \) Daten- bzw. Modellnullraum.

### 4.7.1 Orthogonale Projektionsoperatoren

Oben wurde gezeigt, daß die Matrizen \( \mathbf{V}, \mathbf{U}, \mathbf{V}_r, \mathbf{U}_r, V_0 \) und \( \bigcup_0 \) orthogonal sind. Stellvertretend sollen \( \mathbf{V} \) und \( \mathbf{V}_r \) betrachtet werden, da die Eigenschaften analog auch für die anderen Matrizen gelten.

Es gilt \( \mathbf{V} \mathbf{V}^T = \mathbf{V}^T \mathbf{V} = \mathbf{I} \), wenn \( \mathbf{V} \) vollen Rang besitzt. Ist der Rang \( r < m \), so gilt zwar weiterhin \( \mathbf{V}^T \mathbf{V} = \mathbf{I} \), aber \( \mathbf{V}_r \mathbf{V}_r^T \neq \mathbf{I} \).

Die Matrix \( \mathbf{V}_r \mathbf{V}_r^T \) ist ein Projektionsoperator \( \Psi \) eines beliebigen Modellvektors auf den Raum \( \mathbf{M}_r \). Ein Projektionsoperator besitzt per definitionem die Eigenschaft, daß mehrmaliges Anwenden einen schon projizierten Vektor nicht verändert, d.h. \( \Psi(\Psi \mathbf{m}) = \Psi \mathbf{m} \).

Diese Bedingung ist offensichtlich erfüllt, da gilt:

\[
\Psi(\Psi \mathbf{m}) = \mathbf{V}_r \mathbf{V}_r^T \mathbf{V}_r \mathbf{m} = \mathbf{V}_r \mathbf{m}.
\]  \( \text{(4.19)} \)

Mit Hilfe der Projektionsoperatoren ist es möglich, Daten- und Modellvektoren auf die vier Unterräume zu projizieren.

### 4.7.2 Die generelle Inverse

Für den Fall, daß die Matrix \( \mathbf{J} \) einen defizitären Rang besitzt, kann aus Gleichung (4.18) eine generalisierte Inverse der Matrix berechnet werden:

\[
\mathbf{J}^+ = \mathbf{V}_r \mathbf{S}_r^{-1} \mathbf{U}_r^T.
\]  \( \text{(4.20)} \)

Die Matrix \( \mathbf{S}_r \) ist eine Diagonalmatrix mit den Eigenwerten \( \lambda_i \), so daß die Inverse wiederum eine Diagonalmatrix ist, deren Diagonale die Werte \( 1/\lambda_i \) enthält.

Für den Fall \( r = m = n \) entspricht die generelle Inverse der gewöhnlichen Inversen. Existieren dagegen Daten- und Modellnullräume, so ist die generalisierte Inverse die Lösung des Minimierungsproblems

\[
\left\| \mathbf{J} \mathbf{m} - \mathbf{d} \right\|^2 + \| \mathbf{m} \|^2 \rightarrow \min. \]  \( \text{(4.21)} \)

Das heißt, die Daten werden wie durch das Gauß–Newton-Verfahren im Sinne der kleinsten Fehlerquadrate angepaßt. Dabei wird zusätzlich die Norm der Lösung \( \mathbf{m}^* \) minimiert.
4.7.3 Auflösung und Redundanz

Die im vorherigen Abschnitt behandelte generelle Inverse einer Matrix eröffnet die Möglichkeit, formal Problemstellungen zu behandeln, die unterbestimmt und daher vieldeutig sind. Die formalen Lösung alleine besitzt aber nur geringe Aussagekraft. Vielmehr muß es ein Unterscheidungskriterium geben, welche Observablen Relevanz besitzen und welche Modellparameter sich mit Hilfe der vorhandenen Daten bestimmen lassen. Mit Hilfe der linearen Approximation der Abbildungsfunktion $F : IM \rightarrow ID$ durch die Matrix $F'$ lassen sich die zwei folgenden Beziehungen schreiben:

$$ m_r = F' F_m = V_r V_r^T $$

(4.22)

$$ d_r = F' F^T d = U_r U_r^T. $$

(4.23)


$$ e = \text{Diag}(F'^T (F'^T F'^T)^{-1} F'^T). $$

(4.24)

Sei die Matrix $F'$ dargestellt durch ihre Singulärwertzerlegung, so folgt $e = U_r U_r^T$, bzw. für $F'^T$ folgt $e = V_r V_r^T$. Die einzelnen Elemente des Vektors liegen deshalb im Intervall $[0, 1]$. Als eine weitere Eigenschaft der EID-Werte fanden Ben-Israel & Greville (1980)

$$ \sum_{i=1}^{N} e_i = \text{Rang}(F'), $$

(4.25)

4.7.4 Inversion in den Unterräumen

Wie gezeigt wurde, sind die SVD und die EID geeignete Methoden, um relevante und irrelevante Anteile des gesamten Inversionsproblems voneinander zu separieren. Dadurch wird es möglich, die Inversion unterbestimmter Systeme durchzuführen, wobei die Lösung in dem durch \( V_F \) aufgespannten Unterraum gesucht wird. Bei großen Inversionsproblemen kann die Dimension dieses Unterraumes allerdings noch groß genug sein, um ein erhebliches Maß an Rechenzeit bei der Berechnung der Matrix \( F' \) zu erfordern. Für solche Fälle zeigten Kennett et al. (1988) den allgemeinen Weg der „Subspace Methods“ auf. Mit Hilfe von Projektionsoperatoren auf niedrigdimensionale Unterräume ist das gesamte Inversionsproblem auf effektive Weise sukzessive in diesen Unterräumen lösbar. Es ist nun naheliegend, die durch die SVD bestimmten Projektionsoperatoren zu diesem Zweck einzusetzen.


Zur Bestimmung der generalisierten Inversen wurden die Matrizen \( U_F \) und \( V_F \) durch die Eigenvektoren gebildet, deren zugehörige Eigenwerte \( \lambda_1, \ldots, \lambda_F \) größer als Null sind. Damit kann das Verhältnis zwischen dem größten und dem kleinsten Eigenwert \( \lambda_1/\lambda_F \) unter Umständen recht groß werden. Nach den Erkenntnissen aus Abschnitt 4.5.2 bedingt aber eine schlechte Konditionierung eine geringe Konvergenzrate. Um zwecks schneller Konver-
ganz die Konditionszahl der zu invertierenden Matrix zu verbessern, ist es nötig, kleine Eigenwerte und deren zugehörige Eigenvektoren zu eliminieren. Dies kann auf einfache Weise dadurch geschehen, daß diese zum Nullraum gezählt werden.

Das Kriterium für die Zugehörigkeit eines Eigenvektors zum Nullraum wird damit von \( \lambda_i = 0 \) zu \( \lambda_i < \epsilon \) geändert oder zu \( \lambda_1/\lambda_i > 10 \), wenn alle Eigenwerte innerhalb der gleichen Größenordnung liegen sollen.

Die Matrix \( \mathbf{V}_r^T \) transformiert die Modellparameter in die neuen Koordinaten des Unterraumes, in dem das Inversionsproblem zunächst gelöst werden soll. Dementsprechend werden die Einheitsvektoren \( \mathbf{\hat{x}}_i \) der numerischen Differentiation in Gleichung (4.3) zu \( \mathbf{V}_r^T \mathbf{\hat{x}}_i \) transformiert, so daß sich die Anzahl der zu bildenden Ableitungen auf \( r \) reduziert. Ist die Lösung in dem durch \( \mathbf{V}_r \) aufgespannten Unterraum gefunden, so kann sich eine weitere verbesserte Lösung nur in dem dazu orthogonalen Unterraum befinden, was halb für die weitere Optimierung höchstens \( m - r \) Ableitungen gebildet werden müssen. Eine Bildung der Ableitungen in allen \( m \) Dimensionen des Modellparameterraumes ist erst dann nötig, wenn der verbliebene Unterraum nur noch von Eigenvektoren mit Null als zugehörigem Eigenwert aufgespannt werden.


### 4.8 Joint Inversion

In den bisherigen Betrachtungen wurde der Datenvektor \( \mathbf{d} \) als Darstellung einer geophysikalischen Messung betrachtet. Bei der gemeinsamen Inversion unterschiedlicher geophysikalischer Methoden, der sogenannten Joint Inversion, ist die unterschiedliche Natur der involvierten physikalischen Vorgänge zu berücksichtigen. Daher reicht es im allgemeinen nicht aus, zwei Verfahren dadurch zu koppeln, daß die jeweiligen Ergebnisse zu einem Datenvektor zusammengefügt werden und der Modellparameterraum entsprechend erweitert wird. Der Einfachheit halber wird hier und im weiteren davon ausgegangen, daß die Joint Inversion von zwei Verfahren durchgeführt werden soll, wobei sich die Betrachtungen in analoger Weise auf mehrere Verfahren erweitern lassen. Da die individuelle Inversion bei-

Ein einfaches Beispiel soll den Einfluß der Gewichtung verdeutlichen. Sei \( \mathcal{L}^A \) die Fehlerfunktion für die aus den Abschnitten 4.6 und 4.7.4 bekannte refraktionsseismische Messung. Sei ferner eine Schlumberger-Sondierung durchgeführt worden, so daß auch daraus eine Schichtmächtigkeit an der Stelle des seismischen Meßprofils bestimmt wird. Beide Messungen seien mit 10% gaußverteilt Rauschen behaftet. Abbildung 4.3 zeigt die beiden Fehlerfunktionen, wobei die Parameterkombinationen des zugrundeliegenden Modells jeweils durch ein Kreuz und die Minima der Fehlerfunktionen durch einen Kreis dargestellt sind.

