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Chapter 1

Introduction

Though quite differently motivated, material scientists and geoscientists
share an interest in quantifying the interaction between moving grain bound-
aries and pores. Two principal processes are to be distinguished, drag, i.e.,
the pore remains attached to the moving boundary, and drop, i.e., the pore
separates from the boundary into the bulk crystal. Since remaining porosity
may have negative effects on the performance and physical properties of sin-
tered or hot-pressed materials but also of thin films and coatings, production
protocols aim to avoid separation conditions. For the geoscientist, pores and
their fillings present in constituting minerals of rocks presently exposed on the
Earth’s surface bear important information on the conditions that prevailed
during their formation at depth. It is crucial for the preservation potential
of fluid inclusions, whether they are attached to grain boundaries or isolated
within the grain interior. The goal of this thesis is to quantify these drag
and drop conditions for different pore geometries and different mechanisms
of pore motion. We start with an introductory chapter that explains basic
physical concepts concerning boundaries and pores, illustrate the notions of
pore mobility and critical velocity using Zener’s drag as a simple example,
and introduce basic physical mechanisms responsible for atom transport us-
ing the analogy with the grooving process. In the second chapter, boundary
motion due to surface tension is considered. In particular, boundaries that
are moving with a constant velocity are systematically discussed, the corre-
sponding solutions are used to consider coupled pore-boundary motion there-
after. The mathematical techniques developed for boundaries in this chapter
are also used to describe the dynamics of the pore-grain interface in the two
following chapters. Chapters III and IV form the heart of the thesis. They
are devoted to pore motion controlled by surface diffusion and by diffusion
through the pore-filling fluid, respectively. The main objective is to calculate
pore mobilities and critical velocities. These mobilities are used to quantify
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10 CHAPTER 1. INTRODUCTION

mobilities of the complex pore-boundary systems and, in particular, to inves-
tigate the pore effect on boundary mobility. The results obtained are finally
summarized and discussed in Chapter V. The main results concerning bound-
ary motion and pore motion due to surface diffusion have been published in
[Petrishcheva and Renner, 2005]. The results on pore motion controlled by
diffusion through the pore-filling fluid were presented at two international
conferences [Petrishcheva et al., 2006a] and [Petrishcheva et al., 2006b] (the
corresponding paper is in preparation).

Figure 1.1: Scanning electron microscope (SEM) image of a synthetic marble.
Left: grain structure of a polycrystal. Right: neighboring grains on a larger
space scale.

1.1 Grains and boundaries

All solids have a boundary or an interface, where they are in contact with
their environment. In addition, the majority of solids (e.g., ceramics, metals,
rocks) are polycrystalline aggregates, i.e., they have a class of imperfections,
which are internal interfaces. Polycrystals can be thought of as a set of single
phase domains or grains surrounded by interfaces (Fig. 1.1). These bound-
ary networks are common in nature and have features similar to soap films,
arrays of biological cells, and even geographical and ecological territories
[Weaire and Rivier, 1984].

A typical boundary (Fig. 1.2) is a macroscopically two-dimensional ob-
ject with an extremely small characteristic width; the latter can be only
several inter-particle distances [Beck, 1954]. Nevertheless, these boundaries
determine the microstructure of the material, which in turn controls a wide
range of technologically important properties including mechanical strength,
toughness, electrical conductivity and magnetic susceptibility [Arzt, 1998].
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The nature of the boundary network also has an important effect on dif-
ferent transport processes, because the diffusivity of the atoms inside the
boundaries is generally high compared to that within the grains (see, e.g.,
[Kaur et al., 1995] and [Shewmon, 1964]). Therefore the boundary network
is important for physical processes related to the rapid transport of material
either across or along the boundaries.

Figure 1.2: SEM microphotograph of a typical boundary in synthetic marble.
Note, that the boundary is smooth on this space scale and thus a continuum
approach can be followed.

1.2 Grain growth

Grain growth is the process by which the mean grain size of a polycrystalline
aggregate increases [Yan et al., 1977]. Given sufficiently high temperature or
long time, a polycrystal will ideally evolve towards a single crystal. The driv-
ing forces that are responsible for the grain growth and the grain boundary
migration are determined not only by the physical constants and bulk ma-
trix characteristics but also by the shapes and dimensions of the individual
grains. In many cases these forces can be associated with the surface tension
of the grain boundaries [Burke, 1948].

The systematic and quantitative description of a large number of dif-
ferently shaped grains is a challenge. In general, only topological state-
ments about grain shapes can be made, as first suggested in [Smith, 1948a,
Smith, 1952] (see later reviews [Smith, 1964a] and [Smith, 1964b] for consid-
erations of relevant metallurgical applications of topology). Careful inves-
tigation shows that so called normal grain growth has two main attributes,
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Figure 1.3: Increase of mean grain size during annealing of a quartzite with
time. Optical microphotographs are courtesy of J. ter Heege.

namely (a) uniform appearance, i.e., a relatively narrow range of grain sizes
is maintained, and (b) scaling or self-similar behavior, i.e., a simple change in
scale is sufficient to make two distributions in sizes at two widely separated
points in time coincide with each other [Atkinson, 1988]. One can then as-
sume that this distribution is universal and that a statistical approach to the
grain growth description can be followed, as first suggested in [Feltham, 1957].
An object of interest is the distribution function that shows how many grains
can be found at a given time in a given size interval.

In the simplest case one asks how the averaged diameter of a grain D(t)
changes with time. Note, that the very definition of D(t) is nontrivial, be-
cause we have to estimate the mean radius of a three-dimensional object,
whereas for most applications the information as seen in Fig. 1.3 is essen-
tially two-dimensional. Different approaches to this problem are reviewed in,
e.g., [Underwood, 1970, Exner, 1972]. After D(t) is defined one can quantify
its evolution. A parabolic relationship for grain growth kinetics was first es-
tablished in a classical paper of the early 1950s [Burke and Turnbull, 1952].
It can be expressed by the relation [Feltham, 1957]

D(t)2 −D(0)2 =
Ωaγb

~
e−H/kT · ct

where Ω is volume per atom, γb is the boundary surface tension coefficient,
a is the lattice spacing. The activation energy for the grain-boundary self-
diffusion is denoted by H and a numerical constant c ≈ 1.

Further development of the statistical approach is related to dif-
ferent mean field theories as formulated in [Hilbert, 1965, Louat, 1974,
Hunderi and Ryum, 1980]. A typical result is an evolution equation for the
distribution function and analytical or numerical analysis of its asymptotical
behavior for large times.

From the experimental side, many measurements of distribution func-
tions have been presented. In particular, the time dependence has been
found to asymptotically approach D(t) ∼ t1/n with n = const for the mean
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grain size. Normal grain growth corresponds to the parabolic n = 2 value,
however, many different values from n = 2 to n = 4 have been found
(e.g., n = 4 in Al [Gordon and Bassyouni, 1965], n ≈ 2.5 in Fe [Hu, 1974]
and in Pb [Bolling and Winegard, 1958, Drolet and Galibois, 1968], n = 2.0
and n = 2.3 in Sn [Holmes and Winegard, 1959, Drolet and Galibois, 1968],
etc.). Measurements of grain growth in ceramics and in rocks also demon-
strate that the simple parabolic low is often violated (e.g.,[Atkinson, 1988,
Evans et al., 2001, Renner et al., 2002a]). Also a dependence of the expo-
nent n on system parameters such as temperature was reported [Hu, 1974].

Because of all these difficulties any general consideration of the coupled
pore-boundary motion would be extremely complicated. This is why we
typically consider the grain boundary on a finite time interval so that its
velocity can be assumed to be constant. Existence of such simple partial
solutions for the boundary motion problem can be explicitly demonstrated
at least for simple boundary geometries (see Chapter 2).

1.3 Pores

Pores constitute another class objects that is often encountered in polycrys-
tals. A pore can be considered as a small inclusion in a matrix. Such in-
clusions are shown in Fig. 1.4. They may occur because of different rea-
sons. One typical situation corresponds to two-phase systems, where the
second phase is generated in the form of small bubbles, e.g., the bub-
ble can be filled with melt. Another geologically relevant case is repre-
sented by pores filled with aqueous solutions, where dissolution-precipitation
and diffusion processes of matrix atoms in the solution become important
[Hollister and Crawford, 1981, Roedder, 1984]. Also we are interested in gas
filled pores, where the important processes are evaporation-condensation and
surface diffusion on the interface.

The geometry of a pore depends on its position. A pore that is included
in the matrix typically has spherical shape. Note, that the pore-boundary
interfaces (e.g., in Fig. 1.5) are smooth (all characteristic space scales are
much larger than the distance between the atoms) so that one can hope to
describe them by well defined continuous fields for all relevant quantities, e.g.,
solution concentration or interface curvature. While it is acknowledged that
the transport is realized by individual atoms, our considerations are based on
a continuum approach. In particular, for all transport mechanisms considered
below the equilibrium pore shape corresponds to a constant curvature, i.e.,
to a spherical pore form. The pores that are attached to the boundaries differ
from those inside the grains. They are described in the next section.
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Figure 1.4: Left: example of argon–filled pores within a synthetic marble.
Three situations should be distinguished: (1) pores in grains, (2) pores
trapped at grain boundaries, (3) pores at triple junctions. Right: mathe-
matical model of a space-filling set of the grains. Also pores with the differ-
ent geometries are shown schematically. (1) lenticular pore between grains,
(2) channel-like pore at a triple junction, (3) channel-like pore at a boundary,
(4) lenticular pore at a triple junction.

1.4 Drag and drop

A pore can be positioned within a grain, on the interface between two grains
(at a grain boundary), or on the line formed by the intersection of three grains
(triple junction). Even in the first case the mutual interaction between the
pore and the grain boundary may become important during grain growth that
inevitably leads to “collisions” between the moving boundaries and interior
pores. Also intrinsic pore-motion mechanisms (e.g., temperature gradient)
can come into play.

The geometry of a pore at a boundary strongly depends on the dihedral
angle, which is determined by force balance at the pore tip [see Eq. (3.20)].
For instance, for the channels at triple junctions (Fig. 1.6), the general no-
tion is that they exist if the dihedral angle is less than some critical value.
Most authors consider the critical dihedral angle to be π/3; it was argued,
however, that such channels also exist at larger dihedral angles in partially
molten systems, if the melt fraction is high [von Bargen and Waff, 1986].
Two evolution scenarios are possible for pores, which are attached to a mi-
grating grain boundary: (i) the pore may be trapped by the boundary and
move with it (Fig. 1.5 left) or (ii) it may be dropped (Fig. 1.5 right), if the
velocity of the migrating boundary is too high. In the first case, the principle
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Figure 1.5: Left: pore trapped by the boundary. Right: pore that appears
in the process of separation from a triple junction.

Figure 1.6: Schematic sketch (see [Takei, 2002]) to illustrate that pore geom-
etry is strongly affected by dihedral angle.

question to be addressed in this thesis is: how the mobility of the boundary is
affected by pores. To this end, the mobility of the pore-boundary complex is
calculated. In the second case, drag and drop conditions become important.
To illustrate them and to introduce concepts of drag force, pore mobility,
and critical velocity let us consider a simple example following Zener’s ideas
first published in [Smith, 1948b]. Let us assume that the pore-grain surface
tension coefficient is much larger then the grain-grain surface tension and
correspondingly the dihedral angle is close to π [as defined in Eq. (3.20)]. In
this case the pore can be approximated as a rigid inclusion. We assume that
the mobility of this particle is known. The drag force reads

Kdrag = 2πrγb sin Θ,

where Θ is the drag angle, and γb is the energy density in units of
[Energy/Area] at the boundary (Fig. 1.7). The radius of the contact cir-
cle r = Rp cos Θ with Rp being the radius of the spherical pore. Therefore
the drag force

Kdrag = 2πRpγb sin Θ cos Θ
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and the particle velocity is given by

Up = πRpγbMp sin 2Θ,

where Mp is the mobility of the particle.

Figure 1.7: Geometry used for the calculation of the Zener drag on a spherical
inclusion.

The drag force achieves its maximum value for Θ = π/4. Particle drag
at this condition is referred to as Zener drag

KZener drag = πRpγb. (1.1)

Therefore the velocity of a rigid inclusion cannot exceed the critical value

Umax = πRpγbMp. (1.2)

If the velocity of the boundary exceeds this limit, the inclusion is separated
from the boundary. It stays behind the moving boundary and remains as an
isolated inclusion in the interior of the grain.

The conclusion on the existence of a maximum pore velocity that sepa-
rates drag and drop scenarios is very general. The above calculation of this
velocity and its generalizations, as reviewed in [Nes et al., 1985], have, how-
ever, several weak points. One point is the assumption that the pore shape is
fixed and spherical. In contrast, the pores in Fig. 1.5 are evidently strongly
deformed because of pore-boundary interaction. In other words, one has to
generalize Zener’s calculation for arbitrary dihedral angles. Another diffi-
culty is related to the pore mobility. As we will see, near the critical velocity
the dependence between the drag force and the resulting pore velocity is non-
linear. Strictly speaking, the concept of the pore mobility cannot be used in
this context. Last but not least, different mechanisms can be responsible for
pore motion. These mechanisms must be accounted for before making any
quantitative conclusions on the critical velocity. Two mechanisms that are
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Figure 1.8: Two mechanisms that can be responsible for material transport
and pore motion. Atomic fluxes are indicated by the dashed arrows. Left:
surface diffusion. Right: diffusion through the fluid-phase. In any case,
equilibration of surface tension forces at the pore tip determines the dihedral
angle Φ. Pore velocity U is determined by the drag angle Θp.

examined in this thesis, namely, surface diffusion and diffusion through the
fluid-phase are illustrated in Fig. 1.8.

The existing investigations concerning drag and drop conditions are rather
contradictory and incomplete. For a pore whose motion is controlled by sur-
face diffusion the critical velocities for arbitrary dihedral angles were first
calculated in [Hsueh et al., 1982] and [Spears and Evans, 1982]. In these pa-
pers a solution for stationarily moving pores and boundaries was obtained
by direct numerical integration of the underlying equations. The calculated
critical velocities were found to be strongly dependent on the dihedral an-
gle. In particular, the critical velocity was zero for a spherical pore, in
sharp contradiction to Zener’s calculation. These results were criticized, be-
cause of the unnatural assumption that the pore volume is conserved during
pore-boundary interaction. More general dynamical solutions were obtained
in [Svoboda and Riedel, 1992] and [Riedel and Svoboda, 1993]. However, the
critical velocities were of the same order and again strongly dependent on
the dihedral angle. This problem was reconsidered in [Yu and Suo, 1999]
(again under the assumption of constant pore volume and without men-
tion of [Svoboda and Riedel, 1992, Riedel and Svoboda, 1993]), where solu-
tions for stationary motion were obtained using appropriate implemen-
tation of a finite element method. In contrast with [Hsueh et al., 1982,
Spears and Evans, 1982], the critical velocities were found to be only slightly
dependent on dihedral angle.

The description of pore motion that is controlled by diffusion through
the pore-filling fluid is more complicated mathematically and only rough
estimates of mobilities and critical velocities [Monchoux and Rabkin, 2002]
can be found in the literature. To our knowledge, the effect of dihedral angle
was not investigated at all. The lack or wide scatter of the published data can
be understood if we recall that the separation is a highly nonlinear process
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that appears as a singularity of the numerical solutions. Evidently, modelling
of the singular solutions is rather tricky. Therefore the numerical solutions
obtained in this thesis were justified by accurate analysis of the singularity
and underlying bifurcation.

1.5 Grooving

Physical mechanisms that can control pore motion and pore-boundary sep-
aration are realized by atomic transport across the pore. The transport
occurs via diffusion through the pore-filling fluid or via surface diffusion.
Fortunately, these processes have been already investigated in the context of
grooving studies. The relevance of these studies for the pore motion problem
at hand is twofold. On the one hand, grooving constitutes a diffusion pro-
cess with moving boundaries too, and corresponding model equations can be
adopted even though different particular solutions are sought. On the other
hand, in contrast to pores inside a polycrystalline aggregate grooves are ac-
cessible to direct investigation. Therefore studies of grooving kinetics have
served as indirect means of determining important transport parameters,
such as surface diffusion coefficients (see, e.g. [Mullins and Shewmon, 1959]).

A groove will develop on the surface of a polycrystal whenever a stationary
grain boundary intersects the surface (Fig. 1.9). In contrast to the pore, it
has a two-dimensional geometry and is positioned on the crystal surface.

Here, a plane surface is not a stationary one, because the force equilibrium
condition must be met at the intersection point. Therefore a long channel
[with the dihedral angle determined by Eq. (3.20)] is formed and serves as a
seed perturbation for the further growth of the groove. Mention was made
that the underlying physical processes are identical to those responsible for
the pore drag and drop (Fig. 1.8). Actually we can directly adopt the cor-
responding set of partial differential equations for our needs. The known
solutions can, however, not be applied directly for our purposes, because of
two reasons. One reason is that the popular small slope approximation (i.e.,
linear limit of the mathematical model) is not appropriate for moderate and
large dihedral angles and in any case does not describe pore drop. The other
reason is that grooving as such is described by the semi-scale solutions of
the underlying equations, whereas pore drag corresponds to special solutions
that are stationary in a moving coordinate frame.

Actually grooving can be described by several mathematical theories,
because under different conditions the dominant physical process also is dif-
ferent. In the classical paper [Mullins, 1957] two processes: evaporation-
condensation and surface diffusion were considered separately. Nonlinear
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Figure 1.9: A typical cross section of a polycrystal surface and a grain bound-
ary. Here, a groove is permanently developing at the intersection point. Par-
ticle fluxes due to (1) dissolution-precipitation (2) volume diffusion inside the
matrix, and (3) surface diffusion are schematically shown by arrows.

generalizations of the corresponding mathematical equations are applied in
the present thesis in Chapter 2 for the description of the boundary motion
and in Chapter 3 for the pore drag and drop due to surface diffusion. Groov-
ing due to diffusion through the filling fluid that is permanently accompanied
by the dissolution-precipitation processes was considered in [Mullins, 1960];
the corresponding model is used as a starting point in Chapter 4. Also several
additional mechanisms, e.g., stress effect [Genin et al., 1993] or orientation
effect [Ramasubramaniam and Shenoy, 2005] on grooving, were considered in
the literature. Potentially they are of great interest for the pore drag and
drop problem but these effects are beyond the scope of this thesis.
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Chapter 2

Grain boundaries

In this chapter we consider general aspects concerning boundary motion, i.e.,
its physical reasons, corresponding mathematical models, problem posing,
and typical solutions. These considerations give us the necessary basis for the
heart of this thesis, which is contained in Chapters 3 and 4, where common
motion of pores and boundaries is considered.

