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Abstract

The Earth’s surface temperature is a key parameter for understanding of the energetic and
hydrological balance of the Earth. Continuous accurate measurements of the regional and
global temperature distribution can provide information on its changes and impact on the
global climate. Since the late 1960s, satellite measurements have been utilized for Earth’s
monitoring. Surface temperature space-borne measurements have been used in a variety of
applications, such as energy transfer, weather forecasting, mesoscale modeling, agriculture,
and forest fire mapping.

At the Institute of Space Sensor Technology and Planetary Exploration at the German
Aerospace Center (Dlr), a small satellite Bird (Bi-spectral InfraRed Detection) has been
developed. It is slated to be launched in 2001. The Bird mission shall demonstrate the
technological and scientific feasibility of a remote sensing small satellite mission under tight
budget constrains. The main scientific objectives of the Bird mission are the investigation
of high-temperature-events (Hte) like fires, volcanos etc. and vegetation exploration. Since
Bird does not have any thermal channels in the 10 and 12 µm atmospheric window, it was
necessary to develop temperature retrieval methods for land surfaces which utilized the Bird
channels at 3.4− 4.2 µm and 8.5 − 9.3 µm.

Two land surface temperature retrieval approaches are presented in this document. One
method is based on a linear regression method utilizing the top-of-atmosphere brightness
temperatures of both infrared Bird channels. Since land surfaces are characterized by the
emissivity, an emissivity correction was employed. The second approach separates the tem-
perature and emissivity using ground radiances from Bird’s Mir and Tir channels. The
at-ground Tir brightness temperature is utilized for the estimation of the thermal contri-
bution to the Mir ground radiance. Thus, an emissivity correction factor called Tisie was
introduced to account for the emissivity differences between both Ir channels. For the in-
vestigation of the approaches, large synthetic data sets consisting of coupled surface and
atmospheric models were produced using the radiative transfer model Modtran.

The results are to be considered as a first case study of utilizing Bird’s Mir and Tir chan-
nel to examine vegetation surfaces. Root mean square temperature retrieval errors for the
“Tisie” - Approach and the “Regression” - Approach under nighttime conditions lie around
1 K and within a range of 0.5 to 2.5 K, respectively. The application of the “Regression” -
Approach during daytime is not recommended. The advantage of applying the “Tisie”-
Approach is that no a priori emissivity information is necessary although an atmospheric
correction has to be applied first. A discussion of error sources is given and leads to generally
unsatisfying temperature retrieval errors for vegetation applications. The error magnitudes
result from a trade-off between the main and secondary objectives of the Bird mission, which
are the Hte detection and vegetation monitoring, respectively. The algorithms might be ap-
plicable within the frame of these objectives for particular vegetation studies. Finally, both
algorithms still have to be validated on real atmospheric and Bird data. Further investiga-
tions on the presented subject are in progress.





Zusammenfassung

Die Untersuchung der Erdoberflächentemperatur ist eine wesentliche Voraussetzung für das
Verständnis des energetischen und hydrologischen Gleichgewichts der Erde. Die Beobach-
tung der regionalen und globalen Temperaturverteilung sowie die Analyse der Wechsel-
wirkung zwischen Erdoberflächentemperatur und globalem Klima erfordern kontinuierliche,
zuverlässige Messungen der Temperatur der Erdoberfläche. Seit den späten 60er Jahren
sind satellitengestützte Temperaturmessungen fester Bestandteil der Beobachtung der Erd-
oberflächentemperatur. Diese werden für eine Vielzahl von Anwendungen eingesetzt. Stell-
vertretend sei auf die Untersuchung des Energietransfers, die Wettervorhersage, die Entwick-
lung von mesoskaligen Modellen sowie die Anwendungen in Landwirtschaft und Waldbrand-
detektion verwiesen.
Am Institut für Weltraumsensorik und Planetenerkundung des Deutschen Zentrums für
Luft- und Raumfahrt (Dlr) wird derzeit ein Kleinsatellit namens Bird (Bi-
spectral InfraRed Detection) entwickelt, dessen Start für das Jahr 2001 geplant ist.
Die Bird Mission soll die technologischen und wissenschaftlichen Möglichkeiten einer
Fernerkundungs-Kleinsatellitenmission unter engen finanziellen Rahmenbedingungen aus-
loten. Die wesentlichen wissenschaftlichen Zielstellungen der Bird Mission bestehen in der
Untersuchung von Hochtemperaturereignissen (Hte), beispielsweise von Feuern oder Vulka-
nen, sowie von Vegetation. Da Bird nicht über einen thermalen Kanal innerhalb des atmo-
sphärischen Fensters zwischen 10 and 12 µm verfügt, ist die Entwicklung von Algorithmen zur
Bestimmung von Landoberflächentemperaturen unter Berücksichtigung der Spektralkanäle
von Bird (3.4 − 4.2 µm, 8.5 − 9.3 µm) notwendig.
Zu diesem Zweck wurden zwei Methoden entwickelt. Die erste Variante basiert auf einer line-
aren Regression unter Verwendung der Helligkeitstemperaturen am Atmosphärenoberrand.
Da verschiedene Landoberflächen durch sehr unterschiedliche Emissivitäten gekennzeichnet
sein können, wird eine Emissivitätskorrektur durchgeführt. Die zweite Methode separiert
Temperatur- und Emissivitätsinformation unter Nutzung der Bodenstrahlung in den Mir
und Tir Kanälen von Bird. Die Bodenstrahlung im Tir Kanal wird zur Bestimmung
des thermalen Anteiles an der Mir Bodenstrahlung verwendet. Dazu ist aufgrund der
Emissivitätsunterschiede zwischen beiden Kanälen die Einführung eines Emissivitätsfaktors
Tisie notwendig. Für die Entwicklung beider Methoden wurden große synthetische
Datensätze erzeugt, welche sich aus der Kombination verschiedener Oberflächen- und Atmo-
sphärenmodelle ergeben. Die Berechnung des atmosphärischen Strahlungstransportes erfolgt
mit dem Modell Modtran.
Diese Arbeit untersucht die Qualität der Temperaturbestimmung von Landoberflächen unter
den Rahmenbedingungen der spektralen Konstellation der Bird-Kanäle. Die mittleren
quadratischen Fehler liegen unter Nachtbedingungen bei 1 K bzw. zwischen 0.5 und 2.5 K

für die Tisie- bzw. die Regressionsmethode. Die Regressionsmethode erweist sich für Tagbe-
dingungen, d.h. unter Berücksichtigung eines solaren Anteils am Strahlungstransport, als
ungeeignet. Der Vorteil der Tisie-Methode besteht in der gleichzeitigen Bestimmung von
Emissivität und Temperatur. Die notwendige Atmosphärenkorrektur erfordert jedoch In-
formationen über die atmosphärischen Bedingungen zum Zeitpunkt der Messung. Die po-
tentiellen Fehlerquellen der Temperaturbestimmung werden diskutiert. Eine Abschätzung
ergibt unbefriedigende Fehler für die Bestimmung der Temperatur von Landoberflächen. Die
Größenordnung der Fehler resultiert aus dem primären Fokus der Bird Mission auf Hte-
Anwendungen. Für bestimmte Anwendungen im “Normal”-Temperaturbereich sind die Algo-
rithmen jedoch anwendbar. Beide Methoden sind an realistischen Bird-Daten zu validieren.
Weitere Untersuchungen zu den Methoden werden durchgeführt.