Abbildung 4.3: Fehlerfunktionen der Refraktionsseismik (links) und der Geoelektrik (rechts). Die korrekten Modellparameter sind durch Kreuze, die Minima der Fehlerfunktionen durch Kreise gekennzeichnet.

Beide Fehlerfunktionen werden nun durch den Gewichtungsfaktor \( \gamma \in [0, 1] \) zu einer gemeinsamen Fehlerfunktion \( \mathcal{L} \) verknüpft, so daß gilt:

\[
\mathcal{L} = \gamma \mathcal{L}^A + (1 - \gamma) \mathcal{L}^B.
\]  

(4.26)

Die so erhaltene Fehlerfunktion wird zur Inversion genutzt. Dabei soll das Verhalten des Inversionsergebnisses bei Änderung des Gewichtsparameters \( \gamma \) untersucht werden, wozu die Inversion für unterschiedliche Werte durchgeführt wurde.
Die nebenstehende Abbildung zeigt das Inversionsergebnis für die Schichtmächtigkeit \( h_1 \) als Funktion des Gewichtungsfaktors \( \gamma \). Als Extremwerte treten dabei die Ergebnisse der einzelnen Inversionen beider Verfahren auf. Zwischen diesen Extremwerten kann jede beliebige Schichtmächtigkeit durch geeignete Wahl von \( \gamma \) und abhängig von den Eigenschaften der einzelnen Fehlerfunktionen als Ergebnis der gemeinsamen Inversion auftreten. Dieses Verhalten ist insofern ungünstig, da ad hoc kein Kriterium zur geeigneten Wahl von \( \gamma \) angegeben werden kann.

Daher soll zur Joint Inversion ein Algorithmus verwendet werden, der auf die Methodik der Inversion einer einzelnen Methode abaut. Dabei sollen im Verlauf der Iterationenfolge \( m_k \) der gemeinsamen Modellparameter die Fehler der einzelnen Methoden minimiert werden. Eine Verknüpfung durch einen a priori gewählten Gewichtungsfaktor findet nicht statt. Ein Abbruch des Algorithmus findet unter der Bedingung statt, daß eine Verringerung des Fehlers einer Methode im Widerspruch zu einer anderen Methode steht, d.h. sich deren Fehler vergrößern würde.

In Abbildung 4.5 ist ein vereinfachtes Flußdiagramm des verwendeten Inversionsalgorithmus für die Inversion zweier Verfahren \( A \) und \( B \) gezeigt. Für mehrere Verfahren kann der Algorithmus analog erweitert werden. Das Flußdiagramm gliedert sich in drei Bereiche, oben der Eingabebereich, darunter die Modellierungen, Bildung der Ableitungen und der Abstiegsrichtung jeweils für die jeweiligen Methoden getrennt ausgeführt und schließlich im unteren Teil des Diagramms die eigentlichen Iterationsvorschriften. Im folgenden soll dieser Algorithmus detaillierter betrachtet werden. Die Eingabeschnittstellen zum Benutzer bedürfen dabei wohl keiner weiteren Erläuterung, gleichfalls auch nicht die Modellierungen, welche ausführlich in Kapitel 3 beschrieben wurden. Zur Bestimmung der Abstiegsrichtung für die einzelnen Methoden erfolgt zunächst die Bildung des Gradienten \( \nabla L \) und des Modellveränderungsvektors nach dem Gauß-Newton-Verfahren

\[
\left[ E E^T \right]^{-1} E^T \Delta d.
\]

Durch Bildung des Skalarproduktes zwischen beiden Richtungen wird überprüft, ob die Lösung des Gauß-Newton-Verfahrens eine Abstiegsrichtung darstellt. Ist dies nicht der Fall kann eine Abstiegsrichtung durch Verwendung des Subraum-Gauß-Newton-Verfahrens oder alternativ durch Gleichsetzen mit den Gradienten gefunden werden. Sind die Abstiegsrichtungen \( [A] \), \( [B] \) für beide Verfahren bestimmt, werden eine Reihe von Fallunterscheidungen durchgeführt. Im ersten Fall gilt: \( \Psi^B_A = 0 \) und \( \Psi^A_B = 0 \). Das heißt, der Projektionsoperator auf den relevanten Modellparameterraum der Methode \( B \), angewandt auf die Abstiegsrichtung der Methode \( A \), liefert den Nullvektor; gleichzeitig gilt dies auch für die Anwendung.

Abbildung 4.4: Bestimmte Mächtigkeit \( h_1 \) in Abhängigkeit von \( \gamma \)
Abbildung 4.5: Flußdiagramm des verwendeten Inversionsalgorithmus.

Gelten die Bedingungen für den Fall 1 nicht, so sind die Erkundungsmethoden $A$ und $B$ von gemeinsamen Parametern abhängig. Dies ist der Fall, der zum Zwecke der Joint Inversion angestrebt wird. Als weitere Bedingung in diesem zweiten Fall sollen die Abstiegsrichtungen der Methoden die Ungleichung $\|B^T A\| > 0$ erfüllen. Durch diese Bedingung ist gewährleistet, daß während des Verfahrens die Kombination beider Methoden eine gemeinsame Abstiegsrichtung liefern, so daß der Fehler in jedem Schritt für beide Methoden simultan reduziert wird. Damit wird die Möglichkeit ausgeschlossen, daß der Fehler einer Methode auf Kosten der anderen verringert wird. Die Kombination der Abstiegsrichtungen der einzelnen Methoden liefert die gemeinsame Abstiegsrichtung, wobei für diese neue Richtung eine entsprechende Schrittweite $\alpha^{Joint}$ durch die in Abschnitt 4.5.1 beschriebenen Methoden zu finden ist.

Wird auch die Bedingung für den zweiten Fall nicht erfüllt, was z.B. dann auftritt, wenn eine Methode schon eine lokales Minimum erreicht hat, führt dies abschließend auf den dritten Fall. An diesem Punkt der Iterationsfolge ist es nicht mehr möglich, die Anpassungsfehler beider Methoden an die Daten gleichzeitig zu reduzieren. Sei dabei beispielsweise Methode $A$ mit dem größeren Anpassungsfehler behaftet. Es besteht nun noch die Möglichkeit, die Anpassung für Methode $A$ weiter zu verbessern, ohne das Resultat für Methode $B$ zu verändern. Wie Rowbotham & Pratt (1997) für die Methode der Laufzeit-Tomographie zeigten, können die Modellparametervektoren in eine gewünschte Richtung verändert werden, ohne den Anpassungsfehler zu vergrößern, solange die Anpassungsrichtung im Nullraum liegt. Die gewünschte Richtung wird im Falle der Joint Inversion durch die Anpassung der weiteren Methoden festgelegt, also in diesem Beispiel durch Methode $A$. Um die obige Bedingung zu erfüllen, wird die durch Methode $A$ bestimmte Abstiegsrichtung des Modellparametervektors durch den Operator $\Psi_0^B$ auf den Nullraum der Methode $B$ projiziert. Wie gewohnt, erfolgt die Ermittlung einer adäquaten Schrittweite für die so gefundene Richtung.

Sind die Abstiegsrichtungen und Schrittweiten bestimmt, wird der Nachfolger des Modellparametervektors durch Gleichung (4.11) berechnet und die Iteration fortgeführt, bis ein Abbruchkriterium erfüllt ist.
4.9 Inversion von Rayleigh–Wellen


Um prinzipiell Aussagen über die Frequenzabhängigkeit der Gruppenlaufzeiten zu machen, benötigt man eine Transformation des Signals aus dem Zeit–Bereich in den Zeit–Frequenz–Bereich. Diese Aufgabe kann mit verschiedenen Ansätzen gelöst werden, wobei die jeweiligen Transformationen unterschiedliche Bedingungen z.B. bezüglich der Erhaltungssätze erfüllen. Da zu einem späteren Zeitpunkt sowohl Linearität als auch Energieerhaltung gefordert werden, soll folgendes Transformationspaar betrachtet werden:

\[
P[t_i, \nu_j] = \sum_k z[t_k] \psi^*_s[t_k - t_i] e^{-2\pi i \nu_j t_k} \quad (4.27)
\]

\[
z[t_i] = \sum_k \sum_j P[t_k, \nu_j] \psi_s[t_i - t_k] e^{2\pi i \nu_j t_k}. \quad (4.28)
\]

Gleichung (4.27) ist die diskrete Analysetransformation, die das Signal in elementare Komponenten, sogenannte „Wavelets“, zerlegt. Die Wavelets sind jeweils in der Zeit–Frequenz–Ebene bis auf eine gewisse Unschärfe um einen Zeitpunkt \(t_i\) und eine Frequenz \(\nu_j\) lokalisert. \(P[t_i, \nu_j]\) ist eine komplexe Größe und enthält die Amplituden- und Phaseninformation über das zugeordnete Wavelet. Der Absolutbetrag \(||P[t_i, \nu_j]||\) kann als Energie- dichte des Signals in dem jeweiligen Zeit–Frequenz–Intervall gedacht werden, weshalb ich im folgenden \(||P[t_i, \nu_j]||\) als Energie-Dichteverteilung oder kurz Verteilung bezeichne. Gleichung (4.28) ist die Umkehrfunktion oder Synthesetransformation der Gleichung (4.27).