2.1 Boundary mobility

The physical concept of mobility is generic and seemingly simple. Consider-
ing a boundary, let us assume that its unit area is affected by a distributed
force σ that is measured in force-per-area units. A drag force Kb, actually
pressure, is defined as the component of σ, which is normal to the bound-
ary. The physical reasons for the drag may be different. One can mention,
for instance, differences in the chemical potential of the constituent ther-
modynamic components during a phase transition, when the phases are not
identical on the opposing sides of the interface. Alternatively, the drag force
may be due to temperature gradients, externally applied stresses, etc. As
suggested by physical intuition and supported by experimental data, the re-
sulting normal boundary velocity vb is typically proportional to Kb, i.e.,

vb = µbKb, (2.1)

where the proportionality coefficient µb is referred to as the boundary mobil-
ity (Fig. 2.1). Equation (2.1) implies that the drag force is small enough for
the linear proportionality to be valid. The boundary mobility is a local quan-
tity, because it refers to small area elements of the boundary. The mobility
may have different values for different elements, and it may also depend on
element orientation. For simplicity, however, it is assumed to be uniform and

21
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isotropic. Microscopically boundary mobility is related to the flux of atoms
across the boundary: matrix atoms are transferred from the shrinking into
the growing grain. An explicit value of µb can be derived from experimental
data. It can also be theoretically calculated by applying a specific physi-
cal model that describes the transport of atoms due to microscopical forces.
Within the scope of this thesis µb is considered a constant quantity.

Figure 2.1: Boundary velocity is proportional to the normal component Kb of
the applied force. The proportionality coefficient is the boundary mobility µb.

2.2 Description of boundary motion

2.2.1 Physical reasoning

Let us now turn to the boundary motion that results from a drag. We
consider a single phase interface with identical phases on each side of the
boundary between the grains. In this case the drag force is usually caused
by surface tension [Burke, 1948] quantified by the surface tension coefficient
γ, which is the excess of a free energy per unit area of the interface with
respect to the free energy of the grain interior. It is measured in energy-
per-area units. The surface tension coefficient can be nonuniform and can
also depend on the interface orientation, because of the anisotropy of the
crystalline materials that constitute the grains. Nevertheless, for the sake of
simplicity, it is considered an isotropic uniform constant. The corresponding
total excess energy is proportional to the total area of the interfaces. As a
result interfaces will tend to migrate in such a way as to reduce their area.
For curved surfaces, this implies that they migrate toward their center of
curvature, e.g., a spherical grain will tend to shrink and disappear.

The surface tension can also be related to forces. Let us calculate a normal
force Kb dS that acts on a small element dS of the boundary due to surface
tension. The reason for this force is a possible change of the element area (and
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Figure 2.2: A curved interface migrates to reduce its area, i.e., toward its
center of curvature.

its surface energy) as the element moves. Let δ be the normal displacement
of the element towards its center of curvature as shown in Fig. 2.2. The
corresponding change (decrease) of the system surface energy is −KbdS · δ.
It is also equal to γ(dSnew − dS), where

dSnew = dS − δ(κ1 + κ2)dS

is the new element area after the shift and κ1,2 are the two principal curva-
tures of the boundary. The curvatures are taken positive if the boundary is
concave with respect to the growing grain. We derive that the local driving
force per unit area of the boundary is given by the well known expression

Kb = γbκ, (2.2)

where κ = κ1 + κ2 is the mean curvature and γb is the surface tension
coefficient of the boundary.

As a simple example let us consider the collapse of a small spherical grain
with the radius R(t) within a homogeneous matrix grain. Let the boundary
normal vector be directed from the growing grain to the shrinking one, i.e.,
towards the center of the sphere. The projection of the boundary velocity is

vb = −dR

dt
> 0

and the main curvatures read

κ1 = κ2 =
1

R
.

Therefore the drag force equals 2γb/R. In this case Eqs. (2.1) and (2.2)
reduce to

dR

dt
+

2µbγb

R
= 0
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and can be directly integrated

R(t) =
√

R2
0 − 4µbγbt, (2.3)

where R0 is the initial radius of the grain. The latter disappears at the
moment t0 = R2

0/(4µbγb).
Another simple example is the collapse of a cylindrical inclusion, where

κ1 = 0 and κ2 = 1/R. The drag force equals γb/R. In this case

R(t) =
√

R2
0 − 2µbγbt. (2.4)

These exact analytical results are possible because of the simple geometry.
A general situation is not so easily tractable and is described by a nonlinear
partial differential equation that is derived in the next section.

2.2.2 Dynamic equation for a boundary

In this section we derive a general equation for grain boundary motion. The
equation contains a general drag force that may be specified in different
ways for different drag mechanisms. Let us assume that the growing grain is
described as a solution of an inequality

F(r, t) ≤ 0, (2.5)

e.g.,

R(t)2 − x2 − y2 − z2 ≤ 0

if the grain grows to fill a spherical inclusion. Such a level set function
F(r, t) provides us with a flexible and powerful tool to handle complicated
moving boundary problems. In particular, the boundary as such is given by
an implicit equation

F(r, t) = 0, if and only if r ∈ {rb}, (2.6)

and is associated with the zero-level set. Here {rb} denotes the multitude of
radius position vectors of the boundary points.

Let now an arbitrary boundary point rb = (x, y, z) be displaced by drb =
vdt. Its new position rb + drb should satisfy the same implicit Eq. (2.6) but
with t replaced by t + dt. Therefore both

F(rb, t) = 0 and F(rb + vdt, t + dt) = 0,
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Figure 2.3: It is convenient to specify grain boundaries with a level-set func-
tion.

and applying a Taylor expansion to the last identity we arrive at the dynamic
equation

∂tF + v∇F = 0, (2.7)

which is actually valid for any moving boundary, because of its pure geomet-
rical nature. In principle, the boundary velocity v has two components

v = vn + vτ ,

where vn is normal and vτ is tangential to the boundary. However, the
contribution of the tangential component vanishes completely, because ∇F
is orthogonal to the boundary as long as the latter is given by the level set
Eq. (2.6). The normal component vn equals the boundary velocity as given
by Eq. (2.1), i.e.,

vn = vb = µbKbn, (2.8)

where

n =
∇F
|∇F|

is a unit vector directed normal to the boundary. Note, that∇F points in the
direction, where F increases most rapidly, and therefore n is automatically
directed outward with respect to the grain defined by the inequality (2.5).
That is, Kb should be understood as a projection of the drag force on the
outward unit normal vector. If the drag force is determined by the surface
curvature, the drag projection is positive for a boundary, which is concave
with respect to the grain in question, as shown in Fig. 2.3, and negative for
a convex boundary.
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Inserting the boundary velocity (2.8) into (2.7) we obtain the desired
dynamic equation for boundary motion

∂tF + µbKb

√
(∂xF)2 + (∂yF)2 + (∂zF)2 = 0, (2.9)

which is a nonlinear partial differential equation. Equation (2.9) is given in
the most general and symmetric form, e.g., its rotational symmetry is evident.
However, for practical purposes it is worth to rewrite (2.9) assuming that the
boundary is given explicitly, e.g., in the vicinity of some point by

F(x, y, z, t) = 0 ⇔ z = f(x, y, t), (2.10)

and the symmetry between the variables is broken. We assume that the grain
F(r, t) ≤ 0 is positioned “below” the boundary and is given by the inequality

z ≤ f(x, y, t). (2.11)

Therefore we insert
F(x, y, z, t) = z − f(x, y, t)

into (2.9) and obtain

∂tf = µbKb

√
1 + (∂xf)2 + (∂yf)2, (2.12)

the latter form is less symmetric but more tractable analytically.

2.2.3 Motion due to surface tension

Neither Eq. (2.9) nor Eq. (2.12) are complete because an explicit expression
for Kb is required. This expression depends on the specific problem. We
are mostly interested in a special case, where the drag force is provided by
the surface tension effect. The drag is then given by Eq. (2.2), and it is
always normal to the boundary. We only have to express the mean curvature
κ = κ1 + κ2 in terms of f . Such an expression can be found in the textbooks
[Dubrovin et al., 1992]

κ = div

(
∇f√

1 + |∇f |2

)
(2.13)

and therefore our basic equation reads

∂tf = µbγb

√
1 + |∇f |2 div

(
∇f√

1 + |∇f |2

)
. (2.14)



2.3. EXAMPLES OF BOUNDARY MOTION 27

To our knowledge, in the context of moving boundaries the two-
dimensional limit of this equation was introduced in [Mullins, 1957] for the
grooving problem. In the context of nonlinear diffusion similar equations
and their semi-scale solutions were originally considered in [Fujita, 1952a,
Fujita, 1952b].

Before we proceed it is appropriate to recall our sign conventions
(Fig. 2.4). The mean curvature as defined by Eq. (2.13) is positive if the
boundary is concave and negative if the boundary is convex with respect to
the grain defined by the inequality (2.11). In any case, the projection of the
drag force along the unit normal vector directed outside with respect to the
grain is given by the expression µbγbκ and Eq. (2.14) correctly describes the
evolution of our boundary with time.

Figure 2.4: Sign conventions for Eq. (2.14).

Equation (2.14) is a closed one. It completely describes boundary motion
in an appropriately chosen coordinate frame, if the initial and boundary
conditions are properly specified. We now discuss several examples.

2.3 Examples of boundary motion

Here we discuss several typical solutions of Eq. (2.14). The main question we
are interested in is a special solution for the boundary, which is moving with
a constant velocity. Such a solution is used to consider the coupled motion
of pores and boundaries in the following chapters.
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2.3.1 Stationary solutions

Stationary boundaries are described by the equation κ = κ1 + κ2 = 0, i.e.,

div

(
∇f√

1 + |∇f |2

)
= 0, (2.15)

which still is a complicated nonlinear partial differential equation. Its sim-
plest analytical solution is given by the plane boundary

z = const, i.e., f(x, y) = const.

Moreover, the plane boundary is stable. Indeed, inserting an arbitrary small
perturbation

f = const + f̃(x, y, t) (2.16)

into Eq. (2.14) and omitting all terms proportional to f̃ 2 we arrive at a linear
diffusion equation

∂t f̃ = µbγb∇2f̃

where the parameter µbγb is measured in units [length]2/[time] and serves as
an effective diffusion coefficient. We conclude that an initial perturbation
f̃ with a characteristic space scale R disappears on a time scale R2/(µbγb)
indicating stability. An “energetic” explanation is that the planar interface
evidently provides the absolute minimum of the surface area and the surface
free energy.

This does, however, by no means imply that an arbitrary boundary nec-
essarily evolves to a plane. In fact, the full set of stationary solutions of
Eq. (2.14) is extremely rich. A formal mathematical reason for that is that
the boundary conditions for Eq. (2.15), i.e., boundaries of the boundaries,
are in general incompatible with plane solutions. The nontrivial equilib-
rium configurations can be sought by tracing the evolution of f(x, y, t) via
Eq. (2.14) until one of the possible equilibrium states is established (relax-
ation method). Another possibility is direct minimization of the surface area.
Note, that the area is positively defined and therefore its minimum should
exist for all physically reasonable boundary conditions.

These minimal surfaces are well known and have been intensely inves-
tigated in differential geometry [Dubrovin et al., 1992]. Actually, everybody
has observed such surfaces when playing with soap films. A simple analytical
example is given by a catenoid, i.e., a radially symmetric minimal boundary
with f = f(r) and r =

√
x2 + y2 that is shown in Fig. 2.5. In this case the

mean curvature reads

κ =
1

r

∂

∂r

(
r∂rf√

1 + (∂rf)2

)
. (2.17)
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Figure 2.5: A catenoid z = f(r) given by Eq. (2.18) is observed when, e.g.,
a soap film, is pinned by a ring. The coordinates are normalized by r0.

Therefore Eq. (2.15) is reduced to an ordinary differential equation

r∂rf√
1 + (∂rf)2

= r0 with r0 = const,

which can be directly integrated. The solution reads

f(r) = r0 ln

(
r +

√
r2 − r2

0

r0

)
, (2.18)

where the solution is normalized in accord with the condition f(r0) = 0 and
is defined for r > r0. It describes, e.g., a boundary that is pinned by a ring-
like particle with the radius R0 ≥ r0 (see Fig. 2.5 and [Nes et al., 1985]).
The particle drag angle Θ is determined by the relation

tan Θ =
df

dr

∣∣∣∣
r=R0

=
r0√

R2
0 − r2

0

, i.e., sin Θ =
r0

R0

,

and the total drag force that acts on the particle and in turn distorts the
boundary reads

Kdrag = 2πR0γb sin Θ = 2πr0γb. (2.19)

The drag is determined by the solution parameter r0 and is formally inde-
pendent of the ring radius R0, but the restriction r0 ≤ R0 is valid. The
maximum possible drag corresponds to the maximum possible r0 = R0, it
reads 2πR0γb. The corresponding drag angle reads Θmax = π/2. We conclude
that if a stationary plane boundary is pinned by a ring shaped particle with
an external force K applied to it, a particular solution of the form (2.18) is
self-organized. The solution (i.e., an appropriate value of the solution param-
eter r0) is determined by the equilibrium condition that the external force K
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is compensated by the surface tension force Kdrag as given by (2.19). Such
a compensation is possible as long as K ≤ 2πR0γb. If K exceeds this limit,
the stationary solution does not exist.

A more complicated situation occurs, when the boundary is pinned by
a spherical particle (Fig. 1.7). In this case one has to distinguish the self-
organized solution parameter r0, the particle radius Rp, and the radius of the
contact circle R0, where r0 ≤ R0 ≤ Rp (see [Nes et al., 1985]).

We are now in a good position to stress that we are actually interested
in a slightly different situation where a moving boundary meets a stationary
particle. There is no equilibrating external force that acts on the particle.
In the contrary, the particle moves with the boundary due to the drag. We
are interested in conditions for such a common motion. First, we have to
consider a special set of dynamic solutions of Eq. (2.14), where the boundary
moves with a constant velocity.

2.3.2 Uniform boundary motion

Here we assume that the boundary moves along the z axis (up) with some
constant velocity U > 0. Therefore the time dependence of f(x, y, t) can be
given explicitly, i.e.,

f(x, y, t) = F (x, y) + Ut (2.20)

and our main Eq. (2.12) reduces to

√
1 + |∇F |2 div

(
∇F√

1 + |∇F |2

)
− U

µbγb

= 0. (2.21)

The latter equation can be considerably simplified in the case of radial sym-
metry F = F (r), i.e.,

√
1 + (∂rF )2

1

r

∂

∂r

(
r∂rF√

1 + (∂rF )2

)
− U

µbγb

= 0,

or
1

1 + (∂rF )2
∂2

rF +
1

r
∂rF − U

µbγb

= 0. (2.22)

Let us describe a typical problem posing for this equation. We consider a
circular moving boundary with the radius Rb so that the solution should
exist for 0 ≤ r ≤ Rb. We have a second-order differential equation so that
two additional conditions must be specified. Equation (2.22) is invariant
under translations F → F +const and without loss of generality one can put
F (0) = 0. Further, the symmetry arguments suggest that ∂rF (0) = 0. In
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particular, only in this case the solution can be defined in a singular point
at r = 0. We see that actually Eq. (2.22) has an unique solution for given
system parameters. Several examples obtained for different values of U are
shown in Fig. 2.6.

Figure 2.6: Three-dimensional images of a moving boundary z = F (r) for
three different values of its velocity U , namely URb/(µbγb) = 1, 3, 5. The
deviation from the plane boundary increases with an increase of U ; the co-
ordinates are normalized by Rb.

The simplest mathematical treatment of Eq. (2.22) is based on the small
slope approximation. The latter assumes small values of the slope angle θ,
which is defined by the relation

tan θ = ∂rF. (2.23)

In this case the term (∂rF )2 in Eq. (2.22) can be ignored and (2.22) reduces
to a linear equation. Its solution reads

Fsmall slope(r) =
U

4µbγb

r2,

the corresponding boundary is a concave paraboloid. The solution indicates
that the slope angle

θ = arctan
Ur

2µbγb

gradually increases from zero at r = 0 to the maximal value Θb at r = Rb.
This maximum value is the drag angle for our boundary. The driving force
reads

Kdrag = 2πRbγb sin Θb ≈ 2πRbγb tan Θb =
πR2

b

µb

U
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and is proportional to the velocity. The ratio

Mb =
U

Kdrag

=
µb

πR2
b

, (2.24)

should then be interpreted as the global boundary mobility, the latter char-
acterizes the whole boundary instead of its small elements. This simple
relation between the local and global mobilities holds as long as the small
slope approximation is valid, i.e., if Θb ¿ 1.

To proceed with the general nonlinear case it is natural to transfer from
F (r) to the slope angle variable θ(r) defined by Eq. (2.23) and to the nor-
malized length ρ = r/Rb. Equation (2.22) then takes the form

∂ρθ +
1

ρ
tan θ − ε = 0 (2.25)

with

0 ≤ ρ ≤ 1, θ(0) = 0

and

ε =
URb

µbγb

(2.26)

being the only dimensionless parameter that uniquely determines the solution
θ(ρ, ε). The latter can be found numerically or analytically in the form of
Taylor expansion in ρ. The “last” value of θ(ρ, ε) (i.e., for ρ = 1) is the
boundary drag angle Θb(ε). The value of sin Θb(ε) determines the drag force.
The analytical solution reads

θ(ρ, ε) =
ερ

2
− ε3ρ3

96
+ . . . ,

Θb(ε) = θ(1, ε) =
ε

2
− ε3

96
+ . . . , (2.27)

sin Θb(ε) =
ε

2
− ε3

32
+ . . .

The series quickly converge for ε . 1, i.e., if the boundary velocity is not too
large. For large ε a numerical solution should be used. Several examples of
such solutions are shown in Fig. 2.7. For ε ≤ 3 the dependence of θ on ρ is
almost linear and the small slope approximation is valid. For larger values of
ε the boundary can be divided in a parabolic “bottom” and almost vertical
“sides” with the slope angle close to π/2.
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Figure 2.7: Dependence of the boundary slope angle θ on the normalized
radial coordinate ρ from numerical solutions of Eq. (2.25) for different values
of ε, as shown by labels.

An important new point is that if we formally introduce the global bound-
ary mobility

Mb(ε) =
U

Kdrag

=
µb

πR2
b

ε

2 sin Θb(ε)
=

µb

πR2
b

(
1 +

ε2

16
+ . . .

)
, (2.28)

it depends now on ε (i.e., on the normalized boundary velocity) indicating
nonlinearity of our problem. This dependence was also obtained numerically
for 0 < ε < 6 (Fig. 2.8). As we see, the nonlinear boundary mobility con-
siderably increases with an increase in velocity. Equation (2.28) is a good
approximation for ε < 5.

Of course, if the boundary is pinned by a particle the solution should be
regular only in the interval r0 < r < Rb, where r = r0 is the contact circle.
Equation (2.22) allows then for a two-parametric family of the nontrivial
solutions.

2.3.3 Pore effect on boundary mobility

The focus of this thesis is the coupled motion of pores and boundaries. One
particular problem is how the mobility of a boundary is affected by dragged
pores. The problem is addressed in this section.

We consider a boundary positioned at r < Rb that is pinned by a pore
positioned at r < Rp, where Rp < Rb. The system moves with the common
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Figure 2.8: Global boundary mobility Mb normalized by µb/(πR2
b) versus

pore velocity U normalized by µbγb/Rb. Dotted line is from Eq. (2.28).

velocity U . In accord with Eq. (2.24) the ratio µb/(πR2
b) is considered as the

boundary mobility Mb, we are interested in the system mobility Msys.
The pore drag angle Θp can be related to the pore mobility Mp via

U = MpKpore drag = Mp · 2πRpγb sin Θp

and in the small slope approximation

Θp =
U

2πRpγbMp

, (2.29)

where specific expressions for Mp depend on the pore motion mechanism and
will be discussed in the two next chapters. The value of Θp is used as an
initial condition for Eq. (2.25), which should be also taken in the small slope
approximation, i.e.,

∂ρθ +
1

ρ
θ − ε = 0, θ(ρ)

∣∣
ρ=Rp/Rb

= Θp.