Resume

La température de surface est un des paramètres clés de l’interprétation à l’échelle régionale
et globale des équilibres énergétique et hydrologique de la Terre. Des mesures précises
systématiques des champs de température régionale ou globale renseignent sur leur vari-
abilité et permettent d’en évaluer l’impact sur le climat global. Les mesures de température
des surfaces continentales interviennent dans une variété d’applications, comme par exemple
la quantification des transferts d’énergie, la prévision du temps et les modèles méso-échelle
de circulation atmosphérique, de même qu’en agriculture ainsi que pour la cartographie des
feux de forêts.

La mission Bird (Bi-spectral Infrared Detection), de la catégorie petit satellite, est en cours
de réalisation au “Institute of Space Sensor Technology and Planetary Exploration” du “Ger-
man Aerospace Center (Dlr)”. Le lancement est prévu pour 2001. Bird doit faire la
démonstration de la faisabilité technologique et scientifique d’une mission de télédétection
à petit satellite réalisée sous un petit budget. Les objectifs scientifiques principaux de la
mission Bird portent sur les “événements-haute-température” (Hte), comme les feux, les
volcans, les feux de forêts ainsi que le suivi de la végétation. L’objectif prioritaire Hte a
conduit à doter Bird de deux canaux spécifiquesMir: (3.4−4.2 µm), et Tir: (8.5−9.3 µm).
Ainsi, Bird ne disposant d’aucun canal infrarouge dans la fenêtre atmosphérique entre 10
et 12 µm, il a fallu développer des méthodes de restitution des températures des surfaces
continentales adaptées à cette configuration inhabituelle.

Deux approches pour la restitution des températures de surfaces continentales sont présentées
dans ce document. La première est une méthode de régression linéaire utilisant les
températures de brillance mesurées dans les canaux Bird au niveau du capteur. La prise
en compte de l’émissivité, caractéristique de la surface, est effectuée via une correction en
deux étapes. La deuxième approche se propose de séparer l’information température et
l’information émissivité apportée par les radiances au niveau du sol dans les canaux Mir
et Tir de Bird. Un facteur de correction d’émissivité, noté Tisie, prend en compte le fait
que les émissivités ne sont pas les mêmes dans les deux canaux IR. Pour développer ces
deux approches, une importante base de données synthétiques couplant surface et modèles
atmosphériques a été réalisées avec le code Modtran.

Les résultats obtenus doivent être vus comme une première étude pour évaluer la possibilité
d’utiliser les canauxMir et Tir de Bird pour examiner des surfaces couvertes de végétation.
Les erreurs moyennes sur la température restituée soit par la méthode “Tisie”, soit par la
méthode dite “Régression”, pour des observations de nuit, se situent, respectivement, autour
de 1 K, et dans l’intervalle 0.5 − 2.5 K. L’application de la méthode “Régression” à des
données de jour est déconseillée. L’approcheTisie a l’avantage qu’aucune information a priori
sur l’émissivité n’est nécessaire; en revanche, elle demande d’appliquer d’abord une correction
atmosphérique aux données. Une discussion des sources d’erreurs et une évaluation de l’erreur
totale est faite: il apparâıt que l’ordre de grandeur de l’erreur commise sur la température
ne correspond en général pas à ce qui est nécessaire pour une problématique végétation.
Néanmoins, ces erreurs restent acceptables dans le contexte de thématique Hte. Finalement,
les deux algorithmes doivent encore être validés sur des données réelles, tant atmosphériques
que satellitales. Des investigations complémentaires aux travaux présentés dans ce document
sont en cours.
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Chapter 1

Introduction

The Earth’s surface temperature is a key parameter for understanding of the energetic
and hydrological balance of the Earth on a regional and global scale. It is driven by
the energetic interactions between solar radiance, atmosphere and surface. Thus, it
is a basic input variable for parameterization models of the energy transfer between
the atmosphere and the surface as well as for weather forecasting models. Continuous
accurate measurements of the regional and global temperature distribution could pro-
vide information on its changes and impact on the global climate. Surface temperature
measurements have also been used in a variety of applications, such as investigations
in agriculture (e.g. soil moisture estimation, monitoring water-stress in crops, frost
detection), as initialization data in mesoscale models (e.g. sea breeze circulation and
convective cloud formation) and in forest fire mapping.

Since the late 1960s, satellite thermal infrared measurements have been utilized to
estimate sea surface temperature (Sst) (see review paper by Price (Price, 1984)). The
derivation of land surface temperature from space can be traced back to the early 60s
when the Tiros-II satellite was launched. Almost forty years later the remote sensing
community is in a position to quantify atmospheric and surface effects using theoretical
models and field experiments in order to derive sea and land surface temperatures.
However, there are still plenty of difficulties connected with the accuracy of validation
data, the spectral and spatial resolution of the instruments as well as the in-flight
calibration of the thermal sensors. Other problems include the heterogeneity of land
surfaces and the averaging of temperatures over large pixel area (e.g. 1× 1 km). Land
surface temperatures may strongly vary in time (diurnal variation) and space, up to
10 K in just a few centimeters due to e.g. shadowing or topografic effects.

Nevertheless, sea surface temperatures are currently derived operationally using mea-
surements of the Advanced Very High Resolution Radiometer (Avhrr) and of the
Along Track Scanning Radiometer (Atsr). The Avhrr is on board of the Noaa
series of polar-orbiting satellites. The payload of the Atsr is the Ers (European Re-
mote sensing Satellite) platform. Sst algorithms have been fine-tuned over the years
by adequate theoretical models providing Sst accuracies of better than 1 K (Prata,
1993; Vass & Battrick, 1992). For a review of the theory see McMillin et al., Barton
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et al. or Deschamps et al. (McMillin & Crosby, 1984; Barton et al., 1989; Deschamps
& Phulpin, 1980). The accuracy (root mean square error) currently attainable lies
between 1 and 3 K depending on atmospheric and surface properties.

It seems reasonable to apply proven Sst methods to land surfaces. When initial ap-
plication of Sst algorithms to land surface temperature retrieval was unsuccessful, it
was recognized that the surface emissivity had additionally to be taken into account.
During the past decade significant progress has been made in the estimation of land
surface emissivity and temperature from thermal remote sensing data (Prata, 1994b;
Prata et al., 1995; Wan & Dozier, 1989).