Neben der Linearität wird auch die Energieerhaltung erfüllt, wenn die Fensterfunktion \(\psi_s\) folgender Bedingung genügt:

\[
\int_{-\infty}^{\infty} \psi_s(t') \psi^*_s(t') \, dt' = 1. \quad (4.29)
\]

Ein Einsetzen von Gleichung (4.27) in (4.28) ergibt offensichtlich unter Verwendung von (4.29) die Identität. In dieser Arbeit findet das Morlet-Wavelet

\[
\psi_s(t_i - t') = (s \pi)^{-\frac{1}{4}} e^{-\frac{|t_i - t'|^2}{s}} \quad (4.30)
\]

Verwendung (Grossmann et al. (1989)), welches Bedingung (4.29) erfüllt.
Die Fensterfunktion $\psi$ kann durch den Skalenfaktor $s$ hinsichtlich der Ausdehnung in Zeit und Frequenz beeinflußt werden. Durch die Unschärferelation $\Delta t \cdot \Delta \nu \geq \text{const.}$ geht eine genauere Lokalisation des Wavelets in der Zeit mit einer Verbreiterung seines Spektrums einher und umgekehrt.


Abbildung 4.6 gibt einen Überblick über die in diesem Abschnitt dargestellte Methodik der Signalanalyse und -synthese, eingebettet in das Ablaufschema der Inversion. Ausgangspunkt ist ein synthetisches Seismogramm (Abb. 4.6a), welches in den $t$–$\nu$–Bereich transformiert wird. Den Absolutbetrag $|P[t, \nu]|$ des transformierten Seismogramms zeigt Abb. 4.6b. Da die Energie in einem Wellenpaket mit der Gruppengeschwindigkeit durch den Raum transportiert wird, geht man bei der Interpretation von $P[t, \nu]$ davon aus, daß Maxima der Verteilung als Maxima einer Signalkomponente betrachtet werden können und somit zur Bestimmung der Gruppenlaufzeiten in Abhängigkeit von der Frequenz genutzt werden können (Kennett (1976)). Deshalb wurden die Maxima von $|P[t, \nu]|$ bestimmt und in Abb. 4.6c dargestellt. Diese Maxima werden als Teile von Dispersionskurven betrachtet und für die Inversion genutzt. Zuvor müssen aber anhand der in Abb. 4.6c enthaltenen Informationen die Energimaxima den einzelnen Moden der Dispersionskurven zugeordnet werden. Eine Aufgabe, die interaktiv durchgeführt werden muß und einige Probleme beinhaltet:

2. Aus Punkt 1 ergibt sich für den interpretierenden Geophysiker sofort ein weiteres Problem. Er muß entscheiden, ob Signalanteile zu einer oder zu mehreren Moden gehören und, diese Frage ist sehr viel schwieriger zu beantworten, welcher Mode sie zuzuweisen sind. Der mit „2“ gekennzeichnete Bereich in Abb. 4.6d ist eine starke Interferenz zwischen zwei Signalen. Obwohl man anhand der geschätzten Maxima der Energiedichteverteilung eine durchgehende Dispersionskurve zu sehen glaubt, sind die eingezeichneten Maxima für Frequenzen oberhalb von 20 Hz keiner der theoretischen Dispersionskurven in Abb. 4.6e zuzuordnen.

3. Weiterhin sind nur sehr schmalbandig angeregte oder durch Interferenz teilweise ausgelöschte Signale, wie die mit „3“ in Abb. 4.6d gekennzeichneten Anteile, nicht interpretierbar.


Daher soll folgendes von mir neu entwickelte Verfahren vorgestellt werden: Durch die Gleichung (4.28) ist die Synthese eines Seismogramms aus der Zeit–Frequenz–Darstellung $P^*[t_i, \nu_j]$ definiert. Diese sogenannte „Gabor Repräsentation“ des Seismogrammes ist vollständig solange für die Abtastung der Verteilung $\Delta t \cdot \Delta \nu < 1$ gilt. Da $P[t_i, \nu_j]$ in der Implementierung immer feiner abgetastet werden muß als es dieses Kriterium erfordert, enthält diese Repräsentation des Seismogrammes immer Redundanz, d.h., es existieren mehrere Verteilungen, die zu identischen Seismogrammen führen.

Inderweise bestünde $P^*[t_i, \nu_j]$ aus Wavelets zu den Zeiten $t_i$ und Frequenzen $\nu_j$, die durch die Dispersionskurven der Gruppenlaufzeiten bestimmt sind und die für diese Zeit–Frequenz–Paare eine Amplitude $a_{k,j} > 0$ haben. In einem ersten Schritt werden die Dispersionskurven bestimmt (Abb. 4.6e) und aus den so festgelegten Zeit–Frequenz–Paaren unter Verwendung der in der Analyse verwendeten Wavelets (Abb. 4.6f) eine Verteilung:

$$P^*[t_i, \nu_j] = \sum_k a_{k,j} \psi^*_s[t_k - t_i] e^{2\pi i \nu_j t_k}$$ (4.31)

erzeugt. Die unbekannten Amplituden $a_{k,j}$ werden durch die Lösung des Optimierungsproblems:

$$||P[t_k, \nu_j] - P^*[t_k, \nu_j]|| = \min \quad \text{und} \quad a_{k,j} \geq 0$$ (4.32)
ermittelt. Durch diese Verfahrensweise erhält man die in Abb. 4.6g gezeigte Verteilung $P'[t_i, \nu_j]$, die die gemessene Verteilung $P[t_i, \nu_j]$ am besten unter Verwendung eines bestimmten Modells erklärt. Durch die Synthesesgleichung (4.28) ist damit auch das am besten angepaßte Seismogramm bestimmt (Abb. 4.6h). Man erhält also pro Modell eine Verteilung und ein Seismogramm. Die grundlegende Idee, diese Methode zum Zwecke der Inversion zu benutzen, besteht nun darin, daß eine weitere Verminderung eines Abstandes zwischen dem gemessenen und dem synthetisierten Seismogramm nur durch eine Relokation der Wavelets erreicht werden kann. Da die Lokationen der Wavelets in der Zeit-Frequenzebene durch die Dispersionskurven bestimmt sind, muß das Modell in geeigneter Weise verändert werden. Daraus folgt, daß eine Minimierung des Fehlers zwischen gemessenem und synthetisiertem Seismogramm auf ein Modell führt, welches dem wahren Untergrundmodell entspricht.

Um diese These zu stützen, wurde das oben beschriebene Verfahren an einem synthetischen Datensatz getestet. Das dem Datensatz zugrundeliegende Modell ist in Abbildung 4.7 dargestellt. Das daraus berechnete Seismogramm, die dazugehörige CWT, die Dispersionskurven etc., sind im Ablaufschema des Inversionsverfahrens in Abbildung 4.6 gezeigt. Um das Verhalten des oben beschriebenen Verfahrens anschaulich darzustellen, wurden, ausgehend vom exakten Modell, jeweils zwei Modellparameter in einem weiten Bereich variiert. Für diese veränderten Modellparameter wurde die optimale Energielichteverteilung $P'[t_i, \nu_j]$ bestimmt. Das zugehörige Seismogramm $z'[t_i]$ ergibt sich dann aus Gleichung (4.28).

\[
\begin{array}{ll}
\nu_P = 600 \text{m/s} & \nu_S = 400 \text{m/s} \\
\rho_c = 2300 \text{kg/cm}^3 & \\
\nu_P = 350 \text{m/s} & \nu_S = 200 \text{m/s} \\
\rho_c = 1500 \text{kg/cm}^3 & \\
\nu_P = 600 \text{m/s} & \nu_S = 400 \text{m/s} \\
\rho_c = 2300 \text{kg/cm}^3 & \\
\end{array}
\]

Abbildung 4.7: Das zur Modellierung des Seismogramms zugrundegelegte Modell eines Niedergeschwindigkeitskanals in einem Halbraum. Der Abstand zwischen Quelle und Geophon beträgt 100m.
Abbildung 4.8: Die Fehlerfunktionen in Schnitten durch den Modellparameterraum. In a) die Variation der Mächtigkeit $h_1$ und des $v_P/v_S$-Verhältnisses in der 1. Schicht. In c) die Variation der Mächtigkeit $h_2$ und des $v_P/v_S$-Verhältnisses in der 2. Schicht. Die Minima der Fehlerfunktionen sind durch ein $\circ$, die exakten Lösungen jeweils durch ein $+$ gekennzeichnet. In b) und d) oben sind jeweils die synthetischen Seismogramme $z[t_i]$ (gepunktet) im Vergleich zum Seismogramm der Lösung $z'[t_i]$ (durchgezogen) gezeigt, während jeweils unten die Differenzsignale gezeichnet sind.
Abbildung 4.9: Die Fehlerfunktionen in Schnitten durch den Modellparameterraum. In a) die Variation der Mächtigkeiten $h_1, h_2$ der 1. und 2. Schicht. In c) die Variation der Dichten $\varrho_{c2}, \varrho_{c3}$ der 2. Schicht und des Halbraumes. Die Minima der Fehlerfunktionen sind durch ein o, die exakten Lösungen jeweils durch ein + gekennzeichnet. In b) und d) oben sind jeweils die synthetischen Seismogramme $z[t_i]$ (gepunktet) im Vergleich zum Seismogramm der Lösung $z'[t_i]$ (durchgezogen) gezeigt, während jeweils unten die Differenzsignale gezeichnet sind.
Als relater Fehler $\hat{L}_r$ an diesem Punkt des Modellparameterraumes definiere ich das Verhältnis der Energien des Differenzsignals $z[t_i] - z'[t_i]$ und des synthetischen Seismogramms $z[t_i]$:  

$$ \hat{L}_r = \frac{\sum (z[t_i] - z'[t_i])^2}{\sum z[t_i]^2}. $$ (4.33)