The general solution reads

θ(ρ) =
ερ

2
+

C

ρ
,

where the integration constant C is determined through the initial condition
and reads

C = Θp
Rp

Rb

− ε

2

R2
p

R2
b

.
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Therefore the boundary drag angle is

Θb = θ(1) = Θp
Rp

Rb

+
ε

2

(
1− R2

p

R2
b

)

and using Eq. (2.26) and (2.29) we see that the boundary drag angle is also
proportional to the common velocity

Θb =
U

2πRbγbMp

+
URb

2µbγb

(
1− R2

p

R2
b

)
.

With this value one can calculate the boundary drag force

Kboundary drag = 2πRbγb sin Θb ≈ 2πRbγbΘb

and the system mobility

Msys =
U

2πRbγbΘb

.

The result reads

Msys =

[
1

Mp

+
π(R2

b −R2
p)

µb

]−1

(2.30)

and quantifies the change in the boundary mobility. One interesting limiting
case exists for large Mp, i.e.,

Msys(Mp →∞) =
µb

π(R2
b −R2

p)

that should be compared with Eq. (2.24). As we see, the system mobility
increases because the “mobile” pore effectively decreases the boundary area.
Another situation occurs for a small pore with negligible area

Msys(Rp ¿ Rb) =

(
1

Mp

+
1

Mb

)−1

,

where µb/(πR2
b) is replaced by Mb. We see that the inverse system mobility

equals inverse pore mobility plus inverse boundary mobility. For N dragged
pores the latter equation must be rewritten

Msys(N pores, Rp ¿ Rb) =

(
N

Mp

+
1

Mb

)−1
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and is identical to the well known result [Nichols, 1968]. If, however, the area
covered by pores cannot be neglected, the system mobility must be derived
from the more general Eq. (2.30). The result reads

Msys =

(
N

Mp

+ (1− η)
1

Mb

)−1

. (2.31)

The dimensionless factor

η =
NR2

p

R2
b

< 1

shows what part of the boundary area is covered with pores. If the first term
on the right hand side of Eq. (2.31) dominates, the dragged pores control the
boundary motion [Brook, 1969].

2.4 Boundary motion in two dimensions

The above considered boundaries are two-dimensional objects, i.e., geomet-
rical surfaces with radial symmetry embedded in the three-dimensional coor-
dinate space. In this section we consider one-dimensional curves embedded
in the two-dimensional coordinate space. To do so one should imagine a
real two-dimensional boundary that is parallel to the OY axis and consid-
erably extended in this direction. The corresponding space scale is denoted
by Lb and is much larger than the spatial scales characteristic for the pore’s
cross-section completely described in the XOZ plane. Correspondingly, the
general boundary equation z = f(x, y, t) is replaced by z = f(x, t). This
leads to considerable simplifications and even exact solutions for many prob-
lems. From the geometrical point of view either the implicit F(x, z, t) = 0 or
the explicit z = f(x, t) boundary equation describes a moving curve in the
two-dimensional XOZ space.

2.4.1 Basic equations

First of all, one of the principal curvatures is now equal to zero. The mean
curvature equals the second principal curvature and is given by

κ = ∂x

(
∂xf√

1 + (∂xf)2

)
=

∂2
xf

[1 + (∂xf)2]3/2
(2.32)

as follows from Eq. (2.13). The basic Eq. (2.14) is then replaced by a much
simpler equation

∂tf = µbγb
∂2

xf

1 + (∂xf)2
, (2.33)
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which nevertheless, is still a nonlinear partial differential equation. For the
boundary motion it was first introduced in [Mullins, 1957] for a grooving
problem that naturally has a two-dimensional geometry. The new set of
stationary solutions is given by a simple linear condition ∂2

xf = 0 so that z
is a linear function of x and each equilibrium solution is a straight line. In
other words, all minimal surfaces are now trivial (planes). For the uniform
boundary motion one should use

f(x, t) = F (x) + Ut, (2.34)

which replaces Eq. (2.20). It follows that

∂2
xF

1 + (∂xF )2
− U

µbγb

= 0. (2.35)

The latter equation is much simpler than Eq. (2.22) and can be immediately
integrated. Note, that the equation invariance with respect to translations
F → F+const still holds. Therefore, without loss of generality we can assume
F (0) = 0. If, as in the previous section, we also accept that ∂xF (0) = 0, the
exact analytical solution of Eq. (2.35) reads (see also Fig. 2.9)

F (x) =
µbγb

U
ln

(
cos

Ux

µbγb

)−1

. (2.36)

It presents a cylindrical boundary in 3D space for −Rb < x < Rb. Note, that
the z dimension of the boundary is given by the expression

F (Rb) =
µbγb

U
ln

(
cos

URb

µbγb

)−1

,

which gradually increases with the increase of U . This dimension formally
becomes infinite for URb/(µbγb) = π/2. Therefore a uniform motion of a
cylindrical boundary is possible only bellow the critical velocity

U < Umax =
πµbγb

2Rb

. (2.37)

Concerning boundary mobility we note that the driving force is now
Kdrag = 2Lbγb sin Θb. The local slope depends linearly on the x coordinate

θ = arctan ∂xF =
Ux

µbγb

and therefore the drag angle for the boundary reads

Θb = θ(Rb) =
URb

µbγb

. (2.38)
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Figure 2.9: Cross-section of a uniformly moving cylindrical boundary z =
F (x), as given by Eq. (2.36).

The latter ratio was referred to as ε in the previous section. Equation (2.27)
is now simply Θb(ε) = ε. Defining the global boundary mobility as a ratio of
the velocity and the drag force we obtain

Mb(ε) =
U

Kdrag

=
µb

2LbRb

ε

sin ε
=

µb

2LbRb

(
1 +

ε2

6
+ . . .

)
. (2.39)

This equation should be compared with Eq. (2.28). In Eqs. (2.28) and (2.39)
the global mobility depends on ε (i.e., on the boundary velocity) indicating
nonlinearity of the problem. In the small slope approximation one can ignore
ε and obtains

Mb =
µb

2LbRb

(2.40)

in analogy with Eq. (2.24). In Eqs. (2.24) and (2.40) the global mobility
equals the local one divided through the boundary area, this representation
is generic in the small slope approximation.

Finally in full analogy with the previous section one can quantify mobility
of a pore-boundary system for a channel-like pore. The result reads

Msys =
1

1

Mp

+
2Lb(Rb −Rp)

µb

(2.41)

and is similar to Eq. (2.30). Here Lb = Lp. Equation (2.31) still applies for
N dragged pores.

2.4.2 Exact results

To conclude the discussion of the boundary motion in two dimensions let
us consider an exact result that was found by von Neumann and Mullins
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[Neumann, 1952, Mullins, 1956]. Exact solutions play an important role as
benchmarks for numerical schemes. In addition they help us to develop
physical intuition, and they serve as a starting point for different perturbation
schemes. To begin the discussion let us consider a part a ≤ x ≤ b of a two-
dimensional boundary z = f(x, t) that is moving, e.g., up in accord with
Eq. (2.33). We ask: at which rate does the volume V (t) of the grain in
question increase? This rate is given by the integral

dV

dt
= Lb

d

dt

b∫

a

f(x, t) dx,

which can be calculated exactly, if we take the time derivative before inte-
gration and use Eq. (2.33). The result reads

dV

dt
= Lbµbγb(arctan ∂xf)

∣∣∣∣
x=b

x=a

. (2.42)

The latter expression is the difference between the slope angles for our
boundary. One immediate application is for a symmetrical boundary with
−Rb < x < Rb and equal drag angles Θb. We have

dV

dt
= 2LbµbγbΘb. (2.43)

For the uniform motion with the velocity U we have dV/dt = 2RbLbU and
Eq. (2.43) reduces to Eq. (2.38). We see that if the drag angles are fixed,
the grain volume always increases with the same rate as for the partial exact
solution given by Eq. (2.36).

Another application is to use Eq. (2.42) for a smooth closed boundary. In
this case the difference on the right-hand-side of Eq. (2.42) is equal to −2π
and we have

dV

dt
= −2πLbµbγb,

the latter equation can be directly integrated. The volume of our collapsing
cylindrical grain is given by the simple exact expression

V (t) = V (0)− 2πLbµbγbt. (2.44)

Equation (2.44) is a natural generalization of Eq. (2.4). We see that the
collapse occurs at the moment tc = V (0)/(2πLµbγb) for any cylindrical grain.

A further application is a cylindrical grain surrounded by N other grains,
where we encounter N boundaries connected via N triple junctions. If we
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integrate along the grain boundaries, the tangent vector makes a smooth
rotation (changes its direction over an angle of −2π) as above, but N sudden
changes of 2π/3 occur at each triple junction. Therefore the volume of the
grain is changing in accord with

dV

dt
= −

(
2π −N

2π

3

)
Lbµbγb.

One consequence is that a pentagonal grain collapses six times slower than
a smooth cylindrical grain. A hexagonal N = 6 grain does not change its
volume at all, the only way to reduce the surface energy for such a grain is to
straighten its boundaries and to form a proper hexagon with straight edges.
If the number of surrounding triple junctions is more than six, the grain grows
instead of collapsing, this is a classical result of Mullins [Mullins, 1956] and
von Neumann [Neumann, 1952].



Chapter 3

Pore motion controlled by
surface diffusion

In this chapter we discuss pore motion via the surface diffusion mechanism.
The main questions to be addressed are (a) pore mobility calculation and
(b) conditions for the pore drag and drop. A typical example is a gas filled
pore. It is assumed that the surface diffusion dominates over evaporation-
condensation. In contrast to the Zener drag case, both the pore shape and
the pore velocity are calculated self-consistently for a given drag angle and
arbitrary dihedral angles.

In this chapter, calculations are made for cylindrical channel-like
pores, the latter can be completely described by their cross-sections, i.e.,
in two spatial dimensions. In contrast to lenticular pores (see Intro-
duction and Fig. 3.1b), channel-like pores are not frequently encoun-
tered. Nevertheless, close analysis of the experimental data presented in
Fig. 3.1a,c,d (see [Renner et al., 2002b] for details of the procedure) shows
that elongated channel-like pores also exist in nature. Another situation
where the pores can be considered as two-dimensional objects is grain
growth in a thin film [Gottstein and Shvindlerman, 1999, Huang et al., 2004,
Jankowski and Hayes, 2004]. On the other hand, mathematical description
of two-dimensional objects is relatively simple. Mention was made that there
is a wide scatter of the published data on lenticular pores. Therefore a care-
ful investigation of a more simple case is also a useful guideline for inter-
pretation of these contradictory results. In particular, our calculations indi-
cate that dependence of the critical velocity on the drag angle is relatively
weak in agreement with results of [Yu and Suo, 1999] but in conflict with
[Hsueh et al., 1982, Spears and Evans, 1982] and [Svoboda and Riedel, 1992,
Riedel and Svoboda, 1993].

Another situation we have to consider is a pore that is filled with a fluid.

41
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Figure 3.1: SEM microphotograph of a synthetic marble (pure CaCO3 hot-
pressed at 973 K and 300 MPa confining pressure, showing features associated
with pore channels along grain edges. (a) View onto flattened grain edges
forming parts of the surface of an elongated channel. (b) Pore (arrow) with a
shape typical for drag close to critical conditions, i.e., approaching drop, orig-
inating at a grain edge channel. (c) The elongated groove (arrow) may have
resulted from drop of a substantial part of the grain boundary edge channel
now situated to the left. (d) The depression of the grain face (encircled area)
possibly documents drag of a grain boundary channel. The preponderance
of lenticular pores in the wake of the channels suggests a generic relation
between channels and pores.

In this case the matrix material that dissolves on the leading face of the
pore and then crystallizes (precipitates) on the trailing face is effectively
transferred across the pore by diffusion through the pore-filling fluid. This
mode of mass transfer is considered in the next chapter.

3.1 Physical mechanism

From the physical point of view, surface diffusion results from two basic
effects: (i) atoms can effectively move along the surface of a phase; (ii) the
chemical potential of an atom on the surface of a phase is related to the
curvature of the latter. A nonuniform curvature results then in an atomic
flux, which tends to make the curvature uniform. For instance, a non-rigid
inclusion inside the matrix must evolve to a sphere. The inclusion at the
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boundary between two grains has the same tendency. The perfect sphere can,
however, not be formed, because boundary conditions have to be satisfied,
where the pore branches meet the boundary. For a pore at a stationary
boundary we have two segments of a sphere, branching off at either side of
the boundary. The two spherical segments adjust themselves to form the
correct dihedral angle at the junction with the grain boundary. The dihedral
angle is determined by the force balance among the two spherical segments
of the pore and the grain boundary [Eq. (3.20)]. When the boundary moves,
the geometry of the pore changes self-consistently.

To describe surface diffusion mathematically we have to know the diffu-
sivity of the atoms on the surface of the pore. It will be denoted Ds. As
usual, the corresponding atomic mobility reads Ds/(kT ). To proceed we have
to find an expression for the chemical potential.

Let the chemical potential of an atom on a flat surface be m0. The chem-
ical potential of the atoms on a curved pore surface ms reads [Mullins, 1957]

ms(κ) = m0 − γsΩκ (3.1)

where as in Chapter 2 the quantity κ = κ1 + κ2 is the mean curvature of the
pore surface.

Henceforth we use the following notations. The equations

F(x, y, z, t) = 0 ⇔ z = f(x, y, t)

as introduced in Eq. (2.10) always refer to the interface between two grains
of the same phase (grain boundary). The interface between a pore and a
grain (pore surface) is given by

G(x, y, z, t) = 0 ⇔ z = g(x, y, t) (3.2)

and the grain is specified by the inequality z < g(x, y, t), i.e., it is positioned
“bellow” the pore in a local coordinate frame. The mean surface curvature
is defined by Eq. (2.13) where f is replaced by g. It is positive if the grain is
concave with respect to the pore surface and negative otherwise.

Note that if the curvature is nonuniform, there is a force that acts on
each atom and reads −∇sms. The atoms move parallel to ∇sκ, where the
gradient ∇s is calculated on the surface.

The mean velocity of an atom reads

va = −Ds

kT
∇sms.

The number of atoms involved in motion per unit area of the surface reads
ν = δ/Ω where δ is an effective width of the surface and Ω is the volume per
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Figure 3.2: Matrix atoms move along the surface towards lower chemical
potential.

atom. The resulting atomic flux over the surface reads

Ja = ν va = − Dsδ

kTΩ
∇sms,

and a unit area of the surface obtains − divs Ja atoms per second. The
corresponding normal velocity of the surface reads

vn = −Ω divs Ja =
Dsδ

kT
∇2

sms = −DsγsΩδ

kT
∇2

sκ,

where the laplace operator ∇2
s is calculated on the surface. These expressions

may be substituted in the general dynamic equation

∂tg = vn

√
1 + |∇g|2, (3.3)

which is valid for any moving surface and is derived for g(x, y, t) exactly like
Eq. (2.12) for f(x, y, t). The result reads

∂tg +
DsγsΩδ

kT

√
1 + |∇g|2 · ∇2

sκ = 0,

where we still have to derive an explicit expression for ∇2
sκ.

Note, that x and y provide us with a local coordinate system on the
surface z = g(x, y, t). However, the lines on the surface with either x = const
or y = const are not orthogonal to each other and a general expression
for the surface Laplace operator ∇2

s should be used instead of the familiar
∇2 = ∂2

x + ∂2
y . Such an expression can be found in textbooks on differential

geometry [Dubrovin et al., 1992] and reads

∇2
sκ =

1√
1 + |∇g|2 div

(
∇κ√

1 + |∇g|2

)
.
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We can now formulate the main result of this section and arrive at the starting
point for the entire chapter. The evolution of the interface between the pore
given by z > g(x, y, t) and the grain given by z < g(x, y, t) is governed by
the nonlinear partial differential equation

∂tg +
DsγsΩδ

kT
div

(
∇κ√

1 + |∇g|2

)
= 0, (3.4)

where the mean curvature of the surface is calculated as

κ = div

(
∇g√

1 + |∇g|2

)
. (3.5)

This basic equation was first introduced by Mullins for a similar problem of
groove evolution along a boundary between two grains, which were in contact
with an aqueous phase [Mullins, 1957]. It was solved using a small slope
approximation, which as we will see is not sufficient to treat pore detachment.
The appropriate solutions of Eq. (3.4) are discussed in the reminder of this
chapter.

3.2 General properties of the basic equation

Equation (3.4) provides the basis for the description of pore motion. It can
be given in a closed form

∂tg +
DsγsΩδ

kT
div

{
1√

1 + |∇g|2∇
[
div

(
∇g√

1 + |∇g|2

)]}
= 0. (3.6)

Its general properties are discussed below.

3.2.1 Analysis of dimensions

It is worth to note that all physical characteristics of the pore are gathered
in a single combination with the dimension

[
DsγsΩδ

kT

]
=

length4

time
.

For example, if the pore between the boundaries can be characterized by
a single length parameter Rp and moves with the constant velocity U , its
behavior depends only on two dimensionless parameters, one is

DsγsΩδ

UR3
p kT
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and the second is the dihedral angle. For a fluid filled pore with a self-
organized shape and a fixed volume V the corresponding dimensionless com-
bination reads

DsγsΩδ

UV kT
,

and the critical velocity must be proportional to the inverse volume.

3.2.2 Stationary solutions

Stationary solutions for the pore-boundary interface are given by the nonlin-
ear partial differential equation

κ = div

(
∇g√

1 + |∇g|2

)
= const, (3.7)

that is, from the geometrical point of view the stationary solutions are sur-
faces with constant curvature. The simplest example is provided by a plane,
where g(x, y) is a linear function of x and y, therefore ∇g is a constant vec-
tor and κ = 0. More generally, any minimal surface, i.e., that with the zero
mean curvature, provides a solution of Eq. (3.7). Such minimal surfaces were
discussed in Chapter I.

Another simple analytic example [Dubrovin et al., 1992] is a rotationally
symmetric pore surface with g = g(r) where r =

√
x2 + y2. In this case the

mean curvature is given by Eq. (2.17) and Eq. (3.7) reduces to an ordinary
differential equation

1

r

∂

∂r

(
r∂rg√

1 + (∂rg)2

)
= ± 2

r0

with r0 = const. Here, ±2/r0 represents the right-hand-side of Eq. (3.7) for
concave and convex surfaces, respectively. After one integration we get

r∂rg√
1 + (∂rg)2

= ±r2

r0

+ C,

where taking r → 0 we see that for a regular solution the integration constant
C = 0 and

∂rg√
1 + (∂rg)2

= ± r

r0

.

The latter equation can be directly integrated. The solution reads

g(r) = ∓
√

r2
0 − r2 or x2 + y2 + z2 = r2

0
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and represents a sphere or a spherical segment. Later on we will construct
stationary pores on the boundary and at the triple junction as combinations
of spherical (cylindrical) segments.