In general, three basic methods have been developed to estimate surface temperatures
and are briefly recalled here:

• The first category is called “single-channel method”, which uses the radiance
measured by the satellite in one infrared channel. The chosen channel should lie
in a so-called “atmospheric window” where the atmospheric extinction is small.
The best atmospheric window appropriate for temperature retrieval lies between
10 and 12 µm. The method requires a good radiative transfer model and atmo-
spheric input parameters (profiles) given by atmospheric radiosondes at best or
climatological data in order to correct the at-sensor radiance for residual atmo-
spheric absorption (Price, 1983).

• The commonly used “split-window technique” is the second type. There exist
both multi-spectral and multi-angular version of the split window technique. The
multi-spectral technique, first proposed by McMillin (McMillin, 1975), is based
on differential atmospheric absorption in two or more adjacent infrared window
channels. The surface temperature is determined by a linear combination of
radiometric (brightness) temperatures in those channels (Becker & Li, 1990b;
Ottlé & Vidal-Madjar, 1992; Ulivieri et al., 1994; Sobrino et al., 1994; Coll
et al., 1994). The multi-angular methods utilize the differential absorption due to
different atmospheric path length when the same surface area (pixel) is observed
from two or more different view angles (Chedin et al., 1982; Prata, 1994a; Labed
et al., 1993). Combinations of both split-window types have been investigated as
well (Wan & Snyder, 1999; Lippert, 1995; Prata, 1993).

• The “separation method” developed by Li and Becker (Becker & Li, 1990a) es-
timates both land surface emissivity and temperature using pairs of day/night
co-registered Avhrr images. A similar approach was derived and adapted for
Modis data by Wan and Li (Wan & Li, 1997). Goita and Royer (Goita & Royer,
1997) proposed a separation approach combining Tir and Mir Avhrr data.

In recent years the validation of developed emissivity and temperature retrieval ap-
proaches has focused on measurements of Avhrr because of its widespread use and
global applicability (Francois & Ottlé, 1996; Li & Becker, 1993; Kerr et al., 1992;
Sobrino et al., 1991). Naturally, most investigated methods are validated on a local
or regional scale. New aspects were brought into the discussion with the opportunity
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to consider view angle measurements of the Atsr since the beginning of the nineties
(Prata et al., 1990; Sobrino et al., 1996). However, reliable land surface temperatures
derived from spaceborne thermal sensors are not yet feasible for operational usage.

At the Institute of Space Sensor Technology and Planetary Exploration at the Ger-
man Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt - Dlr), a small
satellite called Bird (Bi-spectral InfraRed Detection) has been developed. It is slated
to be launched in 2001. The Bird mission shall demonstrate the technological and
scientific feasibility of a remote sensing small satellite mission under tight budget con-
strains (Brieß et al., 1997). The main scientific objectives of the Bird mission are
the investigation of high-temperature-events (Hte) like fires, volcanos etc. and veg-
etation exploration (Brieß et al., 1999). According to the technological and scientific
objectives a sensor system consisting of two Ir cameras (3.4 − 4.2 µm (Mir - Mid
InfraRed) and 8.5 − 9.3 µm (Tir - Thermal InfraRed)) as well as a stereo camera
WAOSS (Wide-Angle Optoelectronic Stereo Scanner) which spectral ranges lie within
the visible (Vis) and the near infrared (Nir) was chosen.
The scientific tasks include the development of temperature retrieval methods for Hte
(Zhukov et al., 1997) as well as for “normal” Earth’s surface temperature like the
temperature of vegetation, etc.

With the given Ir channel selection, it follows that none of the existing temperature
retrieval methods (utilizing the window channels between 10 and 12 µm summarized
above) can be applied to upcoming Bird data with the purpose of retrieving “normal”
surface temperatures. Thus, it was necessary to investigate temperature retrieval al-
gorithms for land surfaces which utilized the specified channel configuration of Bird
(3.4 − 4.2 µm and 8.5 − 9.3 µm).

Two temperature retrieval methods customized for the Bird channel configuration
were investigated. One method is based on a bi-spectral technique (referred to as
“Regression” - Approach) using the at-sensor information in theMir and Tir channels
of Bird (Chapter 4). The second approach (Chapter 5) recovers land surface emissivity
and temperature from ground radiances (separation method) utilizing a “Temperature
Independent Spectral Index for Emissivity” (referred to as “Tisie” - Approach) (Becker
& Li, 1990a). Both methods were developed under the assumption of a Lambertian
surface and homogeneous ground pixels. Since the orbit of Bird is still not fixed,
night- as well as daytime conditions were considered in the investigation of methods.

These two main chapters are framed by two general (Chapters 2 and 3) and one out-
looking chapter (Chapter 6). In Chapter 2 the Bird mission is further discussed.
Chapter 3 contains the main atmospheric radiative transfer equations in the infrared
which are necessary to be solved in order to derive temperature and emissivity. The
results of a sensitivity study employed to Birds infrared channels are also given in
this chapter. A summary of both approaches concerning the error estimation and
propagation are included in Chapter 6. In this chapter, an outlook on the algorithms
which will be applied on upcoming Bird data is given as well. Finally, a conclusion,
a list of used abbreviations and symbols as well as appendices are provided at the end
of the document.
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Chapter 2

The BIRD Mission

The Bird (Bi-spectral InfraRed Detection) mission of the German Aerospace Center
(Dlr) shall demonstrate the technological and scientific feasibility of a remote sensing
small satellite mission under low budget constrains (Brieß et al., 1997). In this chapter
the mission objectives and the technical data of Bird are briefly summarized.

2.1 Objectives

The main scientific objectives of the Bird mission are the investigation of hot spots
and vegetation exploration (Brieß et al., 1999). The hot spots can be caused by vege-
tation fires, industrial hazards and burning oil wells or coal seams as well as volcanic
activities. The vegetation exploration includes the study of aridness and re-cultivation.
Within these objectives the development of temperature retrieval methods for High-
Temperature-Events (Hte) and “normal” Earth’s surface (≈ 290± 30 K) are a main
focus. The temperature determination of Hte like fires and volcanos are needed for
the estimation of pollutant emission into the atmosphere. Retrieved “normal” Earth’s
temperatures are required as Hte surrounding temperatures for the interpretation of
thermal images. Primary and secondary mission objectives are outlined in the following
table (Table 2.1).

BIRD mission objectives

primary 1. testing a new generation of cooled infrared detectors

objectives 2. detection and investigation of hot spots (fires, volcanic activities,

burning oil wells or coal seams)

3. thematic on-board data processing: test of neural network

classification

secondary 4. exploration of vegetation conditions and changes: determination

objectives of “normal” surface temperature, leaf area and vegetation indices

5. real time discrimination between smoke and clouds

Table 2.1: Bird mission objectives
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2.2 Technical Data Overview

With Bird a new generation of space-borne imaging infrared detectors will be tested.
The payload is a three-axis stabilized spacecraft with dimensions of 62 × 160 × 62 cm3

and a mass of 88 kg (Walter et al., 1999). The flight configuration with one fixed and
two deployed solar panels as illustrated in Figure 2.1 provides 200 W peak power.