Kapitel 5

Anwendungen

5.1 Übersicht

5.2 Modell eines Grundwasserspiegels im Halbraum

In den Kapiteln 2, 3 und 4 wurde das theoretische Werkzeug entwickelt, um die physikalischen Eigenschaften eines Gesteinsmodells vorherzusagen und aus geophysikalischen Messungen an dessen Oberfläche auf diese Eigenschaften zurückzuschließen. Um die prinzipiellen Auswirkungen dieses Sedimentmodells darzulegen, soll zunächst ein sehr einfaches Modell betrachtet werden. Das einfachste geologische Modell besteht aus einem Halbraum mit einer homogenen Verteilung der Parameter. Für die Modellierungen in diesem Abschnitt wurde ein mittlerer Kornradius von \( r_{k,50} = 20 \mu m \) und eine Verteilungsbreite von \( s_k = 0.5 \) angenommen. Die übrigen Parameter entsprechen der Tabelle 2.2.

Abbildung 5.1: Verteilung der Parameter als Funktion der Tiefe berechnet für eine Grundwasseroberfläche in 5m Tiefe. Die wellenförmige Linie bezeichnet die scheinbare Grundwasser Oberfläche.

auf Seite 39. In diesem Halbraum soll sich eine Grundwasseroberfläche befinden, deren Tiefe zwischen 2,50m und 20m schwankt. Abbildung 5.1 zeigt die berechneten Modellparameter \( S_w \), \( v_p \), \( v_s \) und \( \rho \) für eine angenommene Grundwasseroberfläche von 5m. Man sieht, daß, bedingt durch die Kapillarkräfte im Porenraum, die Grundwasseroberfläche angehoben wurde. Den Übergang zu Sättigungsgraden >0,99 definiere ich daher als neue, scheinbare Grundwasseroberfläche, welche in einer Tiefe von 4,50m lokalisiert ist. Wie in Abschnitt 2.2.5 gezeigt, zeichnet sich die scheinbare Grundwasseroberfläche durch eine
sprunghafte Veränderung der P-Wellengeschwindigkeit aus. Ferner befindet sich oberhalb der Grundwasseroberfläche ein ausgeprägter Sättigungsgradient, so daß sich die physikalischen Parameter als Funktion des Sättigungsgrades stetig verhalten und keine sprunghaften Änderungen, wie sonst in Schichtmodellen angenommen, stattfinden. Um diese Situation dennoch durch Algorithmen zu modellieren, die auf dem Schichtmodell aufbauen, wird das stetige Modell durch Schichten mit einer Mächtigkeit von 0,05m diskretisiert.


Anhand dieses Modells soll nun geklärt werden, in welcher Größe Abweichungen in den Modellierungen der Refraktionsseismik und der Geoelektrik zu erwarten sind, wenn man einerseits die obigen Parameterfunktionen und andererseits ein herkömmliches Schichtenmodell verwendet. Dazu wurden Modellierungen mit beiden Ansätzen durchgeführt. Für das Schichtenmodell wurde ein Zweisichtfall zugrundegelegt, wobei die Schichtgrenze durch die scheinbare Grundwasserwasseroberfläche, also in diesem Fall 4,50m, festgelegt wird. Für die Geoelektrik ergeben sich zwei Schlumberger-Sondierungskurven, die in Abbildung 5.2 dargestellt sind. Die resultierende Sondierungskurve des durch die kontinuierlichen Parameterfunktionen beschriebenen Modells wird durch die durchgezogene Linie dargestellt, während die Kreuze das Ergebnis des Schichtmodells repräsentieren. Es ist deutlich ersichtlich, daß die beiden Resultate erheblich voneinander abweichen. Obwohl die Anhebung der Grundwasseroberfläche bereits berücksichtigt wurde, wird für das Schichtmodell eine Veränderung des scheinbaren spez. Widerstandes erst für größere Auslagen $x$ vorhergesagt. Was das im Rahmen der Inversion bedeutet wird zu einem späteren
Zeitpunkt untersucht. Im Gegensatz dazu unterscheiden sich die modellierten Laufzeitkurven für die Refraktionsseismik nur in einem derart geringen Maße, daß in Abbildung 5.2 reduzierte Laufzeitkurven dargestellt sind, um den Unterschied sichtbar zu machen. Es wurde dazu eine Reduktionsgeschwindigkeit von 1300 m/s gewählt.

Zunächst soll die Diskrepanz zwischen beiden Modellierungsansätzen in Abhängigkeit von der Kornverteilung und der Tiefe der Grundwasseroberfläche quantifiziert werden. Dazu wurde die Tiefe der Grundwasseroberfläche für das obige geologische Modell im Bereich von 2,50 m bis 20 m variiert und der zugehörige relative Fehler zwischen beiden Modellierungsmethoden ermittelt. Der relative Fehler als Funktion der Tiefe der Grundwasseroberfläche ist in Abbildung 5.3 dargestellt. Die durchgezogene Linie repräsentiert den Fehler zwischen den Modellierungen der Geoelektrik, die gestrichelte Linie den Fehler zwischen den Modellierungen der Refraktionsseismik.

Abbildung 5.3: Relative Abweichung als Funktion der Tiefe


Für den Beobachter an der Erdoberfläche ist die Beeinflussung der Messungen prinzipiell erst dann zu erkennen und auswertbar, wenn sie signifikant sind, d.h. wenn die Abweichungen größer als die anzunehmenden statistischen Fehler sind. Für die Geoelektrik sei diese Signifikanzschanke zu 4 Prozent angenommen, d.h. die Abweichung zwischen den Vorhersagen der beiden Modellierungsverfahren soll mindestens 4 % betragen, damit sie von statistischen Fehlern unterscheidbar ist. Für das obige Beispiel sind die Abweichungen für alle betrachteten Teufen der Grundwasseroberfläche signifikant. Im folgenden soll untersucht werden, wie sich die Signifikanz für unterschiedliche Kornverteilungen verhält. Dazu wurden die oben beschriebenen Modellierungen für Kornverteilungen durchgeführt, deren
mittlerer Kornradius $r_{k,50}$ im Bereich von 10–1000 μm und deren Kornverteilungsbreite $s_k$ zwischen 0,01 und 0,5 variiert wurden. Die folgenden Abbildungen 5.4 und 5.5 zeigen die relative Abweichung für Grundwasseroberflächen in einer Tiefe von 5, 10 und 15 Metern. Dabei sind die Graustufenskala in den jeweiligen Abbildungen einheitlich gewählt, damit diese vergleichbar sind. Ferner werden Abweichungen kleiner als 4% weiß dargestellt, so daß die Signifikanzgrenze leicht zu erkennen ist. Anhand dieser Abbildungen erkennt man, daß die Abweichungen desto größer werden, je kleiner der mittlere Kornradius bzw. je breiter die Kornverteilung des Bodengefüges ist. Dieses Verhalten ist qualitativ anhand der Ausführungen in Abschnitt 2.3 zu erklären. Dort wird in Abbildung 2.12 auf Seite 30 die Abhängigkeit der Sättigungskurven von der Kornverteilung gezeigt.

Abbildung 5.4: Relative Abweichung der geoelektrischen Modellierungen in Abhängigkeit von den Kornverteilungsparametern $r_{k,50}$ und $s_k$ für eine Grundwasseroberfläche in 5m Tiefe.
Abbildung 5.5: Relative Abweichung der geoelektrischen Modellierungen in Abhängigkeit von den Kornverteilungsparametern $r_{k,50}$ und $s_k$ für eine Grundwasseroberfläche in 10m (oben) bzw. 15m (unten) Teufe.
5.3. EINZELINVERSION GEOELEKTRISCHER DATEN

Die Abbildungen 5.4 und 5.5 bestätigen die zu erwartende Korrelation zwischen der kapillaren Steighöhe und den Abweichungen zwischen den Schlumberger-Sondierungskurven. Weiterhin wurde dieses Verhalten quantifiziert. Somit können notwendige Bedingungen formuliert werden, die an die Geologie des Untergrundes gestellt werden müssen, damit die Inversion geoelektrischer Messungen unter der Annahme von scharf lokalisierten Grenzflächen mit einem sprunghaften Wechsel des spezifischen Widerstands gelingt. Im folgenden sind vier hinreichende Bedingungen formuliert:

- Die Gesteinskörper sind vollständig fluidgesättigt.
- Die Gesteinskörper sind vollständig desaturated.
- Der Untergrund besteht aus sehr grobkörnigem und gut sortiertem Material, wie z.B. grober Sand, Kies und Schotter.
- Die Grundwasserüberfläche befindet sich in sehr großer Tiefe, so daß die Effekte der Wasserverteilung geringer sind als die meßtechnisch zu erfassenden.