3.2.3 Small slope approximation

In this approximation one assumes that ∇g is small and ignores the terms
proportional to |∇g|2. In this case the basic Eq. (3.4) reads

∂tg +
DsγsΩδ

kT
∇2(∇2g) = 0 (3.8)

and is recognized as a bi-Laplace equation. Considering a plane wave solution
of the form

g = const + a(t) exp(ikr)

we see that

ȧ = −DsγsΩδ k4

kT
a

and therefore the perturbation quickly decays with time and a stationary
plane solution g(x, y) = const is stable. In other words, an initial per-
turbation with a characteristic space scale R disappears on a time scale
R4kT/(DsγsΩδ). One can use this result to obtain a simple estimate of the
critical pore velocity. Indeed, let us assume that a pore with the characteristic
radius Rp is subject to uniform motion with the constant velocity U induced
by boundary motion. The characteristic time scale is Rp/U and the pore
should have enough time to adjust itself to perturbations that permanently
result from the moving boundaries. Therefore

R4
pkT

DsγsΩδ
<

Rp

U

and

U <
DsγsΩδ

R3
pkT

.

One can then assume that the maximum (critical) pore velocity is given by
the expression

Umax = C
DsγsΩδ

R3
pkT

, (3.9)

where the unknown factor C(Φ) ∼ 1 depends on the dihedral angle Φ. This
result also follows directly from the dimension analysis.
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3.2.4 Semi-scale solution

One can directly check that the basic Eq. (3.6) allows a partial solution of
the form

g(x, y, t) =
4
√

t g(ξ), ξ =
r
4
√

t
, (3.10)

where g(ξ) is subject to an ordinary differential equation. This spe-
cial solution can be derived from the symmetry properties following, e.g.,
[Sedov, 1959]. Indeed, the basic Eq. (3.6) is invariant under a specially cho-
sen scaling transformation. Namely, if g(x, y, t) is a valid solution of Eq. (3.6),
one can build a new valid solution

gλ(x, y, t) =
g(λx, λy, λ4t)

λ

for any constant λ. One can now look for a partial solution that is invariant
(does not change) under the scaling transformation. It should have the form
given by Eq. (3.10), because in this case gλ(x, y, t) is identical to g(x, y, t).
Such a solution is referred to as a semi-scale solution. It is easy to see
that g(ξ) indeed is subject to an ordinary differential equation, the latter
is much more tractable then the partial differential equations. Under the
small slope approximation the corresponding solution for g(ξ) was solved
by Mullins [Mullins, 1957]; for the general nonlinear case its solution is not
known. One important conclusion can, however, be drawn from the very
form of Eq. (3.10). First of all, the full set of the semi-scale solutions is given
by a more general expression

g(x, y, t) = 4
√
±(t− t0) g

(
r

4
√
±(t− t0)

)
,

where t0 is an arbitrary constant. In other words, there are solutions that are
defined either only for t > t0 or only for t < t0. The latter case corresponds
to a collapsing singular solution, e.g., the pore can be divided in two parts
or separated from the boundary.

3.2.5 Two-dimensional case

Imagine an elongated channel-like pore that can be formally assumed to be
infinite in y direction and therefore specified by the equation z = g(x, t).
One of the principal curvatures is zero, the other is defined by an equation
similar to Eq. (2.32)

κ = ∂x

(
∂xg√

1 + (∂xg)2

)
=

∂2
xg

[1 + (∂xg)2]3/2
, (3.11)
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and the basic Eq. (3.4) takes the form

∂tg +
DsγsΩδ

kT
∂x

(
1√

1 + (∂xg)2
∂x

{
∂2

xg

[1 + (∂xg)2]3/2

})
= 0. (3.12)

This equation provides the base for what follows in this chapter and is used
to consider the drag and drop problem for channel-like pores. First, we omit
∂tg for the stationary solutions and Eq. (3.12) can be integrated

1√
1 + (∂xg)2

∂x

{
∂2

xg

[1 + (∂xg)2]3/2

}
= C, (3.13)

where C is the constant of integration. As in the previous chapter we restrict
ourselves to the symmetric solutions such that g(−x) = g(x). Symmetry
requires C = 0 because the left-hand-side of Eq. (3.13) changes its sign
after transformation x → −x, whereas the right-hand-side is not affected.
Equation (3.13) can then be integrated once again to obtain

∂2
xg

[1 + (∂xg)2]3/2
= ± 1

r0

, r0 = const.

For r0 = ∞ the solution is a straight line, otherwise it is segment of a circle.
Let us introduce an angle variable ϕ such that

tan ϕ = ∂xg. (3.14)

Symmetry requires that ϕ(0) = 0. In geometrical terms Eq. (3.14) indicates
that ϕ is the angle between the tangent vector to the pore surface z = g(x)
and OX axis. Changing variables from g to ϕ we obtain

cos ϕ∂xϕ = ± 1

r0

⇒ sin φ = ± x

r0

and therefore

∂xg = ± x√
r2
0 − x2

⇒ g(x) = ∓
√

r2
0 − x2.

The solution in question is therefore a segment of a circle, the segment is
convex or concave with respect to the underlying grain z < g(x). Two such
segments can be used to construct an equilibrium solution for a channel-like
pore between two grains, as shown in Fig. 3.3.

In a next step let us consider a pore moving uniformly parallel to the ẑ
axis with velocity U identical to the velocity of the grain boundary. The pore
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Figure 3.3: Stationary equilibrium pore between two grains. The pore is
symmetrical and positioned in a region |x| ≤ Rp. The pore width 2Rp to-
gether with the dihedral angle Φ uniquely determine the geometry of the
pore.

is positioned between two grains and the functional dependence z = g(x, t)
describes the interface between the pore and the bottom boundary. For the
uniform motion

g(x, t) = Ut + G(x). (3.15)

Substituting this pore surface function into Eq. (3.12) and integrating we
arrive at

Ux +
DsγsΩδ

kT

1√
1 + (∂xG)2

∂x

{
∂2

xG

[1 + (∂xG)2]3/2

}
= C, (3.16)

where C denotes the constant of integration. As above, considerable sim-
plifications can be achieved, if we restrict ourselves to symmetric solutions
G(−x) = G(x) in which case C = 0.

To determine the problem completely, we have to formulate boundary
conditions involving curvature and dihedral angle. We explicitly give these
for the left tip. The conditions on the right side are analogous owing to
symmetry. The boundary conditions can be treated in a more natural way
if Eq. (3.16) is rewritten for C = 0 as a system of three first order equations

∂xϕ =
κ

cos ϕ
, (3.17)

∂xG = tan ϕ, (3.18)

∂xκ = − U kT

DsγsΩδ

x

cos ϕ
, (3.19)

where ϕ is the angle between the tangent vector (1, ∂xG) and the x̂ axis as
expressed by Eq. (3.18). Equation (3.17) is equivalent to the geometrical
definition of the curvature (i.e., κ = ∂sϕ, where s is the natural parame-
ter, see e.g., [Dubrovin et al., 1992]). Equation (3.19) directly follows from
Eq. (3.16).
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Figure 3.4: Pore that moves upwards with a small constant velocity and
therefore is slightly different from that shown in Fig. 3.3.

The moving pore shown in Fig. 3.4 can be considered as a deformation
of that shown in Fig. 3.3. It has two branches of total width 2Rp, that is
Eqs. (3.17–3.19) must be solved for −Rp < x < Rp. We index the convex
down branch (positive curvature) as the first solution and the convex up
branch (negative curvature) as the second. The angles Φ1 and Φ2 can take
different values, but their sum Φ1 + Φ2 = Φ is fixed to the dihedral angle

Φ = 2 arccos

(
γb

2γs

)
, (3.20)

that is derived from the condition of force equilibrium. Then we have
ϕ1(−Rp) = −Φ1 and ϕ2(−Rp) = Φ2 and

ϕ2(−Rp)− ϕ1(−Rp) = Φ (3.21)

results as the boundary condition for angles on the left tip. Appropriate
choice of the coordinate system ensures that

G1(−Rp) = G2(−Rp) = 0. (3.22)

Finally, the chemical potential is proportional to the absolute value of the
curvature and has to be continuous at the tip

κ1(−Rp) + κ2(−Rp) = 0. (3.23)

An important note must be made here. Both pore branches as shown in
Fig. 3.4 are concave with respect to the corresponding grains, their curvatures
are therefore positive. These curvatures must be calculated in accord with
Eq. (3.11) in a corresponding local coordinate frame, i.e., (x, z) for the leading



52 CHAPTER 3. PORE MOTION BY SURFACE DIFFUSION

surface and with z′ = −z for the trailing surface. To avoid replication of the
actually identical equations for the leading and trailing surfaces we, however,
prefer to use only one coordinate frame, therefore κ2 is formally negative.
This explains the signs in Eq. (3.23).

Equations (3.17–3.19) together with the symmetry requirement and
boundary conditions (3.21–3.23) completely determine the change of the pore
shape with variations in its velocity. Similar equations were originally formu-
lated in [Hsueh et al., 1982] for a lenticular pore with rotational symmetry.
These equations will be solved analytically and numerically in the next sec-
tions both for the pore on the boundary and (after some reformulation) for
the pore at the triple junction. Analytical solution is possible in some special
cases, e.g., for small velocities or small dihedral angles. The most important
property that can be obtained in this way is the mobility of the pore in
question. In this case the difference between the equilibrium pore (Fig. 3.3)
and the deformed one (Fig. 3.4) is small and a perturbation expansion in
pore velocity can be applied. With an increase of the velocity a numerical
solutions must be used. This solution is also constructed and the critical
velocity of a channel-like pore is obtained.

3.3 Pore at a grain boundary

As shown in Section 3.2.1 pore behavior depends on two dimensionless pa-
rameters: a dihedral angle Φ [defined via ratio of γb and γs in Eq. (3.20)] and
the dimensionless combination

u =
UR3

p kT

DsγsΩδ
(3.24)

that will be referred to as a normalized pore velocity. We also introduce
normalized variables

x̄ =
x

Rp

, Ḡ =
G

Rp

, κ̄ = Rpκ. (3.25)

To simplify the notations the bars will henceforth be omitted. The normal-
ized Eq. (3.17) and Eq. (3.19) read

∂xϕ =
κ

cos ϕ
, (3.26)

∂xκ = − ux

cos ϕ
, (3.27)

and can be solved independently from the third one. These equations are
solved for the pore between two grains in this section and for the pore at a
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triple junction in the next one. Symmetry reasons allow us to consider only
half of the pore, e.g., for −1 ≤ x ≤ 0. The normalized left-tip boundary
conditions read

ϕ2(−1)− ϕ1(−1) = Φ, (3.28)

κ1(−1) + κ2(−1) = 0, (3.29)

as follows from (3.21) and (3.23). Because of the symmetry the conditions
for the pore center are

ϕ1(0) = ϕ2(0) = 0. (3.30)

The last two equations replace the boundary conditions at x = 1. Note,
that we have to determine two branches ϕ1,2(x), κ1,2(x) that depend on each
other. Therefore four boundary conditions are required. This problem is
more complicated than the familiar initial value problem for the ordinary
differential equations, and lends itself to solution using a shooting method.
The dependence of the solution on parameter u must be traced. After the
solutions for the curvature and the slope angle are found, one can restore the
shape of the pore using (normalized) Eq. (3.18)

∂xG = tan ϕ, (3.31)

with the initial condition
G1,2(−1) = 0, (3.32)

which replaces Eq. (3.22).

3.3.1 Small slope approximation

Here we consider a special case, where an analytical solution of Eqs. (3.28)
and (3.29) is available. This happens in the limit

Φ ¿ 1 ⇔ γb ≈ 2γs, (3.33)

i.e., in the small slope approximation as follows from Eq. (3.20).
In principle, small Φ does not necessarily demand small φ1,2(x). In par-

ticular, the pore can be strongly distorted when its velocity is close to the
critical one (see, e.g., numerical solutions below). However, for the equilib-
rium u = 0 pore (see Fig. 3.3) the slope angles are small together with Φ.
Therefore one can assume that they stay small at least for the small velocity
u ¿ 1. One can then replace cos ϕ with 1 and reduce the system (3.28–3.29)
to

∂xϕ = κ, (3.34)

∂xκ = −ux, (3.35)
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the latter equations can be immediately solved. The analytical solutions for
the curvature

κ1 =
u

2
(1− x2) +

Φ

2
, (3.36)

κ2 =
u

2
(1− x2)− Φ

2
, (3.37)

for the slope angle

ϕ1 =
u

2

(
x− x3

3

)
+

Φ

2
x, (3.38)

ϕ2 =
u

2

(
x− x3

3

)
− Φ

2
x, (3.39)

and for the shape of the pore

G1 =
1

24
(1− x2)(ux2 − 5u− 6Φ), (3.40)

G2 =
1

24
(1− x2)(ux2 − 5u + 6Φ), (3.41)

are obtained by straightforward integration.
Several interesting conclusions can be derived from this solution. First,

the lower branch is concave (with respect to the lower grain) for u = 0 and
remains concave for u > 0 [Eq. (3.36)]. The upper grain is also initially
concave (with respect to the upper grain), but it changes shape with increas-
ing velocity [Eq. (3.37)]. For u > Φ the curvature κ2(x) changes its sign at
the pore center. A slightly deformed pore is illustrated in Fig. 3.5. Similar
deformation also occurs in the general case with an arbitrary value of Φ.

Figure 3.5: Pore shape in the small slope approximation when u > Φ

Let us now address the pore drag angle Θp (see Fig. 3.4)

Θp = − ϕ1(x) + ϕ2(x)

2

∣∣∣∣
x=−1

. (3.42)
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It can be explicitly calculated from Eqs. (3.38) and (3.39)

Θp small slope =
u

3
(3.43)

and is proportional to the pore velocity. The pore drag is created by the
surface tension force that acts on a line of the total length 2Lp, where Lp is
the pore width in y direction. Therefore

Kpore drag = 2Lpγb sin Θp ≈ 2

3
Lpγbu =

4

3
Lp

UR3
p kT

DsΩδ
, (3.44)

because the small slope limit requires γb/γs = 2. The drag force is also
proportional to the pore velocity. One can therefore calculate the mobility
of the pore analytically

Mp small slope =
U

Kpore drag

=
3

4

DsΩδ

kTLpR3
p

. (3.45)

This expression will later be generalized for an arbitrary value of Φ. However,
a general structure of mobility of the channel-like pore is already clear

Mp = C
DsΩδ

kTLpR3
p

, (3.46)

where an unknown factor C = C(Φ) can depend on the dihedral angle.

It is important to note that the analytical solution (3.36–3.41) remains
regular with the increase of the pore velocity u and does not describe the
separation of the pore from the moving boundary. In other words, near
the critical velocity the values of ϕ1,2(x) are not small regardless of Φ. The
separation can be considered only with numerical solutions of the Eqs. (3.26–
3.27). Before calculating them let us note that all analytical solutions given
by Eqs. (3.36–3.41) have the same structure

(quantity) = (equilibrium value) + u · (perturbation). (3.47)

One can use this expression to look for an analytical solution of the basic
Eqs. (3.26–3.27) for arbitrary values of Φ and u ¿ 1. The solution is obtained
as a series in u, i.e., it is valid as long as the normalized pore velocity remains
small. In the next section we will derive this solution and use it to determine
pore mobility but not the separation criteria. Thereafter, the numerical
solution and separation criteria will be obtained.
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3.3.2 Mobility of a pore at a grain boundary

To make further analytical and numerical calculations for a pore at a bound-
ary and at a triple junction as similar as possible it is convenient to introduce
a natural parameter s for the pore shape. That is, the function z = G(x) is
now determined implicitly by two functions

x = x(s) and z = z(s),

with an additional restriction that the tangent vector τ = [x′(s), z′(s)] has a
unit length and therefore

τ =

(
cos ϕ
sin ϕ

)
,

where we recall that ϕ was defined as the slope angle for τ . The normalized
basic Eqs. (3.26), (3.27) and (3.31) are now replaced by four equations

∂sϕ = κ, (3.48)

∂sκ = −ux, (3.49)

∂sx = cos ϕ, (3.50)

∂sz = sin ϕ, (3.51)

where the first three equations are independent of the last one and can be
given in an extremely compact form

∂3
sϕ + u cos ϕ = 0 (3.52)

indicating intrinsic simplicity of formulations which make use of the natural
parameter. The only disadvantage is that the integration interval in s cannot
be determined a priory like that in x ∈ [−1, 1]. The integration procedure
runs, (e.g., from the left tip) before the necessary conditions (e.g., at the
right tip ) are met.

Problem posing

The goal is to calculate mobility of a channel-like pore at a boundary. The
pore is formally infinite in y direction the corresponding large scale is denoted
by Lp and all variables are independent of y. The system (3.48–3.51) specifies
ϕ, κ, x and z as functions of the natural parameter s. These functions have
an index 1 or 2 for the lower and upper pore branch, respectively. We have
four differential equations that should be solved two times for both branches
of the pore. Therefore eight boundary conditions are needed. The pore tips
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are positioned at the points z = 0 and x = ±1 (normalization). We assume
that the left tip corresponds to s = 0. Therefore we have four conditions

x1(0) = x2(0) = −1, (3.53)

z1(0) = z2(0) = 0. (3.54)

The curvature should be continuous at the tips whereas ϕ1 and ϕ2 should
combine to provide a predefined dihedral angle Φ. Therefore instead of (3.28)
and (3.29) we have two additional conditions at the left tip

−ϕ1(0) + ϕ2(0) = Φ, (3.55)

κ1(0) + κ2(0) = 0. (3.56)

At some (yet unknown) values of the natural parameters, e.g., smax
1 and smax

2 ,
the pore branches intersect the z axis; the latter is the symmetry axis of our
solution. Therefore we have four more conditions

x1(s
max
1 ) = x2(s

max
2 ) = 0, (3.57)

ϕ1(s
max
1 ) = ϕ2(s

max
2 ) = 0. (3.58)

Altogether we have specified ten conditions instead of eight, two extraneous
equations are necessary to find two unknowns smax

1,2 . The problem is correctly
posed.

Solution strategy

To obtain the mobility of the pore we have to solve (3.48–3.51), (in fact, only
the first three equations) for small values of the normalized velocity u. The
solution should be looked for as a Taylor expansion in u; only the first two
terms like in Eq. (3.47) are necessary. The solution for ϕ1,2(s) should then
be used to find the pore drag angle (see Eq. (3.42) and Fig. 3.4)

Θp = − ϕ1(s) + ϕ2(s)

2

∣∣∣∣
s=0

, (3.59)

which is proportional to u. Actually this is because the drag force is propor-
tional to the resulting pore velocity. Indeed, similar to Eq. (3.44) the drag
force is small together with the drag angle and

Kpore drag = 2Lγb sin Θp ≈ 2Lγb[ϕ1(0) + ϕ2(0)] (3.60)

is proportional to u. This proportionality, if given in physical units, is a
proportionality between the drag force and the resulting pore velocity. It
provides us with the mobility of the pore. Let us now describe the solution.
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Equilibrium state

In the equilibrium state, that is for u = 0, the pore is constructed of two
equal circle segments with zero drag angle (Fig. 3.3). For zero velocity the
curvatures are constant ∂sκ1,2 = 0 [Eq. (3.49)], therefore ϕ1,2(s) and then
x1,2(s) can be found by direct integration. It is convenient to introduce two
new parameters

ρ =
1

sin Φ/2
(3.61)

and

s0 =
ρΦ

2
, (3.62)

where ρ is the common radius of the segments (measured in Rp units) and
s0 is the normalized half length of the segments. The constant curvatures of
the pore branches at equilibrium read

κ1 =
1

ρ
κ2 = −1

ρ
,

and therefore we can directly integrate Eq. (3.48) for ∂sϕ to obtain

ϕ1 =
s− smax

1

ρ
, ϕ2 = −s− smax

2

ρ
,

where we take into account that ϕ1,2(s) should disappear for s = smax
1,2

[Eq. (3.58)]. Now we can integrate cos ϕ1,2(s) to obtain x1,2(s) [Eq. (3.50)],
i.e.,

x1 = ρ sin
s− smax

1

ρ
, x2 = ρ sin

s− smax
2

ρ
,

where we take into account that x1,2(s) should disappear for s = smax
1,2

[Eq. (3.57)]. Further, considering the set of the above formulated boundary
conditions we see that only Eqs. (3.53) and (3.55) are left. These conditions
are satisfied if

smax
1 = s0 and smax

2 = s0. (3.63)

That is, the equilibrium state is completely defined. We now perform the
next step of the perturbation theory.