Figure 2.1: Flight configuration of Bird, (Lwir=Tir, Mwir=Mir)

This multi-spectral sensor system is slated to be launched in 2001 as a piggy-back
payload. It consists of two Ir cameras, sensitive at wavelength between 3.4 − 4.2 µm
(Mir - Mid InfraRed) and 8.5 − 9.3 µm (Tir - Thermal InfraRed), as well as the
stereo cameraWaoss-b (Wide-Angle Optoelectronic Stereo Scanner) with the spectral
channels in the visible (Vis, mainly within the red range) and the near infrared (Nir).
Waoss-b was originally developed for the Mars-96 mission and has been slightly
modified for the Bird mission. The Ir detectors are made of HgCdTe (Mercury Cad-
mium Tellurite) and cooled down to 80 K operating temperature by a separate Stirling
cooler. The entire system was thoroughly tested under laboratory conditions. Several
airborne campaigns demonstrated the feasibility of the Bird imaging concept.
As an example, the Mir and the Tir images as shown in Fig. 2.2 were taken over
the industrial plant in Oberpfaffenhofen on October, 22 in 1998. An arrangement of
several fires and hot plates was detected from an altitude of 1200 m (ground resolution
≈ 1.5 m). The large fire in the center (5 m2) had a temperature of about 550◦C.
The small fires around covered an area of 1 m2 and had a temperature of 300◦C. The
bright stripes were caused by the blooming effect which is related to the saturation of
the detector element (Skrbek, 1999). The colors do not correspond to a radiometric
quantity. They are used to emphasize the hot areas. The quality of the calibrated data
does not yet allow any algorithm validation, although the images prove the scientific
applicability of upcoming Bird data. In Table 2.2 the main technical parameters of
Bird’s sensors are summarized assuming a payload at a planned altitude1 of 450 km.
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MIR TIR

Figure 2.2: Mir and Tir images from the airborne experiment in Oberpfaffenhofen
on the 10/22/1998, crossing time: 3:30 pm (local time), altitude: 1200 m

Waoss-b Ir-sensors

Spectral bands 600− 700 nm 3.4− 4.2 µm

840− 890 nm 8.5− 9.3 µm

Focal length 21.65 mm 46.39 mm

F-number 2.8 2.0

FOV 50◦ 19◦

Pixel size 7× 7 µm2 30× 30 µm2

Number of pixels per line 2884 2× 512 staggered

Ground pixel size 145 m 290 m

Swath width 418 km 148 km

Quantization 11bit 16bit

Data rate (average/peak) 597/600 kbps 693/4790 kbps

Power consumption 18 W 42 W incl. electr. unit

Mass 8.4 kg 7.3 kg camera head

6.5 kg electronic unit

Table 2.2: Technical parameters of the Bird instruments assuming a payload at
450 km altitude1

1Only since 04/07/00 the final parameters are known, altitude: 572 km, sun-synchronous orbit,
local equatorial crossing time: 10:30 am
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Spectral Response Functions of the BIRD Sensors

Each sensor is characterized by its response functions fr,i(λ) for each of its channels
i where λ is the wavelength. The spectral characteristic of the Bird channels are
plotted in Figure 2.3. The channel-integrated value Qi(·) of any spectral function
Q(λ, ·), e.g. atmospheric radiances, atmospheric transmission, is defined as:

Qi(·) =

∫

λi

fr,i(λ
′)Q(λ′, ·)dλ′

∫

λi

fr,i(λ
′)dλ′

(2.1)

Since the upper limit of the Mir channel is very close to the strong 4.3 µm CO2

absorption band, the channel integrated quantities, essentially the band integrated
Mir transmission, might be rather sensitive to the details of the filter shape beyond
the nominal limit of 4.2 µm. In this work the Mir channel limits have been set at the
nominal values to avoid extra unnecessary complications at this stage ofBird algorithm
developments. Once the actual Mir channel filter function is precisely known, some
additional test might be necessary to assess the impact of residual marginal atmospheric
effects.



2.2. Technical Data Overview 9

Figure 2.3: Response functions of the Bird sensors
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Chapter 3

Atmospheric Radiative Transfer

The main problem in surface temperature retrieval from space is the modification of
the surface radiation on its way through the atmosphere and the contribution of the
atmosphere itself to the final signal measured by the sensor. This modification strongly
depends on the content of atmospheric constituents as water vapor, ozone, Uniformly
mixed gases (Unif: CO2,CO,CH4,N2O,O2) as well as on the temperature profile and
aerosol amount.

Figure 3.1 displays the absorption properties of several atmospheric gases for an
Us standard atmosphere (Berk et al., 1989) including rural aerosol and a cirrus cloud
of a geometrical thickness of 0.9 km in an altitude of 10 km. The water vapor content
W of this atmosphere is 2.2 g/cm2.

Figure 3.1: Transmission τ of atmospheric gases for an Us standard atmosphere
(W = 2.2 g/cm2), rural aerosol, cirrus cloud of a geometrical thickness
of 0.9 km in an altitude of 10 km, orange bars = Bird channels
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The Mir range is divided by the Unif absorption mainly induced by N2O and CO2.
The ozone absorption splits the thermal infrared region into two parts such that one
is more transparent than the other (see shape of ozone and total transmission in Fig-
ure 3.1). In both Ir ranges water vapor is the primary absorber and therefore sub-
stantially responsible for the shape of the total transmission. The plotted water vapor
absorption considers the absorbing properties of water vapor caused by the continuum
(H2OC) as well as the molecular (H2OM).
The total transmission is calculated according to Modtran as follows. The given
transmission values are for the wavelength λ equal to ≈ 11 µm.

τtotal = τH2OM ∗ τH2OC
︸ ︷︷ ︸

τH2O

∗τO3 ∗ τunif ∗ τtrace ∗ τaerosol ∗ τcirrus

τ 11 µm
total ≈ 0.94 ∗ 0.77 ∗ 0.99 ∗ 0.99 ∗ 0.99 ∗ 0.98 ∗ 0.89 ≈ 0.61

with
τunif = τCO2 ∗ τCO ∗ τCH4 ∗ τN2O ∗ τO2
τtrace = τNH3 ∗ τNO ∗ τNO2 ∗ τSO2 ∗ τHNO3

As seen from Figure 3.1 three spectral bands, the so-called atmospheric windows, allow
remote sensing of surface properties like the surface temperature and emissivity. Due
to the primary Bird mission’s objective and some technological constrains the orange
marked channels were chosen for Bird. Hence, a normally used split window technique
for temperature retrieval utilizing two channels between 10 µm and 12 µm cannot be
applied here (see Chapter 1).