In Meßgebieten mit aridem Klima kann eine dieser hinreichenden Bedingungen erfüllt sein. Im allgemeinen ist es jedoch notwendig, kontinuierliche Widerstandverteilungen zu berücksichtigen, um geoelektrische Messungen mit anderen geophysikalischen Methoden in Einklang zu bringen.

5.3 Einzelinversion geoelektrischer Daten

Im vorangegangenen Abschnitt wurden „Forderungen“ an den Untergrund gestellt, die erfüllt sein müssen, damit die Verteilungen der elastischen und geoelektrischen Parameter im Untergrund durch eine gemeinsame Grenzfläche beschrieben werden können. Da geoelektrische Verfahren wegen ihrer schnellen und preisgünstigen Durchführbarkeit auch zur strukturellen Erkundung des flachen Untergrundes genutzt werden, soll in diesem Abschnitt untersucht werden, welche Auswirkungen die Verletzung dieser Forderungen auf die Lokalisierung der angenommenen Grenzfläche hat. Grundlage dieser Untersuchung ist wiederum ein Halbraum mit den Komponenten \( \phi = 0,25, \ s_k = 1,0 \) und variablen \( r_{k,50} \). Die Grundwasserüberfläche wird in 10m Tiefe angenommen. Anhand dieses Modells wird eine Sondierungskurve synthetisiert, die unter der Annahme von diskreten Grenzflächen invertiert wird. Um etwaige Streuungen des Ergebnisses durch das Konvergenzverhalten des Inversionsprozesses zu verhindern, wird das globale Minimum der Fehlerfunktion durch die in Abschnitt 4.1 beschriebene reguläre Suche bestimmt. Die Inversion wurde zunächst unter der Annahme nur einer Grenzfläche durchgeführt. Das Ergebnis zeigt Abbildung 5.6, woraus ersichtlich wird, daß bei sehr feinkörnigem Bodenmaterial die Lokalisierung der angenommenen Grenzfläche deutlich von der Tiefe der Grundwasserüberfläche...
abweicht. Da zusätzlich ein hoher Anpassungsfehler auftritt wurde die Inversion mit zwei Grenzflächen wiederholt. Der Anpassungsfehler beider Inversionsergebnisse ist in Abbildung 5.8 dargestellt. Dort kann man erkennen, daß der resultierende Fehler durch die Inversion mit zwei Grenzflächen deutlich reduziert wurde. Betrachtet man das Ergebnis dieser Inversion in Abbildung 5.7, so kann man aber feststellen, daß die Struktur, sprich die Grundwasseroberfläche für feinkörniges Material, mit keiner der Grenzflächen des Inversionsergebnisses übereinstimmt. Dieses Ergebnis zeigt, daß die strukturelle Erkundung mittels geoelektrischer Verfahren eng an die im letzten Abschnitt formulierten Bedingungen geknüpft ist, da sie sonst zu systematisch abweichenden Ergebnissen führt.

Abbildung 5.6: Lokalisierung der Schichtgrenze unter Verwendung des geoelektrischen Zwei-Schichten-Falles.
Abbildung 5.7: Lokalisierung der Schichtgrenze unter Verwendung des geoelektrischen Drei-Schichten-Falles.

Abbildung 5.8: Anpassungsfehler der Inversionsergebnisse für den Zwei- und Drei-Schichten-Fall.
5.4 Inversion synthetischer Daten


Die Inversion wird ausgehend von demselben Startmodell sowohl mit als auch ohne Berücksichtigung der Kapillarkräfte durchgeführt. Um eine Inversion nach dem Grenzflächenkonzept zu simulieren, wird der mittlere Kornradius $r_{K,50}$ auf einen unveränderlichen Wert von 10 mm gesetzt. Dadurch werden die Kapillarkräfte bei Beibehaltung des Algorithmus vernachlässigbar gering, so daß das Verhalten der Inversion dem einer konventionellen Joint Inversion unter der Verwendung von Grenzflächen gleicht. Für die Inversion wurden die Verfahren der Refraktionsseismik, der Geoelektrik und Rayleigh–Wellen eingesetzt. Entgegen der in Abschnitt 4.9 vorgestellten Verfahrensweise wird hier als Fehlermaß die Gruppenlaufzeitkurve der Grundmode verwendet, die bis zu einer Frequenz von ca. 35 Hz durch keine höhere Mode gestört werden kann. Die Modellparameter des verwendeten Modells, des Startmodells und der durch die Inversion erzielten Lösung sind in der Tabelle 5.1 zusammengefaßt. Daneben befinden sich in dieser Tabelle Angaben zur erzielten Anpassungsgüte, die durch den relativen Fehler zwischen den Daten und der Modellierung quantifiziert wird. Dabei werden die relativen Fehler durch $\hat{\Delta}_e$ für die Refraktionsseismik, $\hat{\Delta}_e$ für die Geoelektrik und $\hat{\Delta}_r$ für die Rayleigh–Welle bezeichnet.

Abbildung 5.9 zeigt die im Rahmen des Inversionsprozesses ermittelten Modellierungen, welche die geringste Abweichung zwischen Modellierung und Daten produzieren. Die Ergebnisse der beiden Inversionsansätze sind jeweils gegenübergestellt und die zu invertierenden Daten durch Kreuze gekennzeichnet. In der Abbildung 5.9 Mitte sind der Deutlichkeit halber reduzierte Laufzeitkurven aufgetragen, wobei eine Reduktionsgeschwindigkeit von 1300 m/s verwendet wurde. Vergleicht man die Abbildungen, so fällt die relativ schlechte und systematisch verschobene Anpassung der Sondierungskurve und der Laufzeitkurve in Abbildung 5.9 links, oben bzw. 5.9 links, Mitte auf. Um diese systematischen Fehler zu verringern, kann das Inversionsverfahren nach dem Konzept der Grenzflächen als freien Parameter nur die Höhe $h_w$ verändern. Eine Verschiebung der Sondierungskurve zu geringeren Auslagenlängen benötigt eine Verkleinerung von $h_w$, während eine Verschiebung der Überholentfernung zu größeren Entfernungen eine Vergrößerung von $h_w$ verlangt. Dieses Dilemma kann mit dieser einfachen Modellvorstellung nicht aufgelöst werden. Während die Einzelinversionen sowohl der Laufzeitkurve als auch der Sondierungskurve zu einer Reduzierung des Anpassungsfehlers führen, werden diese Inversionen die Grenzfläche un-
5.4. **INVERSION SYNTHE TISCHER DATEN**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Modell</th>
<th>Startmodell</th>
<th>Resultat Grenzflächenkonzept</th>
<th>Startmodell</th>
<th>Resultat Bodenmodell</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{k_0}$</td>
<td>[μm]</td>
<td>20</td>
<td>10000</td>
<td>10000</td>
<td>7,5</td>
<td>15</td>
</tr>
<tr>
<td>$s_k$</td>
<td>0,5</td>
<td>0,6</td>
<td>0,48</td>
<td>0,6</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>$\varrho_s$</td>
<td>[kg/m³]</td>
<td>2650</td>
<td>2650</td>
<td>2650</td>
<td>2650</td>
<td>2649</td>
</tr>
<tr>
<td>$K_0$</td>
<td>[GPa]</td>
<td>5,0</td>
<td>6,0</td>
<td>5,1</td>
<td>6,0</td>
<td>5,2</td>
</tr>
<tr>
<td>$\mu_m$</td>
<td>0,18</td>
<td>0,20</td>
<td>0,21</td>
<td>0,20</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>$\phi$</td>
<td>0,25</td>
<td>0,20</td>
<td>0,24</td>
<td>0,20</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>$\rho$</td>
<td>[Ω m]</td>
<td>0,3</td>
<td>0,4</td>
<td>0,29</td>
<td>0,4</td>
<td>0,30</td>
</tr>
<tr>
<td>$h$</td>
<td>[m]</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>$\infty$</td>
</tr>
<tr>
<td>$h_w$</td>
<td>[m]</td>
<td>5,00</td>
<td>4,00</td>
<td>3,97</td>
<td>4,00</td>
<td>5,43</td>
</tr>
<tr>
<td>$\hat{L}_c$</td>
<td>[%]</td>
<td>122</td>
<td>14,5</td>
<td>52</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td>$\hat{L}_s$</td>
<td>[%]</td>
<td>13</td>
<td>2,0</td>
<td>13</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>$\hat{L}_r$</td>
<td>[%]</td>
<td>12</td>
<td>1,1</td>
<td>12</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.1: Modellparameter des wahren Modells, der Startmodelle und der Inversionsergebnisse. In eckige Klammern gesetzte Werte sind nicht variabel.

...tisch tief lokalisiere. Die Joint Inversion hingegen führt zu einer schlechteren Anpassung der einzelnen Messungen und liefert als Resultat ein gemitteltes Modell, wobei diese Mittelung nicht näher spezifiziert werden kann.