Perturbation

To quantify the perturbed solution we present all variables as a sum of the
equilibrium ones and a small perturbation. This should be done separately
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for each pore branch. Therefore,

κ1 =
1

ρ
+ κ̃1 κ2 = −1

ρ
+ κ̃2

ϕ1 =
s− s0

ρ
+ ϕ̃1 ϕ2 = −s− s0

ρ
+ ϕ̃2

x1 = ρ sin
s− s0

ρ
+ x̃1 x2 = ρ sin

s− s0

ρ
+ x̃2,

where all perturbations are denoted by tilde and are proportional to u.

Reformulation of the boundary conditions

First of all, the perturbed quantities must be substituted into the boundary
conditions. In a first step, inserting s = 0 into Eqs. (3.53), (3.55) and (3.56)
for the left tip we obtain

x̃1,2(0) = 0, (3.64)

−ϕ̃1(0) + ϕ̃2(0) = 0, (3.65)

κ̃1(0) + κ̃2(0) = 0. (3.66)

The other boundary conditions involve s = smax
1,2 . They are not so sim-

ple because the equilibrium values of smax
1,2 is also perturbed. Therefore we

substitute

smax
1 = s0 + δ1

smax
2 = s0 + δ2

with δ1,2 ∼ u into (3.57) and (3.58), use Taylor expansion in δ to obtain

δ1 + x̃1(s0) = 0, δ1 + ρϕ̃1(s0) = 0,

δ2 + x̃2(s0) = 0, −δ2 + ρϕ̃2(s0) = 0.

Fortunately one can eliminate δ1,2 and write two equations directly for the
“old” values of smax

1,2

x̃1(s0)− ρϕ̃1(s0) = 0, (3.67)

x̃2(s0) + ρϕ̃2(s0) = 0. (3.68)

Altogether we have six conditions (3.64–3.68) to specify six integration con-
stants in the further expressions for κ̃1,2(s), ϕ̃1,2(s), x̃1,2(s).
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Perturbation of the lower branch

We substitute the perturbed expressions for κ1(s), ϕ1(s), x1(s) into our
basic system (3.48–3.50) and obtain

∂sκ̃1 = −uρ sin
s− s0

ρ
,

∂sϕ̃1 = κ̃1,

∂sx̃1 = − sin
s− s0

ρ
ϕ̃1,

which is a linear system of ordinary differential equations. It can be directly
integrated

κ̃1 = uρ2 cos
s− s0

ρ
+ C1,

ϕ̃1 = uρ3 sin
s− s0

ρ
+ C1(s− s0) + C2,

x̃1 = −1

2
uρ3

[
(s− s0)− ρ

2
sin

2(s− s0)

ρ

]
−

C1ρ
2

[
sin

s− s0

ρ
− s− s0

ρ
cos

s− s0

ρ

]
+

C2ρ cos
s− s0

ρ
+ C3,

where C1,2,3 are integration constants.

Perturbation of the upper branch

In a similar way we substitute the perturbed expressions for κ2(s), ϕ2(s),
x2(s) in (3.48–3.50) to get

∂sκ̃2 = −uρ sin
s− s0

ρ
,

∂sϕ̃2 = κ̃2,

∂sx̃2 = sin
s− s0

ρ
ϕ̃2,
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and therefore

κ̃2 = uρ2 cos
s− s0

ρ
+ D1,

ϕ̃2 = uρ3 sin
s− s0

ρ
+ D1(s− s0) + D2,

x̃2 =
1

2
uρ3

[
(s− s0)− ρ

2
sin

2(s− s0)

ρ

]
+

D1ρ
2

[
sin

s− s0

ρ
− s− s0

ρ
cos

s− s0

ρ

]
−

D2ρ cos
s− s0

ρ
+ D3,

where D1,2,3 are integration constants.

Mobility

We have six expressions for κ̃1,2(s), ϕ̃1,2(s), x̃1,2(s) with six integration
constants C1,2,3 and D1,2,3 and six restrictions (3.64–3.68) to find them. The
expressions for the integration constants are rather cumbersome, but they
are not of great interest; we are mainly interested in the pore drag angle,
which is given by Eq. (3.59), i.e.,

Θp = uρ2 +
s0

2
(C1 + D1)− 1

2
(C2 + D2),

the resulting expression is very simple

Θp =
Φ− sin Φ

4 sin3 Φ
2

cos Φ
2

u. (3.69)

Correspondingly, the mobility of the pore at a boundary can be calculated
based on the discussion that follows Eq. (3.60). The result reads

Mp =
sin3 Φ/2

Φ− sin Φ

DsΩδ

kTLpR3
p

, (3.70)

where we expressed all quantities in physical units and replaced γb/γs with
2 cos Φ/2 [Eq. (3.20)]. The dependence of the pore mobility on the surface
tension coefficients is completely integrated into the dependence on dihe-
dral angle. The general structure of Eq. (3.70) coincides with the prediction
(3.46), the result that follows in the small slope Φ → 0 limit also is in agree-
ment with Eq. (3.45). In general, the mobility decreases with the increase
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Figure 3.6: Mobility of a channel-like pore normalized in accord with
Eq. (3.70) versus dihedral angle.

of the dihedral angle.This dependence is, however, relatively weak, i.e., the
numerical factor in Eq. (3.70) changes from 3/4 at Φ = 0 to 1/π at Φ = π.
The relation between Φ and normalized mobility is illustrated in Fig. 3.6.

An expression similar to Eq. (3.70) was also obtained in a preceding paper
[Svoboda and Riedel, 1992] from energy arguments. Our calculation is more
cumbersome but has two advantages (a) it can be readily generalized to get
further velocity dependent corrections if necessary (b) following our line one
can also obtain mobility of a pore at the triple junction (see the next section).

Having in mind possible applications it is also of interest to rewrite
Eq. (3.70) in terms of the pore volume. In principle, one should distinguish
the equilibrium pore size, say, Req and that (i.e., Rp) of a pore moving with a
constant velocity U . However, for the mobility calculations the pore is only
slightly disturbed and the difference between Req and Rp can be ignored.
The volume of the equilibrium pore is given by the expression

Vp =
Φ− sin Φ

sin2 Φ/2
R2

pLp (3.71)

and the modified expression (3.70) for the pore mobility reads

Mp =
sin Φ/2

Rp

DsΩδ

Vp kT
. (3.72)

An even more simple expression can be obtained if one notes that the first
factor in Eq. (3.72) is the equilibrium value κeq of the pore curvature and
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therefore

Mp =
DsΩκeqδ

Vp kT
. (3.73)

3.3.3 Numerical solutions and critical velocities

In this section solutions of Eqs. (3.48–3.51) are sought numerically. For
given u and Φ, a shooting method is applied to obtain a two-parametric
family of trial pore shapes starting from the left tip by specifying Φ1 and
κ1 and determining Φ2 and κ2 from the boundary conditions (3.55) and
(3.56). Each trial solution consists of two branches. The values of Φ1 and κ1

are uniquely determined, when we impose the natural restriction that both
branches have to join at the right tip, determining the shape of a pore that
moves stationary at given u and Φ. The boundary conditions at the right
tip are satisfied automatically owing to symmetry.
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Figure 3.7: Application of a shooting method for u = 0.1 and Φ = 2π/9. See
text for explanation.

A typical calculation is illustrated in Fig. 3.7 obtained for u = 0.1 and
Φ = 2π/9. Each point on the coordinate plane corresponds to a pair of
potentially possible initial values (at the left tip) of κ1 and Φ1. Lines indicate
suitable choices of (κ1, Φ1) that ensure that the corresponding solution of
Eqs. (3.48–3.51) goes through the right tip. There are two such lines one
for the trailing and one for the leading pore branch. The intersection point
indicates the only possible choice of the initial conditions at which both
branches go through the right tip. Now, the pore shape can be completely
restored for the given values of u and Φ. One can then change u and repeat
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the whole procedure again. With increasing u, the pore shape deviates more
and more from the stationary shape. This is illustrated in Fig. 3.8.

Figure 3.8: Change of pore shape with an increase of the normalized velocity
u for two different dihedral angles. If the velocity exceeds some critical value,
no solution exists and the coupled motion of the pore and boundary is not
possible.

Using numerical solutions one can trace the relation between the pore
drag angle Θp and the resulting pore velocity u. One can then compare the
numerical result with the analytical prediction given by Eq. (3.69). This is
shown in Fig. 3.9. We see that for small values of Θp its dependence on u
is linear and the correspondence between the theory and numerics is good.
In this region the concept of pore mobility can be used. With increasing Θp

the dependence between the drag and resulting velocity becomes nonlinear
and out of scope of the analytical considerations. Here, a new nonlinear
effect becomes important: the pore can separate from the boundary. In our
framework this inevitably happens, when no regular solution of the system
(3.48–3.51) exists.
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Figure 3.9: Drag angle versus pore velocity as results from Eq. (3.69) (straight
lines) and from numerical solutions of Eqs. (3.48–3.51) (curved lines) for five
different values of the dihedral angle Φ. As long as the drag angle Θp is small
enough the concept of linear mobility applies.

Indeed, above some critical velocity umax no numerical solution can be
found, i.e., the steady coupled motion of the pore and the boundary exists
only in a bounded region u < umax(Φ) of the (u, Φ) plane. This region was
obtained numerically and is shown in Fig. 3.10. Here, the numerical results
are given by points and the solid line is from the analytical expression

umax = (1.75− 0.44Φ) cos
Φ

2
, (3.74)

which is a good approximation, especially for large dihedral angles. For
Φ → 0 the velocity umax tends to a finite value, while umax → 0 as Φ → π,
i.e., a normalized critical velocity for a channel-like pore vanishes. A van-
ishing normalized critical velocity was also obtained for a spherical pore
[Hsueh et al., 1982] leading to a seemingly correct conclusion that critical
pore velocity strongly depends on dihedral angle and that steady-state mo-
tion accommodated by surface diffusion is impossible for a pore with Φ ∼ π.
In fact, this is not correct. Note, that the normalization that was used
to define u [Eq. (3.24)] also depends on γs and therefore changes with Φ
[Eq. (3.20)]. Before making conclusion on channel-like pores we have to re-
turn to physical units to fully reveal the dependence on dihedral angle in
Eq. (3.74). By doing this we derive our main result for the grain boundary
detachment problem

Umax = (0.88− 0.22Φ)
DsΩδ

kT

γb

R3
p

. (3.75)
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This also corresponds to the above obtained estimate (3.9). Notably, the
critical velocity for Φ = π is nonzero. In fact, the dependence of Umax on
the dihedral angle is relatively weak. Similar results were also obtained in a
recent investigation of drag and drop of a lenticular pore [Yu and Suo, 1999].

Figure 3.10: The normalized critical pore velocity umax is shown as a function
of the dihedral angle Φ. The numerical results are given by points, the solid
line is the analytical approximation (3.74).

It should be emphasized that in our stationary approach pore width
Rp is fixed and used to normalize lengths. In dynamic situations, pore
width changes either during detachment or with varying boundary veloc-
ity [Svoboda and Riedel, 1992]. We did not incorporate a physical con-
straint on pore width such as volume conservation [Hsueh et al., 1982,
Spears and Evans, 1982] since our main interest is whether a particular pore
remains attached to the boundary moving with fixed velocity. If a stationary
solution exists, the width of the attached pore remains constant.

3.3.4 Bifurcation

We now discuss a critical problem: why does the solution disappear, what are
the mathematical reasons for that? In other words: we have to investigate,
whether we observe a real phenomenon or could it be attributed to some
imperfectness of the numerical algorithm near the singular point, e.g., to
numerical instabilities mentioned in [Hsueh et al., 1982]?

Let us recall that our nonlinear boundary problem has unique physical
solutions, as shown by the series expansion for small u. More precisely, the
solution for u > 0 is unique as long as we look for a state that is continuously
connected with the equilibrium state for u = 0. In the context of Fig. 3.7
that means that the just calculated values of κ1 and Φ1 can be used as
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a good initial “guess” for investigation of the “next” value of u. On the
other hand, a careful search for all solutions of Eqs. (3.48–3.51) results in
supplementary states that cannot be derived by a steady increase of the
pore velocity. Two examples of such states are shown in Fig. 3.11. Similar
necked and even multiply-necked stationary pores were also found for three-
dimensional geometry [Yu and Suo, 1999].

Figure 3.11: Two examples of supplementary solutions obtained from
Eqs. (3.48–3.51) for (a) Φ = π/6, u = 0.15 and (b) Φ = π/3, u = 0.1

These supplementary solutions also evolve with increasing velocity. In
contrast to the physical solutions described above, pores of supplementary
solutions “shorten” with increasing velocity and become identical to the phys-
ical solutions for the critical velocity. The solutions “collide” and then dis-
appear together. Such a phenomenon is similar to a saddle-node bifurcation
(see, e.g., [Thompson, 1982]) strongly suggesting that our numerical results
represent physical reality. This is illustrated in Fig. 3.12 (compare with
Fig. 3.7), where an application of the shooting method for Φ = π/18 and
u just bellow and just above umax is shown. The second intersection point
corresponds to the supplementary solution. It can be “traced back” to the
solutions shown in Fig. 3.11. The collision occurs for u = umax.

Note, that if the boundary velocity is smaller than the critical one, the
stationary solution does exist. Stability, however, is not guarantied and can
be investigated only in a dynamical treatment. In the case of lenticular pores,
such a treatment shows that the stationary solutions are indeed stable and
give correct values for critical velocities [Yu and Suo, 1999]. In contrast, sup-
plementary solutions evidently correspond to a larger value of surface energy
and are therefore unstable. The analogy with the saddle-node bifurcation also
suggests, that the supplementary solutions are unstable [Thompson, 1982].

Our treatment of the channel-like pores trapped by the boundary is now
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Figure 3.12: Application of the shooting method for Φ = π/18. Left: u is
slightly before umax; right: u is slightly above umax. The two intersection
points correspond to two possible solutions.

complete. In the next section of this chapter we consider channel-like pores
that are positioned at the triple junction between three grains.

3.4 Pore at a triple junction

In the previous section of this chapter a long channel-like pore was attached
to the boundary and moved with it. We now consider a long pore attached
to a triple junction, i.e., to a long straight channel along three grain edges.
As above, in the equilibrium state the pore surface consists of circle seg-
ments with equal curvatures. However, there are three such segments — one
segment for each grain-pore interface. The grain boundaries enclose equal
angles and form three tips. A cross-section of the equilibrium channel-like
pore looks like a (curved) triangle as shown in Fig. 3.13.

Figure 3.13: Cross-sections of equilibrium channel-like pores at triple junc-
tions for three different dihedral angles: (a) Φ = π/6, (b) Φ = π/3, (c)
Φ = π/2.
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As we see, the cross section can have different shapes. It can reduce to a
right triangle for Φ = π/3 and to a sphere for Φ = π (compare with Fig. 3.3).
All dihedral angles are assumed equal. Also the boundaries are assumed to
meet each other at equilibrium 2π/3 angle.

Figure 3.14: Geometry of a moving pore at the triple junction.

Let us now consider the case, where an external surface tension force de-
forms the pore and brings it to motion as shown in Fig. 3.14. We assume all
boundaries to move with a common velocity U and consider only symmet-
rical solutions so that there are only two directions of motion: upwards and
downwards. In contrast with the previous section, these directions should be
distinguished, in particular both the corresponding perturbations of the pore
shape and critical velocities are not identical. Another point to be considered
is the drag angle. Henceforth, we refer to Θp in Fig. 3.14 as the pore drag
angle, so that the equilibrium drag angle is π/6. The OZ projection of the
drag force reads

Kpore drag = Lpγb(1− 2 sin Θp) (3.76)

and the pore moves upwards for Θp < π/6 and downwards for Θp > π/6.
For small drag forces Θp ≈ π/6 and

Kpore drag =
√

3
(π

6
−Θp

)
Lpγb. (3.77)

In this case the resulting velocity is proportional to the drag force and one
can introduce pore mobility. In the following sections we first perform an an-
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alytical calculation of this mobility. The results obtained are then compared
with the direct numerical solution of the normalized basic Eqs. (3.48–3.51)
and with the mobility of the pore at a boundary. The numerical solutions are
finally used to determine critical velocities both for upwards and downwards
pore motion.

3.4.1 Pore mobility at a triple junction

Problem posing

As in the section 3.3, pore branches are assumed to be given in parametric
form, i.e., xi(s) and zi(s) by means of the natural parameter s; index i
attributes to different branches (i = 1 for the lower pore branch, i = 2 for
the upper left, and i = 3 for the upper right branch in Fig. 3.14). Our
basic system of Eqs. (3.48–3.51) is identical for all three indices and specifies
xi(s), zi(s), κi(s), and ϕi(s). We have four differential equations, which
should be solved three times for the three pore branches. Therefore twelve
boundary conditions are necessary. It is however natural to use symmetry of
the equilibrium pore and to restrict ourselves to the symmetrical solutions.
Therefore we have to consider only two branches, e.g., the upper left branch
(i = 2) and the left half of the lower branch (i = 1). Eight conditions are
necessary.

First of all, for s = 0 our branches have to meet at the point x = −1,
z = 0 (left pore tip), therefore [similar to Eqs. (3.53–3.54)]

x1(0) = x2(0) = −1, (3.78)

z1(0) = z2(0) = 0. (3.79)

The curvature should be continuous at the tips whereas ϕ1 and ϕ2 should
combine to provide the predefined dihedral angle Φ. Therefore we have two
additional conditions at the left tip [similar to Eqs. (3.55–3.56)]

−ϕ1(0) + ϕ2(0) = Φ, (3.80)

κ1(0) + κ2(0) = 0. (3.81)

Further, at some yet unknown values of the natural parameters, smax
1,2 the

pore branches intersect the z axis; the latter is the symmetry axis of our
solution. Therefore we have four more conditions [note the difference from
Eqs. (3.57–3.58)]

x1(s
max
1 ) = x2(s

max
2 ) = 0, (3.82)

ϕ1(s
max
1 ) = 0. (3.83)

ϕ2(s
max
2 ) =

1

2
(π − Φ). (3.84)
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Altogether we have specified ten conditions instead of eight, however they
incorporate two extraneous unknowns smax

1,2 . The problem is correctly posed.
The boundary conditions on the right tip are satisfied automatically because
of symmetry.