The spherical coordinate system defining the sun and observer position and
their corresponding angles is illustrated in the following figure (Fig. 3.2) (Villeneuve,
1996; Lippert et al., 1996).

Figure 3.2: Spherical coordinate system defining position of observer relative to the
principal plane and indicating the solar hot-spot direction and the back-
ward and forward scattering regions
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φ = φv − φs is the azimuth angle relative to the solar azimuth, with φv as the view
azimuth and φs as the solar azimuth. Because Bird will only measure at nadir (θv = 0)
in the Mir and Tir the relative azimuth φ is not relevant. The view angle effects on
the edge of remote sensing images as well as slope effects were not subject of these
investigations.

The top-of-atmosphere (Toa) radiance (at-sensor radiance) consists of several radia-
tive components. A simplified model of that complex radiative transfer process
is illustrated in Figures 3.3. “Black” denotes the radiative contributions within Tir
during day- and nighttime and within Mir during nighttime only. “Orange” indicates
additional solar radiative contribution during daytime within the Mir.
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Figure 3.3: Simplified (Multiple scattering and diffuse contributions are not com-
pletely displayed.) description of the atmospheric radiative transfer
within the infrared (L=radiance, TS=temperature of the Earth’s surface)
(Note, that each radiation part is pixel related.)

In the Tir the channel-integrated radiance at the top-of-atmosphere Lsensor, the signal
measured by the Bird sensors, consists of the radiance emitted from the ground surface
and attenuated by the atmosphere L1(TS), the upwelling pathradiance emitted by the
atmospheric constituents Lthermal

2 , and the downwelling atmospheric radiation reflected
by the surface Lthermal

3 . In the Mir the signal is additionally contaminated by the
surface reflected solar radiance Lsolar

3 and by the solar atmospheric pathradiance Lsolar
2 .
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Thus, the final signal Ltoa
i for a Lambertian surface can be expressed by the sum of the

following channel-integrated (see Section 2.2) radiative transfer terms:2

Ltoa
i

︸︷︷︸

Lsensor

= εiBi(TS)τi
︸ ︷︷ ︸

L1(TS)

+ Latm↑
i
︸ ︷︷ ︸

Lsolar
2

+Lthermal
2

+(1− εi)L
atm↓
i τi

︸ ︷︷ ︸

Lthermal
3

+Lsdif

+(1− εi)τ
sun
i

Esun
i

π
cos θS τi

︸ ︷︷ ︸

Lsolar
3

(3.1)

with
index i indicates channel-integrated values for Bird’s Mir (i = 1) and

Tir (i = 2) channels
εi emissivity
τi atmospheric transmittance (nadir direction θv = 0◦)
τ suni transmittance in solar incidence direction θs
Bi(TS) blackbody radiance of the surface temperature TS
Ltoa
i = Bi(Ti) at-sensor radiance for the brightness temperature Ti according to

the Planck function Bi integrated over channel i (see explanation
on the next page)

Latm↓
i hemispheric average downwelling atmospheric radiance3

(solar diffuse and thermal)

Latm↑
i directional upwelling atmospheric solar and thermal radiance

Esun
i extraterrestrial solar irradiance already corrected for the variation

of the Earth-Sun distance

The solar contribution is negligible in the Tir channel. Considering a Lambertian
surface the directional hemispheric reflectivity %hi can be replaced by (1 − εi). Since
the bidirectional reflectivity %bi becomes equal to %hi/π for Lambertian surfaces, %bi is
given by (1−εi)/π. A more detailed mathematical description of the radiative transfer
quantities is to be found in (Lenoble, 1993; Lion, 1980; Feigelson, 1984).

By reason of the discussed subject in this document - temperature retrieval - the
definition of the spectral emissivity and the spectral Planck function shall briefly
be recalled.
The spectral emissivity ελ is defined as the ratio of the spectral radiance Lλ(T ) emitted
by any body at the temperature T and the spectral radiance Bλ(T ) emitted by a
blackbody at the same temperature T :

ελ =
Lλ(T )

Bλ(T )
(3.2)

2Here, the notations L1(TS), L
thermal
2 , Lthermal

3 , Lsolar
2 , Lsolar

3 used in Fig. 3.3 are assigned to their
mathematical expressions. Their numbering must not be mixed up with the index i = 1, 2 which
indicates the infrared Bird channels. The solar diffuse radiance Lsdif is not included in Fig. 3.3.

3reflected hemispheric average downwelling atmospheric radiance (1− εi)L
atm↓
i :

∫

Ω

%biL
atm↓

′

i (Ω) cos θdΩ = %bi
∫

Ω

L
atm↓

′

i (Ω) cos θdΩ = (1− εi)
1

π

∫

Ω

L
atm↓

′

i (Ω) cos θdΩ

︸ ︷︷ ︸

L
atm↓

i
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The Planck’s function Bλ(T ) describes the spectral radiance at wavelength λ of a black-
body at temperature T assuming a thermodynamic equilibrium. Bλ(T ) is defined as
the radiant energy emitted from a blackbody unit surface in a unit solid angle within
a unit of wavelength width and time unit (Lenoble, 1993).

Bλ(T ) =
c1λ

−5

exp
(
c2
λT

)
− 1

Bν(T ) =
c′1ν

3

exp
(
c′
2
ν

T

)

− 1

λ [µm] ν [cm−1]

Bλ [Wm−2sr−1µm−1] Bν [Wm−2sr−1(cm−1)−1]
c1 = 2hc2 = 1.1911 · 108 Wm−2sr−1µm4 c′1 = 1.1911 · 10−8 Wm−2sr−1(cm−1)−4

c2 =
hc
k

= 1.439 · 104 Kµm c′2 = 1.439 K(cm−1)−1

Several definitions of surface temperature exist in relation to radiometry, e.g. see
(Becker & Li, 1995; Norman & Becker, 1995). Here, it shall be restricted to the
introduction of the radiometric temperature TSR. According to Equation 3.1, the
channel-integrated at-ground radiance Lgrd

i is given by (Ltoa
i − Latm↑

i ) divided by the
atmospheric transmission τi.

Ltoa
i − Latm↑

i

τi
︸ ︷︷ ︸

Lgrd
i

= εiBi(TS) + (1− εi)

(

Latm↓
i + τ suni

Esun
i

π
cos θS

)

(3.3)

Equivalent thereto, the spectral at-ground radiance Lgrd
λ measured by a radiometer

or sensor in the thermal infrared can be described by the spectral radiance LB
λ =

ελBλ(TS) emitted by a surface and the reflected downwelling atmospheric spectral
radiance (1− ελ)L

atm↓
λ .