Im Gegensatz dazu liefert die Inversion, die den Sättigungsgradienten mit Hilfe eines Bodenmodells beschreibt, ein Ergebnis, welches keine systematischen Abweichungen aufweist. Vergleicht man die Anpassung der Dispersionskurve in Abbildung 5.9 unten durch beide Inversionsverfahren, so lassen sich keine Unterschiede ausmachen. Dies ist dadurch begründet, daß die Rayleigh-Wellen in starkem Maße durch die Scherfestigkeit des Untergrundes bestimmt ist, und die elastischen Eigenschaften des Korngerüstes nicht durch den Sättigungsgrad des Porenraumes beeinflußt werden. In Abbildung 5.10 sind die Parameterverteilungen dargestellt, die den Modellierungen in Abbildung 5.9 zugrundeliegen. Durch gestrichelte Linien sind jeweils die Parameterverteilungen gekennzeichnet, aus denen der zu invertierende Datensatz berechnet wurde. In der Abbildung 5.10 oben sind die für das Grenzflächenkonzept charakteristischen Sprünge in der Parameterverteilung zu erkennen. Die durch das Bodenmodell gegebene wahre funktionale Abhängigkeit, vor allem für den spezifischen Widerstand des Untergrundes, kann nur grob approximiert werden.
Abbildung 5.9: Die Sondierungscurven (oben), die reduzierten Laufzeitcurven (Mitte) und die Dispersionscurven (unten), berechnet ohne (links) und mit (rechts) Berücksichtigung des Sättigungsgradienten. Die Kreuze bezeichnen die Daten, die Linien das Inversionsergebnis.
Abbildung 5.11: Entwicklung der relativen Fehler während der Iteration. *Links:* Inversion nach dem Grenzflächenkonzept, *rechts:* Inversion unter Berücksichtigung des Sättigungsgradienten. Dargestellt sind \( \hat{\mathcal{L}}_s \) (gestrichelt), \( \hat{\mathcal{L}}_e \) (durchgezogen) und \( \hat{\mathcal{L}}_r \) (gepunktet).

Der Fortschritt eines iterativen Inversionsalgorithmus wird durch die Verringerung der Fehlerfunktion \( \mathcal{L} \) durch die Modellvektorfolge \( \mathbf{m}_k \) beschrieben. Die Werte der einzelnen Fehlerfunktionen im Verlauf der Iteration sind in Abbildung 5.11 dargestellt. Wie schon in den Ausführungen in Kapitel 4 zu sehen war, ist die Konvergenzrate zu Beginn der Iteration besonders hoch. Schon nach vier bis fünf Iterationen ist für die Fehlerfunktion \( \hat{\mathcal{L}}_s \) der Refraktionsseismik keine merkliche Verbesserung mehr zu erkennen, während die Fehlerfunktion der Geoelektrik \( \hat{\mathcal{L}}_e \) eine stetige spürbare Verbesserung erfährt.

In Abbildung 5.11 *rechts* ist die 10. Iteration durch das Zeichen des Projektionsoperators \( \Psi_0 \) markiert. Wie in Abschnitt 4.8 beschrieben, wird ab dieser Iteration eine Einzelinversion der Geoelektrik durchgeführt, wobei die Projektion auf den Nullraum der Seismik verwendet wird, um das Ergebnis der seismischen Methoden nicht zu beeinflussen. Dadurch kann der Anpassungsfehler an die geoelektrische Sondierungskurve nochmals beträchtlich verringert werden, in diesem Fall ca. um den Faktor 2.
5.5 Inversion eines Felddatensatzes


Abbildung 5.13: Die seismischen Sektionen entlang des Querprofils C3 für die Schußpunkte -23 m (oben) und 25 m (unten).

Abbildung 5.14: Die ersten 75 ms der seismischen Sektionen aus Abbildung 5.13 mit den Ersteinsätzen und deren Koda; darin eingezeichnet die Ersteinsatzzeiten für die Schußpunkte -23 m (oben) und 25 m (unten).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Schichtnummer</th>
<th>Fehler ( \bar{L} ) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion der Laufzeitkurven mit 4 Schichten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( v_p ) [m/s]</td>
<td>200</td>
<td>880</td>
<td>1925</td>
</tr>
<tr>
<td>( h ) [m]</td>
<td>2,00</td>
<td>3,80</td>
<td>5,10</td>
</tr>
<tr>
<td>Inversion der Sondierungskurve mit 5 Schichten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \rho ) [Ω m]</td>
<td>28</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>( h ) [m]</td>
<td>1,00</td>
<td>1,40</td>
<td>6,20</td>
</tr>
<tr>
<td>Inversionsergebnis der Sondierungskurve nach Gyulai &amp; Ormos (1999)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \rho ) [Ω m]</td>
<td>30,4</td>
<td>16,9</td>
<td>11,8</td>
</tr>
<tr>
<td>( h ) [m]</td>
<td>0,6</td>
<td>14,3</td>
<td>29,7</td>
</tr>
</tbody>
</table>

Tabelle 5.2: Ergebnisse der Einzelinversionen unter Verwendung des Grenzflächenkonzeptes.

Die Laufzeitkurven und die Schlumberger–Sondierung wurden zunächst einzeln invertiert. Die Ergebnisse dieser Einzelinversionen und das der Literatur entnommene Inversionsergebnis der Geoelektrik sind in der Tabelle 5.2 zusammengefaßt. Dabei ist anzumerken, daß für beide Methoden eine unterschiedliche Schichtanzahl angenommen wurde. Während für die Inversion der Laufzeitkurven 4 Schichten ausreichend sind, wurde eine weitere Schicht, in Tabelle 5.2 mit 1b gekennzeichnet, für die Inversion der geoelektrischen Messung ein-
geführt, da der Verlauf der Sondierungskurve augenscheinlich einen 5 Schichten-Fall vorausgesagt. Gyulai & Ormos (1999) führten die Inversion der Sondierungskurve dagegen mit 4 Schichten durch. Dieses Ergebnis ist zum Vergleich ebenfalls in der Tabelle 5.2 aufgeführt. Betrachtet man die durch die Inversion ermittelten Schichtmächtigkeiten, so lassen sich zunächst keine gemeinsamen Schichtgrenzen identifizieren, obwohl die durch die Inversion erhaltenen Mächtigkeiten für beide Methoden korrelieren. Als besonders störend erweist sich die zusätzliche Schicht 1b, die zur Inversion der Sondierungskurve eingeführt wurde. Eine Reduzierung der Schichtenanzahl für die Geoelektrik auf ebenfalls 4 Schichten führt dagegen zu keinem mit der Refraktionsseismik zu vereinbarenden Ergebnis.


<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Schichtnummer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{k,50}$</td>
<td>$\mu m$</td>
<td>15.8 (0.99)</td>
<td>16 (0.13)</td>
<td>16 (0.13)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>$s_k$</td>
<td></td>
<td>1.0 (0.46)</td>
<td>0.9 (0.09)</td>
<td>0.9 (0.09)</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>$\theta_s$</td>
<td>$[kg/m^3]$</td>
<td>2500 (0.80)</td>
<td>2500 (0.04)</td>
<td>2650 (0.03)</td>
<td>2650</td>
<td></td>
</tr>
<tr>
<td>$K_0$</td>
<td>$[GPa]$</td>
<td>0.85 (1.00)</td>
<td>8.0 (0.82)</td>
<td>35.0 (0.07)</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>$\mu_m$</td>
<td></td>
<td>0.18 (0.93)</td>
<td>0.24 (0.01)</td>
<td>0.24 (0.04)</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>$\phi$</td>
<td></td>
<td>0.385 (1.00)</td>
<td>0.28 (0.38)</td>
<td>0.30 (0.32)</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>$\rho$</td>
<td>$[\Omega m]$</td>
<td>1.95 (0.39)</td>
<td>1.95 (0.41)</td>
<td>0.5 (0.92)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$h$</td>
<td>$[m]$</td>
<td>5.30 (1.00)</td>
<td>5.30 (0.46)</td>
<td>10.0 (0.17)</td>
<td>$\infty$</td>
<td></td>
</tr>
<tr>
<td>$h_w$</td>
<td>$[m]$</td>
<td>1.55 (0.97)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5.15: Anpassung der gemessenen Daten durch das Lösungsmodell aus Tabelle 5.3. a) Gemessene und angepaßte Laufzeitkurven. b) Gemessene und angepaßte Sondierungskurve. Die gemessenen Werte sind jeweils durch Kreuze +, die angepaßten Werte durch durchgezogene Linien dargestellt. c) und d) oben : Anpassung der Oberflächenwellen nach dem in dieser Arbeit entwickelten Verfahren für den Schußpunkt -23m bzw. 25m. Das gemessene Seismogramm ist gepunktet, das angepaßte durchgezogen gezeichnet. c) und d) unten : Das Differenzsignal zwischen angepaßtem und gemessenem Seismogramm.
Für die erhaltenen Parameter des Lösungsmodells können die Fehler, im Sinne von Fehlerbalken bzw. Standardabweichungen, nicht angegeben werden. Dies hat mehrere Ursachen. Erstens ist die Fehlerfunktion in der Umgebung der Lösung nicht bekannt, so daß eine linearisierte Form der Fehlerfunktion betrachtet werden muß, was dazu führt, daß der Gültigkeitsbereich der Linearisierung größer sein muß als die ermittelten Fehlerintervalle. Diese Voraussetzung ist wegen der Existenz eines Nullraumes nicht gegeben. Zweitens führt die Existenz eines Nullraumes dazu, daß die Kovarianzmatrix nicht berechnet werden kann, da die Inverse \((F'F)^{-1}\) nicht existiert. Drittens können aufgrund der Verwendung eines Gradientenalgorithmus keine Aussagen über die Anzahl der lokalen Minima gemacht werden, noch kann gesichert werden, daß die gefundene Lösung das globale Minimum der Fehlerfunktion repräsentiert. Für Fehlerfunktionen, die mehrere gleichwertige Lösungen besitzen, sind Standardabweichungen, sofern sie denn berechenbar sind, ohne Bedeutung (Tarantola (1987)).