Solution strategy

In principle, the strategy is similar to that used in Section 3.3, however, the
solution is much more cumbersome. We solve our equations for the small
values of u using the Taylor expansion given in Eq. (3.47). The solution
allows us to find a drag angle [see Fig. 3.14 and note the difference from
Eq. (3.59)]

Θp =
ϕ1(s) + ϕ2(s)

2

∣∣∣∣
s=0

, (3.85)

where the difference π/6 − Θp is proportional to the dimensionless velocity
u. This proportionality must be substituted into Eq. (3.77). Thereafter the
latter equation must be rewritten in physical units for the velocity. We get
a linear dependence between the drag force and the resulting pore velocity
and can calculate the mobility of the pore.

As in Section 3.3, the equations for z1,2(s) are actually independent of the
others, one can find the other variables and then restore z1,2(s) if necessary.
That requires two additional direct integrations, where the integration con-
stants are determined by the conditions (3.79). Therefore we have to solve
three Eqs. (3.48), (3.49), and (3.50) for each of the two branches. Let us now
describe the solution.

Equilibrium state

The state occurs for u = 0; the pore is constructed of tree equal circle
segments, the drag angle is π/6. For u = 0 the curvatures from Eq. (3.49)
are constant ∂sκ1,2 = 0, therefore ϕ1,2(s) and then x1,2(s) can be found by
direct integration of Eqs. (3.48) and (3.50), respectively. It is convenient to
introduce two new parameters [compare with Eqs. (3.61) and (3.62)]

ρ =
1

sin(Φ/2− π/6)
(3.86)

and

s0 = ρ

(
Φ

2
− π

6

)
, (3.87)

where the former is the common radius of the equilibrium pore segments (nor-
malized by Rp) and the latter is the normalized half length of the segments.
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The constant curvatures of the pore branches at equilibrium read

κ1 =
1

ρ
κ2 = −1

ρ
,

and therefore we can directly integrate Eq. (3.48) for ∂sϕ to obtain

ϕ1 =
s− smax

1

ρ
, ϕ2 =

π

2
− Φ

2
− s− smax

2

ρ
,

where we take into account the boundary conditions (3.83) and (3.84). Now
we can integrate cos ϕ1,2(s) in Eq.(3.50) to obtain x1,2(s), i.e.,

x1 = ρ sin
s− smax

1

ρ
, x2 = ρ cos

Φ

2
− ρ cos

(
s− smax

2

ρ
+

Φ

2

)
,

where we take into account the boundary conditions given by (3.82). Further,
considering our set of ten boundary conditions we see that only three of them
given by Eqs. (3.78) and (3.80) still have to be satisfied. These conditions
are satisfied if [compare with Eq. (3.63)]

smax
1 = s0 and smax

2 = 2s0. (3.88)

Hence, the equilibrium state is completely defined. We now perform the next
step of the perturbation theory.

Perturbation

To quantify the perturbed solution we present all variables as a sum of the
equilibrium ones and a small perturbation. This should be done separately
for each pore branch, in our case only for two branches. Therefore,

κ1 =
1

ρ
+ κ̃1 κ2 = −1

ρ
+ κ̃2

ϕ1 =
s− s0

ρ
+ ϕ̃1 ϕ2 =

π

2
− Φ

2
− s− 2s0

ρ
+ ϕ̃2

x1 = ρ sin
s− s0

ρ
+ x̃1 x2 = ρ cos

Φ

2
− ρ cos

(
s− 2s0

ρ
+

Φ

2

)
+ x̃2

where all perturbations are denoted by tilde and are proportional to u.
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Reformulation of the boundary conditions

First of all the perturbed quantities should be substituted to the boundary
conditions. In the first step, inserting s = 0 in the Eqs. (3.53), (3.55), and
(3.56) for the left tip we obtain four conditions similar to Eqs. (3.64–3.66)

x̃1,2(0) = 0, (3.89)

−ϕ̃1(0) + ϕ̃2(0) = 0, (3.90)

κ̃1(0) + κ̃2(0) = 0. (3.91)

The other conditions involve s = smax
1,2 . They are not so simple, because

the equilibrium values of smax
1,2 should be perturbed as well. Therefore we

substitute

smax
1 = s0 + δ1

smax
2 = 2s0 + δ2

with δ1,2 ∼ u into (3.82), (3.83), and (3.84) and use a Taylor expansion in δ
to obtain

δ1 + x̃1(s0) = 0, δ1 + ρϕ̃1(s0) = 0,

δ2 sin
Φ

2
+ x̃2(2s0) = 0, −δ2 + ρϕ̃2(2s0) = 0.

As in the Section 3.3, one can eliminate δ1,2 and write two equations directly
for the “old” values of smax

1,2 [compare with Eqs. (3.67) and (3.68)]

x̃1(s0)− ρϕ̃1(s0) = 0, (3.92)

x̃2(2s0) + ρ sin
Φ

2
ϕ̃2(2s0) = 0. (3.93)

Altogether we have six conditions (3.89–3.93) [compare with (3.64–3.68)] to
specify six integration constants in the further expressions for κ̃1,2(s), ϕ̃1,2(s),
and x̃1,2(s).

Perturbation of the lower branch

We substitute the perturbed expressions for κ1(s), ϕ1(s), x1(s) in our basic
system and obtain

∂sκ̃1 = −uρ sin
s− s0

ρ
,

∂sϕ̃1 = κ̃1,

∂sx̃1 = − sin
s− s0

ρ
ϕ̃1,
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which is a system of linear ordinary differential equations. It can be directly
integrated

κ̃1 = uρ2 cos
s− s0

ρ
+ uρ2C1,

ϕ̃1 = uρ3 sin
s− s0

ρ
+ uρ3 s− s0

ρ
C1 + uρ3C2,

x̃1 = −1

2
uρ4

(
s− s0

ρ
− sin

s− s0

ρ
cos

s− s0

ρ

)

− uρ4

(
sin

s− s0

ρ
− s− s0

ρ
cos

s− s0

ρ

)
C1

+ uρ4 cos
s− s0

ρ
C2 + uρ4C3,

where C1,2,3 are integration constants.

Perturbation of the upper branch

In a similar way, we substitute the perturbed expressions for κ2(s), ϕ2(s),
x2(s) in our basic system to get

∂sκ̃2 = uρ cos

(
s− 2s0

ρ
+

Φ

2

)
− uρ cos

Φ

2
,

∂sϕ̃2 = κ̃2,

∂sx̃2 = − cos

(
s− 2s0

ρ
+

Φ

2

)
ϕ̃2,

and therefore after cumbersome but direct integration we get

κ̃2 = uρ2 sin

(
s− 2s0

ρ
+

Φ

2

)
− uρ2 cos

Φ

2

(
s− 2s0

ρ
+

Φ

2

)
+ uρ2D1,

ϕ̃2 = −uρ3 cos

(
s− 2s0

ρ
+

Φ

2

)
− 1

2
uρ3 cos

Φ

2

(
s− 2s0

ρ
+

Φ

2

)2

+ uρ3

(
s− 2s0

ρ
+

Φ

2

)
D1 + uρ3D2,
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and

x̃2 =
1

2
uρ4

[(
s− 2s0

ρ
+

Φ

2

)
+ sin

(
s− 2s0

ρ
+

Φ

2

)
cos

(
s− 2s0

ρ
+

Φ

2

)]

+
1

2
uρ4 cos

Φ

2

[(
s− 2s0

ρ
+

Φ

2

)2

sin

(
s− 2s0

ρ
+

Φ

2

)

+ 2

(
s− 2s0

ρ
+

Φ

2

)
cos

(
s− 2s0

ρ
+

Φ

2

)

−2 sin

(
s− 2s0

ρ
+

Φ

2

)]

− uρ4

[(
s− 2s0

ρ
+

Φ

2

)
sin

(
s− 2s0

ρ
+

Φ

2

)
+ cos

(
s− 2s0

ρ
+

Φ

2

)]
D1

− uρ4 sin

(
s− 2s0

ρ
+

Φ

2

)
D2 + uρ4D3,

where D1,2,3 are integration constants.

Mobility

We have now to substitute the expressions for κ̃1,2(s), ϕ̃1,2(s), and x̃1,2(s) to
the perturbed boundary conditions given by Eqs. (3.89–3.93). The result is a
closed system of six equations that uniquely determines C1,2,3 and D1,2,3, and
therefore uniquely determines the perturbed solution. We use the following
notations

α =
s0

ρ
=

Φ

2
− π

6
(3.94)

and

β =
Φ

2
− 2s0

ρ
=

π

3
− Φ

2
(3.95)

and derive the following set of six equations.

• From Eq. (3.92) it follows that

C3 = 0.

• From Eq. (3.93) it follows that

cos
Φ

2
D1 −D3 =

Φ

2

(
1

2
+ cos2 Φ

2

)
− 3

2
sin

Φ

2
cos

Φ

2
.
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• From Eq. (3.91) it follows that

C1 + D1 = β cos
Φ

2
− sin β − cos α.

• From Eq. (3.90) it follows that

αC1 − C2 + βD1 + D2 = cos β +
1

2
β2 cos

Φ

2
− sin α.

• From x̃1(0) = 0 [Eq. (3.89)] it follows that

(sin α− α cos α)C1 + cos α C2 =
1

2
sin α cos α− 1

2
α.

• From x̃2(0) = 0 [Eq. (3.89)] it follows that

(β sin β + cos β)D1 + sin βD2 −D3 =

1

2
(β + sin β cos β)+

1

2
cos

Φ

2
(β2 sin β + 2β cos β − 2 sin β).

Altogether,we have six integration constants and six restrictions to find them.
The cumbersome final expressions for C1,2,3 and D1,2,3 can be found directly
or better using computer algebra programs and are not of great interest,
however, they give us a possibility to find the drag angle

Θp =
ϕ1(0) + ϕ2(0)

2
=

π

6
+

ϕ̃1(0) + ϕ̃2(0)

2
=

π

6
+

C2 − αC1 − sin α

sin3 α
u,

where we replaced ρ by sin−1 α, and then to find the mobility of the pore.
The final expression for the mobility of a pore at a triple junction reads

M3j
p = M

DsΩδ

kTLpR3
p

, (3.96)

where the factor M depends only on dihedral angle and is given by a very
cumbersome expression

M(Φ) =
6 cos(Φ

2
− π

6
)− 3 cos(5Φ

2
+ π

6
)− 9 sin(3Φ

2
)

k1 + k2 cos(Φ + π
6
) + k3 cos(2Φ + π

6
) + k4 sin 2Φ

, (3.97)
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where

k1 = −36 + 2
√

3 π − 6
√

3 Φ

k2 = −24
√

3 + 20π − 60Φ,

k3 = 4π − 12Φ

k4 = 24
√

3.

The general structure of the mobility given by Eq. (3.96) is similar to
that of Eq. (3.70). The dependence on the dihedral angle from Eq. (3.97) is,
however, much more complicated. Nevertheless the numerical value of M(Φ)
is always comparable with unity. For instance, M → 1/2 for Φ → π/3, the
simple case of a pore with a triangular cross-section, which can be also solved
independently using a small slope approximation. The normalized mobility
as calculated from Eq. (3.97) is shown in Fig. 3.15.

Figure 3.15: Pore mobility at the triple junction [normalized in accord with
Eq. (3.96)] versus dihedral angle (dotted line). For comparison the mobility
of the pore at the boundary [Eq. (3.70)] is also shown (solid line).

We see that the dependence of M3j
p on the dihedral angle is weak and

that the mobility decreases with an increase of Φ. The mobility M3j
p is

always smaller than Mp from Section 3.3. For instance, for Φ = π/3 the
ratio M3j

p /Mp ≈ 0.72. Equation (3.97) is also in good agreement with our
numerical results for small velocities. The numerics is described in the next
section together with the calculation of critical velocities.
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3.4.2 Numerical solutions and critical velocities

In this section solutions of Eqs. (3.48–3.51) are sought numerically for the
case of a triple junction. The symmetry arguments allow us to reduce the
calculations to only two branches. In fact, the shooting method can be
applied as in Section 3.3.3 with only small modifications. We assume some
small velocity u to provide a small perturbation of the equilibrium pore.
Then we produce a two-parametric set of trial branches by integrating the
system (3.48–3.51) starting from the left tip. To this end, we fix the tip
curvature κ1 and Φ1; the other tip parameters are determined from the left
tip boundary conditions [Eqs. (3.80–3.81)].

The branches are calculated up to the symmetry axis, i.e., the end points
are determined by Eq. (3.82). In this way the values of smax

1,2 are calculated.
Then we impose the other boundary restrictions (3.83) and (3.84). This
allows us to trace the only suitable trial solution and to determine κ1 and Φ1.
The shape of the moving pore is completely constrained owing to symmetry.
The boundary conditions at the right tip are satisfied automatically. We then
increase the velocity and repeat the whole procedure as long as a solution
exists.

With increasing u, the pore shape strongly deviates from the stationary
shape as illustrated in Fig. 3.16. From the numerical solutions one can de-
rive the relation between the pore drag angle Θp and the pore velocity u
(Fig. 3.17). The dependence is linear for small velocities and can be used
to check Eq. (3.97) for the mobility, the correspondence between the theory
and numerics is good.

In contrast to mobilities, the critical velocities can be derived only from
numerical solution. Note that positive (upwards motion) and negative (down-
wards motion) values of the velocity should be distinguished. For positive
velocity detachment will leave the pore in the bottom grain. For negative
velocity detachment will transfer the pore to a grain boundary from whereon
the mechanism from the Section 3.3 operates. Depending on the direction of
velocity, the pores are quite differently distorted (Fig. 3.16). In the negative
direction, detachment occurs at critical velocities that are smaller by a factor
of ca. 5 than the critical velocities for detachment during motion in the posi-
tive direction (Fig. 3.18). Thus, a pore, which is initially at a triple junction,
is most likely detached to a grain boundary; the direct detachment to the
body of the bottom grain requires considerably larger boundary velocities
and possibly negative drag angles.

Our numerical results for the critical velocities are shown in Fig. 3.18.
Analytical expressions for the numerical data on u±max(Φ) are similar to
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Figure 3.16: Changes of pore shape with variations of the normalized velocity
u for two different dihedral angles and two different directions of motion. If
u exceeds some critical value, no solution exists and the coupled motion of
the pore and the triple junction is not possible.

Eq. (3.74) and read

u+
max = (2.85− 0.65Φ) cos

Φ

2
, (3.98)

u−max = −(0.34− 0.088Φ) cos
Φ

2
. (3.99)

The latter expressions are seen to be good approximations (Fig. 3.18). Simi-
lar to Section 3.3 it is convenient to transform the latter equations to physical
units

U+
max = (1.43− 0.32Φ)

DsΩδ

kT

γb

R3
p

, (3.100)

U−
max = −(0.17− 0.044Φ)

DsΩδ

kT

γb

R3
p

. (3.101)



80 CHAPTER 3. PORE MOTION BY SURFACE DIFFUSION

Figure 3.17: Relation between the pore drag angle Θp and the normalized
boundary velocity u for a pore at a triple junction as obtained from numerical
solutions of Eqs. (3.48–3.51). Lines correspond to different values of the
dihedral angle Φ as indicated by the labels. The drag angle increases for
negative (downwards) pore velocities; for positive (upwards) pore velocities it
decreases and even changes sign. The points at the ends of the lines indicate
the values of the critical velocities and peak drag angles. The numerical
solutions agree with the analytical results (tangents) derived from Eq.(3.97)
for the small velocities, as shown in the insert in the top right corner.

As we see, the critical velocities only slightly depend on dihedral angle. In
either case, the critical velocity for Φ → π is nonzero.
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Figure 3.18: The normalized critical velocity umax for pores moving (a) in
the positive and (b) in the negative direction (see Fig. 3.14), at a triple
junction as a function of the dihedral angle. The numerical results are
given by points, the solid lines represent analytical approximations given
by Eqs. (3.98) and (3.99).
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Chapter 4

Pore motion controlled by
diffusion through the
pore-filling fluid

In this chapter, we consider pores filled with a fluid phase, e.g., water or
melt, in which the constituting elements of the solid matrix are dissolved. In
addition to diffusion along the grain-pore interface now a second transport
mechanism is important, diffusion through the fluid-phase. This mechanism
of pore motion, as well as corresponding mobilities and critical velocities is
discussed in this chapter.

4.1 Basic equations

The distribution of matrix atoms in the solution filling the pore is represented
by the concentration c(r, t), i.e., number of matrix atoms per unit volume of
the solution. The corresponding flux of matrix atoms is denoted by j. The
latter is given by Fick’s first law

j = −Dm∇c, (4.1)

where the diffusion coefficient Dm corresponds to the matrix atoms in the so-
lution. Note, that the total number of atoms changes only on the boundaries
where dissolution and precipitation may occur. Therefore inside the pore a
general continuity equation for c(r, t) should be satisfied

∂tc + div j = 0. (4.2)

83



84 CHAPTER 4. MOTION BY DIFFUSION THROUGH THE FLUID

Combining (4.1) and (4.2) we see that the concentration is subject to a
parabolic diffusion equation (see, e.g., [Crank, 1975])

∂tc = Dm∇2c, (4.3)

where the diffusion coefficient Dm is assumed to be an isotropic constant.
The characteristic time of evolution of c is given by R2

p/Dm, where Rp is the
pore radius. This time is generally much smaller than the characteristic time
of pore and boundary motion. That is, the equilibrium concentration of c is
quickly established. Using the modern language of synergetic, one can say
that the concentration c is “slaved” [Haken, 2004] and given by the elliptic
Laplace equation

∇2c = 0. (4.4)

where c(x, y, z, t) only shows “slow” variation with time so that the time
derivative in the Eq. (4.3) can be ignored. The time dependence is determined
by an additional process, not directly by diffusion through the pore-filling
fluid. This process can affect Eq. (4.4) through time dependent parameters
or through time dependent boundary conditions. In general, neither Eq. (4.3)
nor Eq. (4.4) can be solved without boundary conditions on the pore surface.
To formulate them we first introduce an equilibrium concentration c0 of the
solution at a plane interface with the solid matrix. If c = c0 the rates of
dissolution and precipitation at a plane interface between solid and solution
are equal. The value of c0 depends on pressure and temperature. Note, that
starting from a non-equilibrium situation at the solid-solution interface, there
is a characteristic time for the equilibrium concentration to establish through
differential dissolution and precipitation. For most applications, the diffusion
processes we are interested in are much slower than the characteristic time for
the attainment of a local equilibrium at the solid-solution interface. Therefore
we assume that the equilibrium concentration is established instantaneously.