Lgrd
λ = LB

λ + (1− ελ)

(

Latm↓
λ + τ sunλ

Esun
λ

π
cos θS

)

(3.4)

where

LB
λ = ελBλ(TSR) (3.5)

From the last equation, the radiometric temperature TSR is the temperature of a black-
body with the radiance LB

λ /ελ and can be expressed by

TSR = B−1

[
LB
λ

ελ

]

=
c2

λ ln

(

c1ελ
λ5LB

λ

+ 1

)

= B−1







Lgrd
λ − (1− ελ)

(

Latm↓
λ + τ sunλ

Esun
λ
π cos θS

)

ελ







(3.6)
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TSR is further named as surface temperature. This consideration can be adapted to any
introduced radiance, e.g. the Toa radiance. Its radiometric temperature is actually
the so-called brightness temperature.
For the development of the temperature retrieval algorithm presented throughout this
document look-up tables for each Bird channel containing numerically integrated
blackbody radiances and their corresponding radiometric or so-called brightness tem-
perature were established.

In the following figure (Fig. 3.4) the different orders of magnitude of spectral blackbody
radiances (emitted) and reflected radiances for grass, clouds and sun glitter effect over
a water surface are displayed. Only the direct solar radiative contribution and the
emitted surface radiance were considered in the plot. The utilized parameters are:

parameter grass cloud sun glitter

% �
1

0.02 0.8 0.02

% �
2

0.03 0.8 0.02

ε � , i = 1, 2 (1.− %hi)

T � [K] 300 220 300

Figure 3.4: Spectral blackbody radiance for several temperatures compared to typical
reflectance spectra of natural surfaces (The black bars denote the Bird
channels.)

The Mir range is characterized by the same order of magnitude of the reflected solar
radiance and the emitted thermal radiance of a blackbody. The mid infrared spectral
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region is suited for the detection of high-temperature-events (T & 500 K) because their
emission is several orders of magnitude higher than the solar reflection and the Earth’s
emission. Therefore, Htes and their backgrounds (surrounding areas of Hte), except
sun glitter and high albedo surfaces, are well contrasted in remote sensing images.
The maximum of the blackbody emission for the mean Earth’s surface temperature of
300 K corresponds to the atmospheric window between 8 µm and 12 µm which makes
this window appropriate for the monitoring of natural surfaces.

3.1 Sensitivity Analysis

Since Bird will not provide common temperature retrieval channels a sensitivity anal-
ysis of the atmospheric influence on the sensor signal was called for before starting the
algorithm development. The impact of the estimation error for atmospheric parame-
ters on the surface temperature to be retrieved from the top-of-atmosphere radiance
was the main point of interest.

Impact of the Estimation Error for Atmospheric Parameters
on the Surface Temperature

Within the spectral region of Bird atmospheric parameters like humidity, atmospheric
temperature profile and aerosols mainly influence the radiative transfer (Fig. 3.1). The
effect on their uncertainties was studied independent of each other while the surface
temperature was varied.
Bird’s relevant synthetic Toa radiances are based on four standard atmospheric pro-
files (Tab. 3.1) included inModtran3.5 (Berk et al., 1989), (Abreu et al., 1995). The
following nomenclature is used throughout this document:

standard atmosphere atmospheric parameter

name abbreviation temperature profile water vapor content

tropical Trop T trop W trop

mid latitude summer Mls Tmls Wmls

mid latitude winter Mlw Tmlw Wmlw

US standard Us-st T us W us

Table 3.1: Nomenclature for standard atmospheres used in the sensitivity analysis

The amount of atmospheric parameters for each standard atmosphere is summarized
in Table 3.2. All sensitivity experiments were performed for nadir observations and
a blackbody (ε = 1) therefore the reflected radiation parts (Lthermal

3 + Lsdif , Lsolar
3 )

are not to be considered for that case (see Eq. 3.1). The sun azimuth is assumed as
zero. The dependence of the sun zenith angle was investigated for several sun zenith
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angles θs = 0◦, 15◦, 30◦, 45◦, 60◦. The variation of the solar radiative contribution to
the at-sensor signal due to different sun angles is negligible in relation to the emitted
radiance of a blackbody within the considered Ir-channels (Lippert, 2000). Thus, all
results of the sensitivity study are discussed for a sun zenith angle of 30◦. Note, that
the assumptions made here are only valid for the sensitivity analysis.

ATM TROP MLS MLW US-ST

W
�����
� � � [g/cm2] 4.1 2.9 0.8 1.4

T � = T
�����
� 	 
��� [K] 299.7 294.2 272.2 288.2

clear: 0.16

aerosol (A [MU ]) rural: 0.32

urban: 1.17

clear+vc: 0.25

aerosol+vc (AV [MU ]) rural+vc: 0.41

urban+vc: 1.26

Table 3.2: Amount of atmospheric parameters for standard atmospheres. MU is the
Modtran unit for aerosol amount A, AV (plus volcanic aerosols) which
corresponds to the total vertical aerosol optical depth at 550 nm (nadir
view) (Shettle, 2000). (vc - volcanic aerosols)

The influence of uncertainties for each considered parameter was analyzed by com-
paring the retrieved temperature using a perturbed (further referred to “pert”) at-
mosphere with the reference (further referred to “ref”) temperature. Modtran was
used for the calculation of the atmospheric parameters. Figure 3.5 gives an overview
on the simulation procedure which leads to the temperature estimation error ∆TS
due to assumed uncertainties in the determination of certain atmospheric parameters,
e.g. WATM . The simulation procedure starts with the calculation of the at-sensor
signal using the surface and atmospheric parameters of the reference model. That
means, the standard values for the water vapor content W ATM

ref and the aerosol amount
Aref , AVref as well as the standard temperature profile TATM

ref were used as input pa-

rameters while the surface temperature T ref
S was varied (see below). The subsequent

atmospheric correction (solving the radiative transfer equation for the surface temper-
ature T pert

S ) is performed with the corresponding parameters of the perturbed model,
WATM

pert , TATM
pert , Apert or AVpert. Note, that one of these parameters varies only for de-

termining its influence on the retrieved surface temperature. Finally, the temperature
estimation error ∆TS = T pert

S −T ref
S due to assumed uncertainties in the determination

of certain atmospheric parameters, e.g. ∆W , can be evaluated. A summary of used
reference and perturbed models is given in Table 3.3. Atmospheric and surface pa-
rameters are not explicitly mentioned here, as atmospheric pressure and gases profiles,
remained fixed according to the standard atmosphere used in Modtran.
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Table 3.3: Summary of reference and perturbed models for the sensitivity analysis,
vc - volcanic aerosols, (WATM and TATM

S are the actual used values in
the simulation for the water vapor content and the surface temperature,
respectively. ATM is the index for trop, mls, mlw, us)
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T
� � �

� , L
� � ���
� � � � , τ � � � � ,W

�����
� � � , . . . → L

� 	 � � �����
� = B � (T

� � �
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� � �

�

Figure 3.5: Flow chart for the sensitivity analysis procedure; Ltoa,ATM
i : top-of-

atmosphere radiance for the standard atmosphere ATM

The variation of the surface temperature, TATM
S , was done in connection with the

atmospheric boundary temperature TATM
bound , which is the temperature in the lowest

atmospheric layer calculated byModtran. The parametersW ATM
ref , TATM

ref , Aref , AVref
are set to the standard values according to the considered atmosphere ATM . The used
surface temperature was established by adding to the boundary temperature a certain
amount ∆TATM

bound from −10 K up to +20 K in steps of 5 K depending on the standard
atmospheric profile, TATM

S = TATM
bound +∆TATM

bound (see Table 3.3).