Um dennoch die Zuverlässigkeit der Bestimmung einzelner Modellparameter zu quantifizieren, wird die in Abschnitt 4.7.3 eingeführte Effective Independence Distribution (EID) verwendet. In Tabelle 5.3 sind die den Parametern zugehörigen Werte der EID in Klammern angegeben. Ein EID-Wert von 1 bedeutet die vollständige Auflösung des betreffenden Parameters durch mindestens ein geophysikalisches Verfahren. Kleine Werte der EID bedeuten eine geringe Sensitivität der Fehlerfunktion gegenüber dem zugehörigen Parameter bzw. eine durch das Bodenmodell beschriebene Korrelation mit anderen Parametern. Ist ein Parameter völlig unbestimmt, so ist der zugehörige EID-Wert gleich 0. Da die Bildung der Ableitung \(F'\) am Punkt der Lösung numerisch gebildet wird, ist bei der Interpretation der EID-Werte die in Gleichung (4.3) verwendete Variation des Modellparameters zu berücksichtigen, welche in diesem Fall 2 % des Modellparameters beträgt. Die Aussagen über Auflösbarkeit bzw. Nichteinzelnebarkeit beziehen sich daher immer auf diese zweiprozentige Variation des Parameters.

In Abbildung 5.15 sind die gemessenen Daten im Vergleich zu den synthetisierten Daten, die mit Hilfe der in Tabelle 5.3 zusammengestellten Parameter des Inversionsergebnisses berechnet wurden, dargestellt. Die relativen Fehler \(\hat{\epsilon}\) der angepaßten zu den gemessenen Daten der jeweiligen Methoden sind in Tabelle 5.4 aufgeführt.

Es ist erkennbar, daß die relativen Fehler für alle eingesetzten Verfahren gleichermaßen niedrig sind, so daß das gefundene Modell eine Lösung darstellt, die für alle eingesetzten geophysikalischen Methoden konsistent ist.

Die durch die Parameter des Bodenmodells bestimmte Verteilung der physikalischen Parameter in Abhängigkeit von der Tiefe ist in Abbildung 5.16 dargestellt. Dabei wird nur der Tiefenbereich abgebildet, der durch alle drei angewendeten Methoden aufgelöst werden kann. Die zur korrekten Anpassung der geoelektrischen Sondierung benötigte 4. Schicht in Tabelle 5.3 ist dagegen nicht gezeigt. Dort erkennt man, daß der Sättigungsgradient innerhalb der obersten 1,5 m des Untergrundes eine kontinuierliche Beschreibung
Tabelle 5.4: Relative Fehler der Anpassungen der einzelnen Verfahren. Die zugehörigen gemessenen und angepaßten Daten sind in der angegebenen Abbildung dargestellt.


5.5. INVERSION EINES FELDDATENSATZES

Kapitel 6

Resumé

6.1 Zusammenfassung


Da allen Ansätzen, diese Grenzflächenproblematik im Rahmen neuer Inversionsalgorithmen zu lösen, die physikalische Motivation fehlt, wählte ich in dieser Arbeit einen neuen Ansatz, welcher die Probleme schon auf der Ebene der Modellierung zu beheben vermag.

Durch die Kenntnis über das unterschiedliche Verhalten der physikalischen Parameter, welche der Seismik und Geoelektrik zugrundeliegen, bezüglich der Gefügeparameter, besteht die Möglichkeit, durch entsprechende Modellierungsverfahren anhand eines geologischen Modellgesynthetiche Daten für die beiden geophysikalischen Methoden zu erzeugen. In dieser Arbeit wurde zunächst der Fall sogenannter Schichten behandelt, für die die Informationen über die Scherwellengeschwindigkeiten des Untergrundes anhand von Rayleigh-Wellen gewonnen werden können. Während zur Modellierung der Refraktionsseismik und der Geoelektrik Standardalgorithmen eingesetzt werden konnten, mußte zur Berechnung der Dispersionskurven der Rayleigh-Wellen ein zuverlässiger Algorithmus entwickelt werden.


Neben der Beschreibung des generellen Joint Inversion Algorithmus findet sich in dieser Arbeit ein neuer Ansatz zur Inversion von Oberflächenwellen, der innerhalb des generellen Inversionsalgorithmus verwendet werden kann. Dabei handelt es sich um eine Methode zur
6.2. SCHLUSSFOLGERUNGEN UND AUSBlick


6.2 Schlußfolgerungen und Ausblick


1. Die Erweiterung der Inversion auf zweidimensionale Problemstellungen. Die dazu benötigten Modellierungsalgorithmen sind vorhanden, benötigen aber eine um 2 Größenordnungen höhere Rechenzeit pro Modellierung bei gleichzeitigem Anstieg der freien Parameter. Während die Rechenzeit durch extensiven Gebrauch massiv parallelisierter Algorithmen auf Rechnercluster mit einer großen Anzahl Prozessoren schon heute auf ein realisierbares Maß gesenkt werden kann, müssen die im Feld durchgeführten Messungen auf diese Problemstellung hin angepaßt werden.

2. Das Wissen bezüglich der zweidimensionalen Wasserverteilung im Untergrund ist in der Regel nicht vorhanden. Um den Einfluß des Porenfluids von den Eigenschaften der Körnmatrix zu separieren, wurden in dieser Arbeit Oberflächenwellen genutzt. Im 2D-Fall mit lateral stark varierenden Schichten ist dieser Weg nicht mehr

3. Das Bodenmodell wurde dahingehend entwickelt, daß alle nötigen Parameter im Hinblick auf die Seismik und die Gleichstromgeoelektrik berechnet werden können. Durch eine Erweiterung um vorhandene oder noch zu entwickelnde Modellvorstellungen kann dieses Modell, z.B. durch eine komplexe elektrische Leitfähigkeit, erweitert werden, um geoelektrische Verfahren wie die induzierte Polarisation zu nutzen.

Trotz dieser Fülle noch zu bearbeitender Punkte zeigt diese Arbeit doch eine klare Perspektive für die Joint Inversion, wie sie jenseits der heute bestehenden Einschränkungen durch die Grenzflächenproblematik durchgeführt werden könnte.
Literaturverzeichnis


LITERATURVERZEICHNIS


Danksagung

Die vorliegende Arbeit wurde am Institut für Geologie, Mineralogie und Geophysik der Ruhr-Universität Bochum innerhalb der Arbeitsgruppe Seismik angefertigt. Ich danke Herrn Prof. Dr. Dr. h.c. Lothar Dresen, der die Arbeit betreute und dessen Unterstützung weit über eine rein fachspezifische hinausging.


Der größte Dank gebührt meinem langjährigen Kollegen Dr. Tony Stöcker. Sein strukturiertes und abstraktes Denken, über die Grenzen seines eigenen Fachgebiets hinaus, führen immer wieder zu fruchtbaren Diskussionen und neuen Ansätzen. Ohne sein Engagement wären viele Projekte in dieser Arbeitsgruppe nicht so erfolgreich verlaufen.

Dank gebührt auch Clemens Schmitz, der diese Arbeit hinsichtlich formaler Fehler und leichter Verständlichkeit korrigiert hat.

Ferner möchte ich meiner Familie und meinen Freunden für ihre Geduld, Verständnis und Unterstützung danken.