If the surface of the pore is curved, the equilibrium concentration of the
solution is denoted by cs and is defined by the Gibbs-Thompson relation (see
e.g., [Partington, 1952])

cs = c0(1− Γκ), (4.5)

where κ is a mean curvature of the interface and a proportionality factor Γ is
a constant measured in units of length. As usual, we assume that the pore-
grain interface is given explicitly z = g(x, y, t) in a local coordinate frame
with the OZ axis directed inwards into the pore. Equation (4.5) indicates
that if the interface is convex with respect to the solid (and therefore the
mean curvature given by Eq. (3.5) is negative) cs > c0 and vice versa. The
collective effect of both dissolution-precipitation and diffusion through the
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Figure 4.1: Equilibrium concentration of the solution depends on the cur-
vature of the solid-solution interface in accord with Eq. (4.5). Note, that
diffusion through the pore-filling fluid permanently removes atoms from the
regions where the grain-pore interface is convex and cs > c0. This reduc-
tion of concentration is compensated through permanent dissolution from
the grain surface. Therefore a “peak” on the pore-grain interface dissolves.
Similarly, a “cave” is filled, because of the combined effects of diffusion and
precipitation.

pore-filling fluid is illustrated in Fig. 4.1. Parameter Γ is defined by the
relation

Γ =
γsΩ

kT
, (4.6)

i.e., through the pore-boundary surface tension coefficient, atomic volume,
and temperature in energetic units. For typical system parameters the value
Γ ' 10−7cm [Mullins, 1960]. The boundary condition we look for simply
states that

c(r, t)
∣∣
z=g(x,y,t)

= cs. (4.7)

Equations (4.4) and (4.7) completely determine the concentration of the
matrix atoms in the solution and do not contain the time derivative. As
discussed above, the concentration can still depend on time. However, the
dependence results from a process that is slower than diffusion, e.g., from
the motion of the pore surfaces. Let us describe this in more detail now.

From the general point of view the evolution of the pore surface is given
by the general dynamic Eq. (3.3) for z = g(x, y, t). However, the expression
for the normal velocity of the surface vn differs from that used in (3.4) and
must be derived separately.

Let us consider an element dS of the pore surface. If its normal displace-
ment is vndt, the corresponding increase of the grain volume is dSvndt and
the ratio dSvndt/Ω gives the net “income” (precipitation minus dissolution)
of the matrix atoms. The latter are supplied by the diffusion flux. The
net income equals −jndSdt, where the flux j is projected on the outward
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(with respect to the grain) normal vector n and is negative for positive vn.
Therefore

jn = −vn

Ω

and using Fick’s first law (4.1) we obtain

vn = DmΩ · (∇c)n = DmΩ(n∇c)
∣∣
z=g(x,y,t)

= DmΩ

(
∂c

∂n

)

z=g(x,y,t)

. (4.8)

4.1.1 Mathematical model

Let us summarize the mathematical (and numerical) model that will be used
in this chapter. The surface z = g(x, y, t) is attributed to some local coordi-
nate frame and separates the grain (with z < g) and the pore (with z > g).
To obtain the concentration c(r, t) one must solve the Laplace equation inside
the pore, i.e.,

∇2c = 0, for z > g(x, y, t) (4.9)

with the boundary condition

c
∣∣
z=g(x,y,t)

= c0(1− Γκ), (4.10)

where the mean curvature is

κ = div

(
∇g√

1 + |∇g|2

)
. (4.11)

The motion of the pore surface is then determined from

∂tg = vn

√
1 + |∇g|2, (4.12)

where in accord with Eq. (4.8)

vn = DmΩ

(
∂c

∂n

)

z=g(t,x,y)

. (4.13)

In this way the position of the pore interface at time t can be used to calculate
its position at time t+dt. This new position is then used to solve the Laplace
equation again, and so on.
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4.1.2 Example

The equations presented in the previous subsection look (and indeed are)
rather complicated. Therefore it is convenient to illustrate them with a sim-
ple example (following [Lifshitz and Slyozov, 1961]), where the problem in
question (i.e., a nonlinear problem with moving boundaries) allows for a full
solution. Let us consider a spherical inclusion with an initial radius rs(0)
that is inserted into the solution with the constant concentration c∞. The
dissolution-precipitation process changes (increases) the equilibrium concen-
tration just near the inclusion, at any moment of time the new concentration
is

cs = c0

[
1 +

2Γ

rs(t)

]
. (4.14)

The difference between cs and c∞ causes flux of matrix atoms, which in
turn results in either increasing or decreasing rs(t). The latter should be
determined.

Figure 4.2: Evolution of a spherical inclusion: growth or collapse?

At each moment of time the concentration is determined by a radially
symmetric solution c(r, t) of the Laplace equation

∇2c =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
= 0

with the boundary conditions

c(r, t)
∣∣
r→∞ = c∞ and c(r, t)

∣∣
r=rs

= cs.

This situation can be compared to an electrical potential created by a charged
sphere, where the potential at infinity is c∞ and the sphere potential is cs.
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Therefore the solution reads

c = c∞ + (cs − c∞)
rs

r
.

This latter expression can also be obtained by direct integration. We now
calculate (

∂c

∂n

)

r=rs

=

(
∂c

∂r

)

r=rs

= −cs − c∞
rs

.

The evolution of rs(t) is determined by the equation

ṙs = DmΩ

(
∂c

∂n

)

s

= −DmΩ
cs − c∞

rs

.

Finally inserting cs from Eq. (4.14) we obtain a closed ordinary differential
equation

ṙs = DmΩ

(
c∞ − c0

rs

− 2c0Γ

r2
s

)
, (4.15)

which can be integrated and completely defines rs(t). In the undersaturated
solution with c∞ < c0 the right-hand-side is always negative and an inclusion
disappears independent of its initial size. In the oversaturated solution with
c∞ > c0 and the initial radius of the inclusion is small enough, namely

rs(0) ≤ 2c0Γ

c∞ − c0

the right-hand-side of Eq. (4.15) is still negative and the inclusion disappears
again at some t = t0. In both cases rs(t) decreases and finally only the term
∼ r−2

s is important on the right-hand-side of Eq. (4.15). For t close to t0 the
radius of the inclusion is given by

rs(t) = 3
√

6DmΩc0Γ(t0 − t).

As we see, an oversaturated solution (c∞ > c0) can still be in a metastable
state and survive by dissolving small matrix inclusions. However, if rs(0) is
large enough

rs(0) >
2c0Γ

c∞ − c0

the inclusion starts to grow. Here, rs(t) increases and finally the ∼ r−2
s term

in Eq. (4.15) can be ignored. Asymptotically for rs(t) À rs(0) the inclusion
radius is determined by [Zener, 1949]

rs(t) =
√

2DmΩ(c∞ − c0)t.

For this example the geometry of the grain-solution interface is very simple
allowing for direct full solution. In general, this is, however, not the case and
more sophisticated approaches, e.g. approximations and numerical solutions
must be used. They will be discussed in the next sections.
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4.2 Plane interface

In this section the simplest dynamical equilibrium between a grain and a pore
filled with solution is considered. Namely, both pore and grain are formally
infinite; the grain is described by the inequality z < 0, the pore by z > 0
so that the interface is the plane z = 0 with κ = 0. Correspondingly, the
concentration of the solution c = c0. We are going to investigate stability of
such an interface in the small slope approximation. The analysis is similar
to that of [Mullins and Sekerka, 1960], where stability of a growing particle
is considered. In our case, the interface turns out to be always stable, this
indicates that the problem posing in the previous section is correct and phys-
ically meaningful. The results of this section will be applied to derive general
conclusions about pore motion and to obtain an estimate for the critical ve-
locity thereafter. The method of investigation is standard: we consider a
small perturbation of the interface and investigate whether it grows or not.

Figure 4.3: Perturbation of a plane interface should disappear if the latter is
stable.

After an arbitrary perturbation is applied the new interface is given by
some functional dependence z = g(x, y, t). If the perturbation is small, the
nonlinear character of the interface motion is not important and Eq. (4.12)
can be linearized, i.e.,

∂tg = vn. (4.16)

In particular, one can present g(x, y, t) as a composition of Fourier harmonics
and consider only one harmonic. Without loss of generality the corresponding
wave vector is assumed to be parallel to the OX axis. Thus, the perturbed
pore surface is of the form

z = g(x, t) = a(t) cos kx, (4.17)

where k is the wave vector of the perturbation and a(t) is sought. The
perturbation is small if both a(t) is small and the curvature of the perturbed
pore-grain interface remains small. We apply the small slope approximation

κ = ∇2g = ∂2
xg = −ak2 cos kx,
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and assume that the dimensionless combination

aΓk2 ¿ 1, (4.18)

is much smaller than one. Here, Γ plays the role of a characteristic length
scale. The Laplace equation must be solved in the region

∇2c = 0 for z > a(t) cos kx

with the boundary condition

c = c0(1 + aΓk2 cos kx) for z = a(t) cos kx.

Inequality (4.18) guaranties that the perturbation of the concentration is
small. We use this smallness of the perturbation and solve the Laplace equa-
tion in the unperturbed region z ≥ 0 using the same boundary values but
for z = 0. It is easy to see that the induced error is of order O(a2) and can
be ignored. Now, the solution for c(x, z, t), which

(i) is a harmonic function,

(ii) equals c0(1 + aΓk2 cos kx) at z = 0,

(iii) tends to c0 for z → +∞,

reads
c = c0

(
1 + aΓk2e−kz cos kx

)
. (4.19)

The velocity of the interface

vn = DmΩ

(
∂c

∂n

)

z=a(t) cos kx

in the same approximation is replaced by

vz = DmΩ

(
∂c

∂z

)

z=0

= −DmΩc0Γak3 cos kx.

The latter equation is inserted in Eq. (4.16) together with Eq. (4.17). Note
that cos kx factors disappear indicating that the linear approximation is cor-
rectly applied and indeed different harmonics in z = g(x, y, t) are indepen-
dent. The final equation for a(t) reads

ȧ = −DmΩc0Γk3a. (4.20)

We see that a(t) decreases and the interface is stable. The initial perturbation
with the characteristic space scale R disappears on the time scale

τ =
R3

DmΩc0Γ
. (4.21)
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4.2.1 An estimate of the critical velocity

Equation (4.21) can be used to estimate the critical velocity of the pore.
Indeed, let a pore with the characteristic radius Rp move with a constant
velocity U . The corresponding characteristic time is

τ1 =
Rp

U
.

On the other hand, the permanent displacement of the pore may be con-
sidered as a perturbation with the characteristic wave vector k ≈ 1/Rp. In
accord with Eq. (4.21) such a perturbation disappears on the time scale

τ2 =
R3

p

DmΩc0Γ
.

Now, the stationary motion is possible if the pore has enough time to react
on the perturbation and therefore τ1 > τ2. We obtain

U <
DmΩc0Γ

R2
p

(4.22)

that is the sought estimate. In what follows we will see that

Ucrit = C(Φ)
DmΩc0Γ

R2
p

,

where C(Φ) depends only on the pore dihedral angle Φ.

4.3 Mobility and critical velocity for a channel-

like pore

In this section we use a simple analytical method to find both mobility and
critical velocity of a channel-like cylindrical pore.

Let us consider a channel-like pore that is parallel to the OY axis; the
corresponding large space scale is denoted by Lp. Along the OX axis the pore
is positioned in the region −Rp < x < Rp; the pore tips are at x = ±Rp. An
equilibrium pore can be illustrated by Fig. 3.3; the geometry of a stationary
pore controlled by diffusion through the pore-filling fluid is identical to that
with only surface diffusion at the grain-pore interface. As in Chapter 3,
the two branches of the pore meet each other with the dihedral angle Φ
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Figure 4.4: Pore motion because of diffusion through the pore-filling fluid.
The curvature of the leading surface is smaller than that of the trailing sur-
face. Therefore the concentration at the leading surface is larger than that
at the trailing surface in accord with Eq. (4.5). The concentration gradient
results in the diffusion flux shown by the arrows. This downwards transfer
of matter is responsible for the upwards motion of the pore. For theoreti-
cal considerations both leading and trailing surfaces are approximated with
circular segments.

determined by Eq. (3.20). The equilibrium pore shape is given by two circular
segments with identical radius

Req =
Rp

sin Φ/2
, (4.23)

which depends on the dihedral angle. The solution concentration inside the
pore is constant and given by Eq. (4.5)

ceq = c0

(
1− Γ

R eq

)
, (4.24)

where we take into account that one of the principal curvatures of any
channel-like pore is zero.

We now consider a pore that moves upwards with a constant velocity U .
The motion is induced by the motion of a boundary between two grains
of the solid matrix. Let us assume that the shape of the pore can still be
approximated by two circular segments, the radii of the leading and trailing
surfaces are now different, however, and they are denoted by R2 and R1,
respectively. In accord with Eq. (4.24) the boundary values of the solution
concentration are

cs2 = c0

(
1− Γ

R2

)
, cs1 = c0

(
1− Γ

R1

)
, (4.25)
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where R2 > R1 and therefore

c0 > cs2 > cs1. (4.26)

Note that for small velocities both pore surfaces are concave with respect
to the surrounding grains and the corresponding curvatures are positive.
However, with an increase of the velocity the leading surface can became
convex (compare with Fig. 3.8). In this case the corresponding curvature
becomes negative and the solution concentration at the leading surface reads
cs2 = c0(1 + Γ/R2) and

cs2 > c0 > cs1. (4.27)

In Eq. (4.26) and (4.27), the concentration at the leading surface is larger
than that at the trailing surface cs2 > cs1, and therefore there is a diffusion
flux inside the pore that is directed downwards [Eq. (4.1)] counter wise to
the direction of pore motion. Indeed this flux causes the upwards motion of
the pore (Fig. 4.4).

The solution concentration inside the pore can be found as a solution of
the Laplace equation (4.4) in two dimensions

∂2
xc + ∂2

zc = 0 (4.28)

with the boundary conditions

c
∣∣
leading

= c0

(
1− Γ

Rp

sin Φ2

)
, (4.29)

c
∣∣
trailing

= c0

(
1− Γ

Rp

sin Φ1

)
, (4.30)

where the angles Φ1,2 are between the pore branches and the OX axis
(Fig. 4.4), the dihedral angle Φ = Φ1 + Φ2.

It should be stressed that by considering leading and trailing surfaces
as cylindrical (or spherical) segments we make an approximation that is not
quite satisfactory especially at the pore tips. The advantage is that the math-
ematical problem, as was initially given in Section 4.1.1, is greatly simplified.
In particular, in two spatial dimensions the problem allows for an exact so-
lution. The key point is that a test function [Lavrentjev and Shabat, 1998]

arctan

(
2z

1− x2 − z2

)

satisfies the Laplace equation (4.28) and takes identical values at each circle
segment connecting two points at x = ±1. These values are −Φ1 and Φ2 for
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the segments shown in Fig. 4.4. One can therefore look for a solution of our
problem in the form

c

c0

= A arctan

(
2Rpz

R2
p − x2 − z2

)
+ B,

where A and B are suitable constants and we scaled the coordinates to have
pore tips at x = ±Rp. To obtain these constants one solves the following
system

−AΦ1 + B = 1− Γ

Rp

sin Φ1,

AΦ2 + B = 1− Γ

Rp

sin Φ2,

and obtains

A =
Γ

Rp

sin Φ1 − sin Φ2

Φ1 + Φ2

,

B = 1− Γ

Rp

Φ1 sin Φ2 + Φ2 sin Φ1

Φ1 + Φ2

.

The result for the concentration reads

c

c0

= 1 +
Γ/Rp

Φ1 + Φ2

[
(sin Φ1 − sin Φ2) arctan

(
2Rpz

R2
p − x2 − z2

)

− Φ1 sin Φ2 − Φ2 sin Φ1

]
, (4.31)

the latter equation can also be checked by a direct substitution. The values
of Φ1,2 can be expressed through the dihedral angle Φ and the pore drag
angle Θp as

Φ1,2 =
1

2
Φ±Θp. (4.32)

Equation (4.31) uniquely determines the concentration of the solution for
given values of Rp, Γ, Φ, Θp. It is convenient to rewrite it in the form

c

c0

=
2Γ cos Φ/2

RpΦ
sin Θp arctan

(
2Rpz

R2
p − x2 − z2

)
+ const,

where the last term on the right-hand-side accumulates all terms in
Eq. (4.31), which do not depend on space coordinates and therefore do not
contribute to the particle flux j [Eq. (4.1)].
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We recall that the moving pore is assumed to belong to the region |x| ≤ Rp

with the tips at x = ±Rp. In principle, the pore size 2Rp can change as the
pore velocity increases. Therefore, similar to Chapter 3, our problem posing
is that of a stationary motion for given values of Rp and U .

Let us now calculate the velocity of the pore. To this end we calculate
jz

∣∣
z=0

, i.e., the flux of atoms across the OX axis for −Rp < x < Rp. We
have [Eq. (4.1)]

jz

∣∣
z=0

= −Dm

(
∂c

∂z

)

z=0

= −4 cos Φ/2

Φ

DmΓc0

R2
p − x2

sin Θp

and the total number of atoms transferred per second reads

J =

∫∫
(−jz

∣∣
z=0

)dxdy = Lp

Rp∫

−Rp

(−jz

∣∣
z=0

)dx, (4.33)

where integration is over the pore cross section. The integral (4.33) can be
related to the pore velocity

JΩ = 2RpLU

and therefore

U =
2 cos Φ/2

Φ

DmΩΓc0

Rp

sin Θp

Rp∫

−Rp

dx

R2
p − x2

.

At first glance, the last expression cannot be accepted because the integral
is infinite. The reason is that exactly at x = ±Rp our approximation is
not valid, because the pore curvature should be continuous at the tips and
cannot be equal to both 1/R1 and 1/R2 with R1 6= R2. One can assume that
in some region near the tips the approximation of the constant curvatures
is violated, however these regions cause only small contribution to the total
particle flux and can be ignored during calculation of the pore velocity. The
characteristic scale of these special tip regions is denoted by ∆ and is much
smaller than Rp. Therefore we assume that the integral should be calculated
over the region |x| < Rp −∆

Rp−∆∫

−Rp+∆

dx

R2
p − x2

=
1

Rp

ln
2Rp −∆

∆
≈ 1

Rp

ln
2Rp

∆
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and we obtain

U =
2 cos Φ/2

Φ

DmΩΓc0

R2
p

sin Θp ln
2Rp

∆
.

We see that the dependence on the ratio Rp/∆ is logarithmic and the exact
value of this ratio is not so important, e.g. one can define ∆ very differently
without changing the result for U much. A reasonable choice is ∆ ∼ Γ,
because the latter quantity is a characteristic length for the curvature to
change. This factor is denoted Clog. Therefore, we rewrite the result as

U = Clog
2 cos Φ/2

Φ

DmΩΓc0

R2
p

sin Θp, (4.34)

where Clog = ln(2Rp/Γ) is always of order 1. Finally we recall that cos Φ/2 is
proportional to γb/γs [Eq. (3.20)] and that Γ is proportional to γs [Eq. (4.6)].
Therefore the resulting expression for the pore velocity reads

U =
Clog

Φ

γbDmΩ2c0

R2
p kT

sin Θp. (4.35)

4.3.1 Pore Mobility

Let us assume that the pore velocity is small so that its description in terms
of pore mobility is appropriate. The pore drag force reads

Kpore drag = 2Lpγb sin Θp

and therefore Eq. (4.35) results in the following expression for the pore mo-
bility

Mp =
U

Kdrag

=
Clog

2Φ

DmΩ2c0

LpR2
p kT

. (4.36)

It is useful to rewrite the last equation in terms of pore volume, because
the latter cannot change for a water filled pore at constant pressure and
temperature. The volume of an equilibrium pore is given by the expression
(3.71) where the possible difference between Req and Rp can be neglected.
Finally we have

Mp =
Clog

2

Φ− sin Φ

Φ sin2 Φ/2

DmΩ2c0

Vp kT
. (4.37)

The latter expression is finite for all values of Φ ∈ [0, π] and is our main
result for the pore mobility. The second factor represents the dependence on
dihedral angle (Fig. 4.5).
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Figure 4.5: Normalized pore mobility Mp versus dihedral angle Φ. The
mobility is calculated for constant pore volume in accord with Eq. (4.37).
The factor Clog/2 is included in the normalization.