For the humidity analysis the entire water vapor profile (W ATM -profile) was changed
up to ± 75 % in steps of ± 25 % (Table 3.3). For keeping the shape of the standard
water vapor profile, a certain amount of water vapor, e.g. 50 % of the standard value,
was added to the actual amount within each atmospheric layer. Figures 3.6 and 3.7
show the surface temperature retrieval error ∆TS due to assumed uncertainties in the
humidity determination ∆W depending on the surface temperature value itself. These
figures emphasize that both Bird channels are highly sensitive to the water vapor
estimation error ∆W , although the impact is stronger in the Tir compared to theMir
channel, as easily understood from Figure 3.1. For dry atmospheres (Mlw, Us-st)
the uncertainties in humidity are almost negligible. On the other hand and in general,
for humid atmospheres (Trop, Mls) a positive error in measurement of the water
vapor content (∆W > 0) induces a strong overestimation of the surface temperature
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(∆TS > 0). That might be different in cases as inversion periods during nighttime and
if a balance between atmospheric absorption and emission exists. The relation between
the water vapor and the surface temperature errors gets more asymmetric with a raising
surface temperature itself, which means that a positive uncertainty in humidity (∆W >
0) has a stronger effect on the temperature error as a negative humidity estimation
error (∆W < 0) of the same absolute value. Several parameterization schemes for
the exponential relation between water vapor content and surface temperature can
be found in the literature e.g. (Gaffen et al., 1992). As an example, a water vapor
estimation error of 25 % in the Tir, follows a temperature retrieval error up to 4 K
for a tropical standard atmosphere (∆W = 0.25 × W trop

ref ), whereas an error of −25 %
brings up around −3 K. In contrast thereto, an uncertainty in humidity of 25 % within
the Mir causes a temperature error smaller than 1 K. Typical precision of humidity
measurements by radiosondes lie between ± 2 and 5 % (Elliott & Gaffen, 1991).

The study of the influence of a perturbed atmospheric temperature profile was
done in the same way as described for the humidity (Table 3.3). A shift of the en-
tire atmospheric temperature profile from −3 K to 10 K adjusted to the concerning
standard atmospheres was applied. The impact of uncertainties of the temperature
profile is smaller than observed for humidity deviations. As seen in Figures 3.8 and 3.9
the effect of the temperature profile estimation error has only to be considered in the
Tir for humid atmospheres. As for the humidity an asymmetric behavior for positive
and negative variations is displayed. This can be explained by the physical relation
between ∆TS and ∆TATM (∆T -profile). Considering the total differential of Equa-
tion 3.1 for the discussed conditions (atmospheric parameters except for T-profile are
kept constant, blackbody, etc.) and its setting to zero leads to the following expression:

∆TS = −1− τi
τi

∆TATM (3.7)

A high water vapor content evokes a low transmittance. Therefore and according to
Equation 3.7 a strong variation of the temperature profile induces an even stronger
underestimation of the surface temperature (∆TS < 0). Equation 3.7 also verifies the
results shown in Figure 3.6 and 3.7: In general, the more water vapor the atmosphere
contains the higher the absolute value of the temperature retrieval error will be. The
conclusions of the temperature profile analysis are in accordance with the outcome of
the humidity studies.

Within the aerosol sensitivity investigation it is distinguished between three stan-
dard aerosol types, clear, rural and urban. Since one of the Bird mission objectives
are volcanic studies (Chapter 2) volcanic aerosol was additionally considered. Note,
that the amount of each aerosol type, as found in Table 3.2, is the same for all in-
cluded atmospheres. The aerosol amount in a certain atmosphere is connected with
the humidity of that atmosphere since water vapor is involved within the genesis of
aerosol. In case that the aerosol amount is the same for the considered standard atmo-
spheres (Mls, Mlw, Us, Trop), the differences in the aerosol sensitivity between the
atmospheres (see Figures 3.10 and 3.11) are ascribed to the humidity and temperature
profiles differences of the atmospheres and thus to different absorption properties of the
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standard atmospheres (Mls, Mlw, Us, Trop). Figures 3.10 and 3.11 show that the
Mir channel is more sensitive than the Tir for dry atmospheres due to the wavelength
dependence of the aerosol scattering. If one assumes urban instead of rural aerosols
the surface temperature will be overestimated by up to 2 K in theMir and by around
1 K in the Tir. Both channels are almost insensitive to aerosol perturbations if T ATM

bound

is equal to TS. It has to be pointed out that the curves ∆TS = f(∆A) for the different
surface temperatures do no exactly merge at [0, 0]. This effect is caused by the mul-
tiple scattering of the ground radiance. Modtran calculates the total atmospheric
pathradiance as a sum of the upwelling atmospheric radiance and the scattered ground
radiance.
Finally, the inclusion of volcanic aerosol amplifies the described sensitivity behav-
ior of aerosol (Fig 3.12 and 3.13). Here, the reference model considers rural but not
volcanic aerosols. Thus, ∆TS is different from zero if ∆AV is equal to zero.

The presented results of the sensitivity analysis emphasize the relation of the atmo-
spheric and surface contribution to the top-of-atmosphere radiance. For humid atmo-
spheres the predominant part comes from the low and mid troposphere, so that the
retrieval of the surface temperature will be less accurate. Most reliable surface temper-
atures can be determined for high surface temperatures and less extinctive atmospheres
because of the enhanced contribution of the surface radiation to the final signal.
The results of this section are recalled again in Chapter 6.
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Figure 3.6: Ground temperature error as a function of water vapor for different stan-
dard atmospheres, Tir; T bound within the figure corresponds to TATM

bound

within the text.
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Figure 3.7: Ground temperature error as a function of water vapor for different stan-
dard atmospheres, Mir; T bound within the figure corresponds to TATM

bound

within the text.
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Figure 3.8: Ground temperature error as a function of temperature profile for differ-
ent standard atmospheres, Tir; T bound within the figure corresponds to
TATM
bound within the text.
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Figure 3.9: Ground temperature error as a function of temperature profile for differ-
ent standard atmospheres, Mir; T bound within the figure corresponds to
TATM
bound within the text.
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Figure 3.10: Ground temperature error as a function of aerosols for different standard
atmospheres, Tir; T bound within the figure corresponds to TATM

bound within
the text.
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Figure 3.11: Ground temperature error as a function of aerosols for different standard
atmospheres, Mir; T bound within the figure corresponds to TATM

bound within
the text.
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Figure 3.12: Ground temperature error as a function of aerosol plus volcanic aerosol
for different standard atmospheres, Tir; T bound within the figure corre-
sponds to TATM

bound within the text.