Mein allerliebster Dank, vor allem wegen ihres Durchhaltevermögens in den entbehrungsreichen letzten Monaten, geht an meine liebste Christiane und ... Pünktchen.
Bisher sind in der Reihe

**Berichte des Instituts für**
**Geologie, Mineralogie und Geophysik**
**der Ruhr-Universität Bochum**

Reihe A (Geophysik)

erschienen:

Nr. 1: **L. Dresen**
Modellseismische Untersuchungen zum Problem der Ortung oberflächennaher Hohlräume in Festgestein
*Mai 1972*

Nr. 2: **R. Schepers**
Bearbeitungsverfahren zur Bestimmung oberflächennaher Strukturen aus Einkanal-Reflexionseismogrammen bei senkrechtem Einfall
*Juli 1972*

Nr. 3: **S. Freystätter**
Modellseismische Untersuchungen zur Anwendung von Flözwellen für die untertägige Vorfelderkundung im Steinkohlenbergbau
*Juni 1974*

Nr. 4: **F. Rummel**
Experimentelle Untersuchungen zum Bruchvorgang in Gesteinen
*Januar 1975*

Nr. 5: **H. Rütter**
Anwendung reflexionsseismischer Verfahren bei der Erkundung oberflächennaher horizontal geschichteter Lockergesteine
*Februar 1975*

Nr. 6: **R. Pelzing**
Untersuchungen zur Ortung von Herden seismischer Ereignisse, dargestellt an Beispielen aus einem Stationsnetz im Ruhrbergbaugebiet
*Juni 1978*

Nr. 7: **C.-H. Hsieh**
Ortung verdeckter Bergwerksschächte mit Hilfe von Rayleigh-Wellen
*Januar 1979*
Nr. 8: G. Ullrich
Stapelung, Migration und Dekonvolution von Reflexionsseismogrammen aus zyklisch geschichteten Untergrundsstrukturen mit tektonischen Störungen
Juni 1979

Nr. 9: U. Bleil
Die Magnetisierung der ozeanischen Kruste. Ein Beitrag zum Vine-Matthews-Modell nach Ergebnissen mariner Tieftiefbohrungen
Dezember 1981

Nr. 10: H.-J. Alheid
Untersuchungen von Bruch und Scherprozessen im Granit und Serpentininit bei hohen Drücken und Temperaturen
Dezember 1981

Nr. 11: W. Hanka
Analyse breitbandiger Oberflächenwellen – eine Möglichkeit zur seismischen Diskriminierung
Februar 1982

Nr. 12: H. Sommer
Untersuchungen zur Ortung oberflächennaher Hohlräume mit gravimetrischen Verfahren
Januar 1983

Nr. 13: R.-B. Winter
Bruchmechanische Gesteinsuntersuchungen mit dem Bezug zu hydraulischen Frac-Versuchen in Tiebohrungen
Dezember 1983

Nr. 14: C. Kerner
Untersuchungen an zweidimensionalen analogen und numerischen Modellen zur Transmission und Reflexion von Love- und Rayleigh-Flözwellen
Januar 1984

Nr. 15: K.-G. Hinzen
Vergleich von Herdflächenlösungen und Momententensoren
Januar 1984

Nr. 16: N. Weinreich
Magnetische Untersuchungen neogener pelagischer Sedimente des zentralen Aquatorialpazifik
Februar 1985
Nr. 17: V. Spieß  
Analyse und Interpretation zwei- und dreidimensionaler mariner magnetischer Anomalien  
*November 1985*

Nr. 18: J. Meister  
Möglichkeiten und Grenzen hybridener und seismischer Modellierens  
*November 1985*

Nr. 19: R.-G. Ferber  
Berechnung der zeitlichen Entwicklung der Felder transierter Wellen in geschichteten elastischen Medien  
*März 1986*

Nr. 20: R. Jung  
Erzeugung eines großflächigen künstlichen Risses im Falkenberger Granit durch hydraulisches Spalten und Untersuchung seiner mechanischen und hydraulischen Eigenschaften  
*April 1986*

Nr. 21: J. Baumgärtner  
Anwendung des Hydraulic-Fracturing-Verfahrens für SpannungsMESSungen im geöffneten Gebirge dargestellt anhand von Meßergebnissen aus Tiefbohrungen in der Bundesrepublik Deutschland, Frankreich und Zypern  
*April 1986*

Nr. 22: W. Müller  
Experimentelle und numerische Untersuchungen zur Rißausbreitung im anisotropen Gestein in der Nähe von Grenzflächen  
*Juni 1987*

Nr. 23: M. Joswig  
Methoden zur automatischen Erfassung und Auswertung von Erdbeben in seismischen Netzen und ihre Realisierung beim Aufbau des lokalen BOCHUM UNIVERSITY GERMANY - Netzes  
*Juli 1987*

Nr. 24: R. Elsen  
Die Ortung oberflächennaher Hohlräume mit Verfahren der Geoelektrik  
*November 1987*

Nr. 25: M. Redanz  
Waveletextraktion und Inversion von Reflexionssismogrammen zur Ableitung von akustischen Impedanzen  
*Juli 1988*
Nr. 26: G. Möhring-Erdmann
Experimentelle und numerische Untersuchungen zur Entstehung von Bohrlochrandausbrüchen
_März 1989_

Nr. 27: E. Räkers
Seismoakustische Ereignisse in Steinkohleflözen als Hilfe zur Erkennung von Abbaubereichen mit erhöhten Gebirgsdrücken
_Juni 1989_

Nr. 28: M. Breitzke
Ein Normalmodensummations- und Frequenz-Wellenzahl-Verfahren zur Modellierung, Rekompension und Migration dispersiver Flözwellen
_Februar 1990_

Nr. 29: D. Krollpfifer
Experimentelle modellseismische Untersuchungen zum gezielten Anschließen von Flözstrukturen mit P- und SV-Wellen
_November 1990_

Nr. 30: H. Krummel
Rechnergestützte Verfahren der seismischen Stratigraphie
_Januar 1991_

Nr. 31: E. Rybacki
Experimentelle Festigkeitsuntersuchungen an inhomogen-anisotropen Gneisen und Granuliten bei hohen Drücken und Temperaturen
_Januar 1991_

Nr. 32: S. Menger
Experimentelle und numerische Untersuchungen zum Problem der Dezentrierung beim Akustischen Bohrloch Televieuer
_Dezember 1991_

Nr. 33: B. Lehmann
Modellseismische Untersuchungen zur Transmissions- und Reflexions-Tomographie unter Verwendung der Gauß-Beam-Methode
_Januar 1992_

Nr. 34: E. Al-Tarazi
Investigation and Assessment of Seismic Hazard in Jordan and its Vicinity
_November 1992_

Nr. 35: F. Roth
Modellierung von Vorgängen an Verwerfungen mit Hilfe der Dislokationstheorie
_Dezember 1992_
Nr. 36: C. Schneider
Erkundung des Untergrundes von Deponien und Altlasten mit Rayleigh-Oberflächenwellen
_Juli 1993_

Nr. 37: M. Kemper
Migration bohrlochseismischer Ereignisse
_Dezember 1993_

Nr. 38: Tao Yu
Numerische Modellierungen zur Untersuchung des Einflusses von lokalen Irregularitäten auf die Ausbreitung von Love-Wellen in geschichteten Medien
_Dezember 1993_

Nr. 39: U. Casten
Untertagegravimetrie zur in situ Bestimmung des Gesteinsparameters Dichte und zur Erfassung bergbauinduzierter Dichteänderungen
_September 1994_

Nr. 40: C. Bönnemann
Bestimmung seismischer Geschwindigkeiten aus Steilwinkelreflexionen im p-t-Bereich
_Mai 1995_

Nr. 41: H. Schulte-Theis
Automatische Lokalisierung und Clusteranalyse regionaler Erdbeben
_Juni 1995_

Nr. 42: J. Wülster
Diskrimination von Erdbeben und Sprengungen im Vogtlandgebiet und Nordwest-Böhmen
_Mai 1995_

Nr. 43: M. Janik
Experimente zur seismischen Nutzung des Bohrgeräusches an der Kontinentalen Tiefbohrung der Bundesrepublik Deutschland (KTB)
_Juli 1995_

Nr. 44: D. Orlowsky
Erhöhung des Auflösungsvermögens der Common Mid Point- (CMP-) Refraktionsseismik durch eine Kombination mit der Generalized Reciprocal Method (GRM)
_Januar 1996_
Nr. 45: B. Dombrowski
3D-modeling, analysis and tomography of surface wave data for engineering and environmental purposes
_Februar 1996_

Nr. 46: A. Liebig
Zweidimensionale geoelektrische Inversion als Teil einer integrierten geophysikalischen Auswertung zur Erkundung oberflächennaher Schichten
_Juni 1996_

Nr. 47: Y. Jia
Bestimmung der scheinbaren Dämpfung seismischer Wellen in der europäischen Lithosphäre
_Juli 1996_

Nr. 48: J. Renner
Experimentelle Untersuchungen zur Rheologie von Coesit
_Juli 1996_

Nr. 49: L. te Kamp
Numerische Modellierungen von Rißwechselwirkungen
_Juli 1996_

Nr. 50: R. Misiek
Surface waves: Application to lithostructural interpretation of near-surface layers in the meter and decameter range
_November 1996_

Nr. 51: G. Bokelmann
Seismological constraints on anisotropy of the Earth’s crust with emphasis on array methods
_April 1997_

Nr. 52: I. Heyde
Integrierte Interpretation gravimetrischer und magnetischer Daten am Beispiel KTB
_Mai 1999_

Nr. 53: M. Joswig
Raum-zeitliche Seismizitätsanalyseren mit Methoden zur Handhabung von unvollständigem Wissen
_Dezember 1999_

Nr. 54: T. Stöcker
Local spectral analysis and synthesis for seismic signal processing
_Juli 2000_
Nr. 55: M. Knapmeyer
Abbildung seismischer Diskontinuitäten in der südlichen Ägäis mit migrierten Receiver Functions
Juli 2000

Nr. 56: A. Kemna
Tomographic Inversion of Complex Resistivity - Theory and Application
Juli 2000

Nr. 57: S. Baisch
Zur Messung zeitlicher Veränderungen seismischer Wellenausbreitungseigenschaften in der oberen Erdkruste
November 2000

Nr. 58: S. Sauerländer
3-D Inversion geomagnetischer Daten mit einem Simulated Annealing Ansatz
November 2000