As we see, the pore mobility only slightly depends on the dihedral angle.
For estimates one can always use an expression

Mp ' DmΩ2c0

Vp kT
(4.38)

that is correct to order 1.

4.3.2 Critical velocity

The perturbation theory for surface diffusion from Chapter 3 is a systematic
Taylor expansion: using the ansatz given by Eq. (3.47) one can first find
terms linear in u, then quadratic ones, then cubic corrections, and so on. The
expansion is, however, valid only for small velocities. An analytical approach
for diffusion through the pore-filling fluid from this chapter essentially given
by Eq. (4.31) is an approximation and cannot be improved stepwise. On
the other hand, small velocities are not assumed here and one can find the
critical pore velocity directly from Eq. (4.35). The maximal value of the drag
force is for Θp = π/2 and therefore the maximal possible velocity reads

Umax =
Clog

Φ

γbDmΩ2c0

R2
p kT

. (4.39)

This is our main result for the separation problem in the case that diffusion
through the pore-filling fluid controls the pore motion. Note, the critical



98 CHAPTER 4. MOTION BY DIFFUSION THROUGH THE FLUID

velocity becomes large for fixed Rp and small values of Φ. The underlying
geometry is illustrated in Fig. 4.6.

Figure 4.6: Moving pore for small values of the dihedral angle Φ. Note that
a finite jump between the equilibrium values of cs on the leading and trailing
surfaces occurs on a small length scale that is proportional to Φ. This results
in a large flux proportional to 1/Φ and correspondingly in a large velocity of
the pore in accord with Eq. (4.39).

In this case the difference between the boundary values of the concentra-
tions reads

c
∣∣
leading

− c
∣∣
trailing

= c0

(
1 +

Γ

R2

)
− c0

(
1− Γ

R1

)
≈ c0

2Γ

R1

,

where R1 ≈ R2. This change of c occurs on a small distance and causes a
large diffusion flux. Correspondingly the resulting pore velocity also is large
in accord with Eq. (4.39). In other words, a decrease of Φ decreases the
distance that should be passed by diffusing atoms [Raj, 1982]. If, instead of
Rp = const, one considers a pore with constant volume, Rp increases with
the decrease Φ. Here, for a channel-like pore R2

pΦ ≈ const and two effects
compensate each other. Of course, even for Rp = const the singularity for
Φ = 0 cannot be reached. Indeed, for Φ → 0, the expressions (4.29–4.30)
should be reconsidered simply because the solution concentration must be
continuous. Also the time derivative in Eq. (4.3) cannot be ignored. The
latter situation is out of scope of Eq. (4.3.2).

4.4 Critical velocity for a lenticular pore

With only small changes the technique developed in the previous section
can be applied to a lenticular pore. Note, that Fig. 3.3 still illustrates the
equilibrium pore, the latter has now rotational symmetry and can be obtained
by rotation of the cross-section around the OZ axis.

For the moving 3D pore the pore-boundary interfaces are approximated
with spherical caps and the transport mechanism for the matrix atoms is
diffusion through the pore-filling fluid (Fig. 4.4), where the pore image also
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must be rotated around the OZ axis. The boundary conditions read

cs2 = c0

(
1− 2Γ

R2

)
, cs1 = c0

(
1− 2Γ

R1

)
, (4.40)

where we take into account that the two principal curvatures are identical.
Equation (4.28) is replaced by the radially symmetric version of (4.4), i.e.,

1

r

∂

∂r

(
r
∂c

∂r

)
+

∂2c

∂z2
= 0, (4.41)

where the pore is positioned in the region r < Rp and r =
√

x2 + y2.
The solution strategy is as follows. All length are normalized by Rp. We

first fix the dihedral angle Φ and choose several values for the drag angle Θp.
For each value we restore the geometry of the pore and in particular calculate
the radii of the spherical segments R1,2 = Rp/ sin Φ1,2, where [Eq. (4.32)]
Φ1,2 = Φ/2 ± Θp. The Laplace equation (4.41) is then solved numerically
within the pore. The result is a space distribution of c that should be used
instead of Eq. (4.31). In fact, only the difference c− c0 must be calculated,
the latter is normalized according to

c̄ = −Rp

Γ

(
c

c0

− 1

)

as suggested by (4.31), the negative sign ensures positive values of c̄, at
equilibrium c̄eq = 2 sin Φ/2. The normalized boundary conditions read

c̄s2 = 2 sin Φ2, c̄s1 = 2 sin Φ1.

Several examples of numerical solutions are shown in Fig. 4.7. For each
solution one can calculate the particle flux [Eq. (4.1)]

j =
DmΓc0

R2
p

∇c̄,

where ∇ is taken over the normalized coordinates. The flux is integrated to
get the total number of atoms that are transferred across the pore per second

J =
DmΓc0

R2
p

I,

where the integral I is determined over the trailing pore surface

I =

∫∫
(n∇c̄) dS = R2

p

∫∫
(n∇c̄) dx̄ȳ,
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Figure 4.7: Several solutions of Eq. (4.41) obtained numerically with the
boundary conditions (4.40) for Φ = π/3 and different values of Θp as shown
by labels. Density plot of c̄(r, z) is shown.

and n denotes the corresponding unit normal vector. Similar to section 4.3
the integration is actually performed over a smaller region, we have taken
r̄ < 0.9 instead of r̄ < 1. In addition, integration limits of r̄ = 0.85 and
r̄ = 0.95 were tried but did not significantly affect the value of the integral.

The pore velocity is calculated as

U =
JΩ

πR2
p

=
DmΩΓc0

R2
p

1

π

∫∫
(n∇)c dx̄ȳ. (4.42)

For each value of the dihedral angle, velocity normalized in accord with
Eq. (4.42)

u = U

/
DmΩΓc0

R2
p

.

exhibits a maximum (Fig. 4.8). The maximum is, however, not reached for
Θp = π/2 as for channel-like pores [Eq. (4.34)], but for intermediate values
of the drag angle that systematically decrease with increasing dihedral angle.

Similar to the result for channel-like pores [Eq. (4.39)] the critical velocity
strongly increases with decreasing dihedral angle (Fig. 4.9). The decrease can
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Figure 4.8: Normalized pore velocity versus drag angle for different values of
the dihedral angle as shown by the labels. The maximum values of the pore
velocity are shown by points.

be closely approximated by an analytical expression guessed from Eq. (4.39)

umax = 16.4
cos Φ/2

Φ
. (4.43)

The correspondence between the numerical calculations and the analytical
approximation is quite good. Returning to physical units we obtain from
Eq. (4.43)

Umax =
8.2

Φ

γbDmΩ2c0

R2
p kT

(4.44)

in accord with Eq. (4.39). The latter equation is our main result to the
separation problem for a lenticular pore.
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Figure 4.9: The normalized critical pore velocity is shown as a function of
the dihedral angle. The numerical results are taken from Fig. 4.8 and are
shown by points, the solid line is the analytical approximation (4.43).



Chapter 5

Conclusions

In this short chapter we summarize the most important new results from
the previous chapters and discuss possible applications. A typical object
that is described in this thesis is an elongated channel-like pore that can be
formally considered as a two-dimensional object. The pore is embedded in
a polycrystal, the latter is considered as a set of growing grains with the
moving boundaries between them. We are interested in the pore-boundary
interactions, especially in pores that are trapped by a moving boundary.

For coupled motion at small velocities, we calculated pore mobilities
for several pore geometries and two important transport mechanisms. A
straightforward application is to quantify the reduction of the boundary mo-
bility by the attached pores in accord with Eq. (2.31) and (2.41).

An increase in boundary velocity greatly affects the shape of the dragged
pore and at some critical velocity the coupled motion is not possible anymore.
The pore is separated from the boundary. Our next main problem was to cal-
culate this critical velocity for different pore geometries and different motion
mechanisms. Also comparison of the pore mobilities and critical velocities
for different mechanisms immediately reveals the dominating mechanism that
controls drag and drop processes.

Pore separation is a highly complicated process that involves large pertur-
bations of the pore. Therefore our investigations of the separation problem
were mainly numerical. The numerical results were systematically approxi-
mated by simple analytical expressions, whose formulation was guided by the
physical features of the process. Hence, practical calculation and comparison
of the critical velocities in specific systems is possible.

Furthermore, we performed the first analysis of the numerical solutions for
the pore in the vicinity of the singularity point. Therefore, we are confident
that the results obtained in this thesis represent physical reality rather than
numerical instabilities. This was necessary because of wide scattering of the
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published data on drag and drop criteria (this is especially relevant for the
dependence of critical velocity on dihedral angle, as discussed in section 1.4).

Let us now discuss the most important results of this thesis.

5.1 Boundary motion

Critical velocities for grain boundaries

Previous investigations of pore drag dealt with a boundary migrating with
constant velocity U driven by surface tension. Therefore we checked if such
solutions are possible for the underlying boundary equations. For a bound-
ary, e.g. with rotational symmetry, the corresponding solutions are readily
obtained (see Fig. 2.6). For the two dimensional case, e.g. with the boundary
parallel to OY axis, we encountered a new effect [Eq. (2.37)]: the boundary
velocity cannot exceed the critical value

Umax =
πµbγb

2Rb

,

where µb and γb are the boundary mobility and surface tension coefficient,
respectively; the boundary edges are positioned at x = ±Rb.

Global boundary mobility

We also investigated to which extend a boundary moving with constant ve-
locity can be described in terms of mobility. The resulting global boundary
mobility Mp [Eqs. (2.24) and (2.40)] reads

Mp =
U

Kdrag

=
µb

S
,

where S is the boundary area. This expression is valid as long as the bound-
ary is only slightly perturbed by the driving force, i.e., in the small slope
approximation. We found that with increasing drag force the global mobility
increases parabolically

Mp(U) =
µb

S

(
1 +

c U2

U2
max

)

with a dimensionless factor

c =
π2

24
≈ 0.41
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[see Eqs. (2.28)]. The increase is, however, relatively weak

Mp(U) ≤ 1.41Mp ,

because the velocity of a two dimensional boundary cannot exceed Umax. In
contrast, the nonlinear increase of the mobility in a three dimensional case
can be large (see Eq. (2.39) for small velocities and Fig. 2.8 for arbitrary
velocities).

5.2 Pore motion controlled by surface diffu-

sion

Mobility

Surface diffusion is the first transport mechanism that is considered in this
thesis. Here, the main physical process is atomic motion along the pore-
boundary interface caused by its nonuniform curvature. The resulting parti-
cle flux is proportional to curvature gradient, to Ds/(kT ), where Ds denotes
surface diffusivity, and to δ the width of the interface layer. An atom trans-
ported from the leading to the trailing pore surface increases volume of the
growing grain by Ω. We considered a channel-like pore with the tips at
x = ±Rp and the length Lp À Rp. The pore mobility reads

Mp = km(Φ)
DsΩδ

kTLpR3
p

,

where the “mobility factor” km(Φ) ≈ 1 depends on dihedral angle and
geometry of the boundaries. A systematic way to calculate km(Φ) was
developed. The method was first applied to a channel-like pore at a
boundary [Eq. (3.70)]. The resulting mobility is identical to that ob-
tained previously from energy considerations [Svoboda and Riedel, 1992,
Riedel and Svoboda, 1993]. Then our technique was applied to a pore at
a triple junction [Eq. (3.96)], this expression for the mobility is new. Also
both mobilities were calculated numerically; the correspondence between an-
alytical and numerical results is very good (see Fig. 3.9 and Fig. 3.17).

Our results for km(Φ) are summarized in Fig. 3.15. As we see, the de-
pendence on dihedral angle is relatively weak. Also the pore mobility at a
triple junction is approximately 30% smaller than that of the pore between
the boundaries. In both cases a typical value of km(Φ) is 0.5.
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Critical velocities

The coupled pore-boundary motion was treated numerically. With increasing
velocity its relation to drag force becomes nonlinear. Also the pore shape
becomes more and more deformed. At a critical velocity, no solution for
coupled motion can be found. Our goal was to calculate this critical velocity
for channel-like pores.

We returned to the viewpoint of the original papers [Hsueh et al., 1982,
Spears and Evans, 1982]. To this end we differently fixed the value of the
common velocity and asked if a uniform coupled motion is possible. If so, the
trapped pore self-organizes and becomes stationary in a moving coordinate
frame, thereafter the pore shape and volume cannot change. To exclude
artifacts due to numerical errors we carefully examined solutions near the
critical velocity. Our results for Umax can be summarized in a single equation

Umax = ks(Φ)
DsΩδ

kT

γb

R3
p

,

where the “separation factor” ks(Φ) depends on dihedral angle, direction of
motion and geometry of the boundaries. In particular, the factor was non-
zero for a circular pore. For the pore at a boundary the critical velocity is
given in Eq. (3.75). It decreases with the increase of Φ; the critical velocity
at Φ = 0 is almost 5 times larger than that for Φ = π.

For the pore at a triple junction, two directions of motion must be dis-
tinguished, the results for the critical velocities are given in Eq. (3.100)
and (3.101). Again, Umax decreases several times with the increase of Φ,
but is nonzero for Φ = π. Typical values of Umax for the upward motion
(Fig. 3.14) are approximately 10 times larger than that for the downward
motion.

5.3 Diffusion through the pore-filling fluid

Mobility and critical velocity

The second transport process we were interested in was diffusion of matrix
atoms through the pore-filling fluid. Matrix atoms are dissolved from the
leading surface, diffuse through the fluid, and precipitate on the trailing sur-
face. The gradient in solution concentration causing the flux results from the
dependence of local solubility on the curvature of the solid-liquid interfaces
(Thompson-Freundlich relation). The curvature of the leading surface with
respect to the upper grain is smaller (or even negative) than that of the trail-
ing surface with respect to the lower grain (Fig. 4.4). Therefore the solution
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concentration increases upwards and the diffusion flux is, in turn, directed
downwards.

From a mathematical point of view one has to deal with the diffusion
equation for the solution concentration in a permanently changing domain,
where the boundary conditions are determined by the curvature of the bound-
aries. Because this problem is extremely complicated, only rough estimates
can be found in the literature for the pore mobility and critical velocity
[Monchoux and Rabkin, 2002]. In particular, systematic solution of the dif-
fusion equation was not obtained, particle flux was artificially assumed to
be parallel to the motion direction, dependence of the mobility and critical
velocity on dihedral angle was not investigated, etc.

Considering this problem, we first started with an accurate mathematical
formulation following [Mullins, 1960] strategy for a similar groove formation
problem. To prove that the problem posing is mathematically correct we in-
vestigated stability of a plane interface and derived characteristic time scales
that apply to the interface relaxation accommodated by diffusion through
the pore-filling fluid. Then we considered motion of a channel-like cylin-
drical pore for the condition that the equilibrium solution concentration is
established “instantaneously” relative to slow changes of boundary condi-
tions.

Mathematical treatment of a stationary two-dimensional diffusion equa-
tion is much easier than that in three dimensions. Therefore is was possible
to find an exact solution for the solution concentration in a channel-like pore
where both interfaces have constant curvatures. The relation between the
drag force and the resulting pore velocity was found as above. The induced
diffusion flux is proportional to the ratio Dm/(kT ) where Dm is volume dif-
fusivity of the matrix atom in the solution. The pore geometry is as above
characterized by two parameters Rp and Lp. The pore mobility reads

Mp =
Clog

2Φ

DmΩ2c0

LpR2
p kT

,

where c0 is the equilibrium solution concentration for a plain interface. Here
Clog ≈ ln(107Rp/1 cm). An interesting point is that if one keeps Rp = const
and decreases Φ the mobility increases (see Fig. 4.6 for explanation). If,
however, one keeps the pore volume constant, as it is natural for the fluid
filled pore, the value of the mobility is finite for all values of Φ [see Eq. (3.72)].

Using the exact solution for the solution concentration the maximal pore
velocity can be also found. The result reads

Umax =
Clog

Φ

γbDmΩ2c0

R2
p kT

.
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To our knowledge this is a new result that quantifies critical velocity con-
trolled by the diffusion through the pore-filling fluid. The result directly
shows how Umax depends on the dihedral angle.

Close investigation shows that this approach is not restricted to channel-
like pores but can be also applied to lenticular pores. The only significant
difference is that in order to replace the analytical solution given by Eq. (4.31)
one has to solve the stationary diffusion equation numerically. We have
performed this for a lenticular pore with rotational symmetry. The expression
for the critical velocity is identical to that for the channel-like pore, again
the quantity Clog can be calculated only to logarithmical accuracy, in our
example its numerical value was ∼ 10.

Controlling mechanism

All above considerations were made either for surface diffusion or diffusion
through the pore-filling fluid. However, these two transport processes oc-
cur always simultaneously with different efficiency. Using our results, it is
straightforward to identify the controlling transport mechanism. Indeed, the
ratio of critical velocities for two mechanisms reads

U surface
max

Uvolume
max

= Φ
ks(Φ)

Clog

Ds

Dm

δ

Rp

1

Ωc0

,

where the separation factor ks(Φ) ∼ 1 as calculated above. The ratio of pore
mobilities for two mechanisms reads

M surface
p

Mvolume
p

= Φ
2km(Φ)

Clog

Ds

Dm

δ

Rp

1

Ωc0

,

where the mobility factor km(Φ) ≈ 0.5 as calculated above. Therefore it is
useful to introduce a dimensionless parameter

ξ =
Φ

Clog

Ds

Dm

δ

Rp

1

Ωc0

,

where the numerical factor Clog is of order 10. The pore drag and drop is
controlled by surface diffusion if ξ À 1. Diffusion through the pore-filling
fluid dominates if ξ ¿ 1.



Notation

Symbol Comment
Kb Normal driving force per unit area of the boundary

Kdrag Total drag force acting on the boundary or pore
Ds Diffusivity of matrix atoms on the pore surface
Dm Diffusivity of matrix atoms in water
γb Surface tension coefficient of the grain-grain interface
γs Surface tension coefficient of the pore-grain interface
µb Local boundary mobility
Mb Global boundary mobility
Mp Pore mobility
Ω Volume per atom into the matrix
δ Effective boundary width

κ = κ1 + κ2 Main and mean curvatures of the surface
U (or u) Pore or boundary velocity (normalized)
F(t, x, y, z) Is used for the implicit boundary definition
f(t, x, y) Is used for the explicit boundary definition
F (x, y) Is used for the explicit boundary description in a moving frame

G(t, x, y, z) Is used for the implicit pore definition
g(t, x, y) Is used for the explicit pore definition
G(x, y) Is used for the explicit pore description in a moving frame

Rb Boundary size, |x| < Rb in 2D and r < Rb in 3D
Rp Pore size, |x| < Rp in 2D and r < Rp in 3D

Lb, Lp Large (‖ OY ) scale of a boundary or a pore in 2D
θ Boundary slope angle
ϕ Pore slope angle
Θb Boundary drag angle. Last value of θ
Θp Pore drag angle. Last value of ϕ
c Solution concentration
cs Interface value of the solution concentration
Γ See Eq. (4.6). Is used for cs definition
Vp Pore volume
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