30 Chapter 3. Atmospheric Radiative Transfer

Figure 3.13: Ground temperature error as a function of aerosol plus volcanic aerosols
for different standard atmospheres, Mir; T bound within the figure corre-
sponds to TATM

bound within the text.



Chapter 4

“Regression” - Approach

Although Bird will not have any channel within the atmospheric window from 10 µm
to 12 µm it seemed to be appropriate to investigate a bi-spectral method utilizing the
Mir and Tir channel of Bird. Both channels correspond to the atmospheric windows
around 3.7 µm and 9 µm, respectively (Fig. 3.1).
Bird mission objectives are focused on land surfaces. The composition of land sur-
faces is expressed in the parameter emissivity. Thus, an emissivity correction has to be
employed additionally to the bi-spectral method. Modtran (Berk et al., 1989) was
used for the simulation of the atmospheric radiative transfer.
In the following the established “Regression” - Approach for day- and nighttime condi-
tions is described and the results in terms of temperature retrieval errors are discussed.

4.1 Simulated BIRD Data Set

Since the goal is to estimate the surface temperature within a reasonable accuracy,
while considering the Bird mission objectives and the channel configuration, without
knowing certain atmospheric parameters in detail, a widely atmosphere-independent
algorithm is necessary. A large number of coupled atmospheric and surface models is
necessary for establishing a statistical method like a bi-spectral regression. For these
purpose an extensive synthetic data set was generated using the radiative transfer
model Modtran3.5 .
At this stage of Bird algorithm development the investigations on the approach were
concentrated on mid latitudinal atmospheres. Data sets for tropical/summer and sub-
arctic/winter conditions are partly generated and further explorations on them will be
the subject of future work.

Simulations for the mid latitude data set are based on three types of standard at-
mospheres, mid latitude summer and winter as well as Us-standard atmospheres. The
used atmospheric temperature profiles correspond to the standard atmospheres called
above, respectively (Table 4.1). Atmospheric water vapor is the main absorber in
the infrared spectral range (see Fig. 3.1). 90 % of the entire atmospheric water vapor
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is accumulated in the lower troposphere. Several atmospheric water vapor contents
(Table 4.1) were achieved by varying the the amount of water vapor in the first six
layers (0− 6 km) of a Modtran standard atmosphere only.

temperature profile water vapor content [g/cm2] number

mid latitude summer 1.65 - 4.79, ∆ = 0.130

US-standard 0.77 - 2.71, ∆ = 0.114 N � = 50

mid latitude winter 0.47 - 1.23, ∆ = 0.084

Table 4.1: Used temperature profiles and water vapor content according to the three
standard atmospheres. NW indicates the number of considered atmo-
spheric models according to changed water vapor content. ∆ is the step
width.

For each of these then obtained different atmospheric states, urban, rural, and tro-
pospheric boundary layer types of aerosols for several visibilities are considered
(Table 4.2 and Fig. 4.1).

BL-aerosol type visibility number

rural 15− 35 km, ∆ = 5 km

urban 5− 25 km, ∆ = 5 km N � = 11

tropospheric 50 km

Table 4.2: Included boundary layer aerosol types. NA indicates the number of con-
sidered atmospheric models according to aerosols. ∆ is the step width.

According to the Birdmission objectives containing the detection ofHte, e.g. volcanic
activities, volcanic aerosols as well as the possible existence of cirrus clouds are
included (Table 4.3). Due to the consideration of cloud free conditions with or without
volcanic aerosols the number of atmospheric models according to volcanic aerosols is
NV A = 2.

altitude of cirrus geometric thickness of cirrus number

6 km 0.2, 0.5, 0.9 km

10 km N � = 6

Table 4.3: Considered cirrus models. NC indicates the number of considered atmo-
spheric models according to cirrus clouds.
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Figure 4.1: Aerosol amount and visibility. Aerosol amount corresponds to the total
vertical aerosol optical depth at 550 nm (nadir view) (Shettle, 2000)

The daytime data set is generated as a function of the solar zenith angle. The
results presented throughout this chapter are related to a sun zenith angle of 30◦. This
condition is given during the summer months at mid latitudinal regions when remote
sensing measurements are most likely performed.

The signal at the Toa is determined by the atmospheric conditions and the ground
radiance which is a coupled information of the surface temperature and the emissivity.
For the method investigations the ground altitude is assumed to be the sea level.
The surface temperature varies within a range from 268 to 313 K in steps of 1 K
adapted to the standard atmospheres (NT = 46).
The emissivity of land surfacesmay vary between 0.85 and 0.99 due to soil structure,
soil composition, organic matter, moisture content, vegetation cover characteristics,
and season as well as wavelength (de Griend & Owe, 1993; Ottlé & Stoll, 1993; Salisbury
& D’Aria, 1992a; Salisbury & D’Aria, 1992b; Sutherland & Bartholic, 1977). According
to Bird’s mission objectives five emissivity classes (Nε = 5), blackbody (reference
surface), water/vegetation, bare soil, forest, and urban areas (concrete, asphalt) have
been investigated (Fig. 4.4). Therefore, not the entire emissivity variability and all
possible combinations of theMir and Tir emissivities have been explored. The surface
type vegetation covers a large range of emissivity values from 0.93 to 0.98. Areas
covered with grass or grain fields are generally chosen for remote sensing validation
experiments. These both surface types show high emissivity as well as lake water and
were put together into one emissivity class called water/vegetation. The surface type
arid (desert) bare soil is not included according to Bird’s mission objectives.
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surface ε1 ε2
blackbody 1.00 1.00
wat-veg 0.98 0.98
urban 0.94 0.96

bare soil 0.93 0.95
forest 0.84 0.85

Table 4.4: Included surface types (wat-veg: water or
vegetation) and its spectral emissivity. ε1
and ε2 indicates the Mir and Tir chan-
nel, respectively (Salisbury & D’Aria,
1992a; Salisbury & D’Aria, 1992b; Berk
et al., 1989).

Taking all combinations of called atmospheric (NW ×NA × (NC +NV A)) and surface
states (NT × Nε) into account the entire mid latitude data set consists of 1.012.000
coupled atmospheric and surface models. The high number of models is an essential
condition for the application of a statistical method in terms of a bi-spectral regression
for the temperature retrieval.

4.2 Method

Published results have been shown (Coll et al., 1994) that applying the same method
used on water surfaces followed by an additional correction to account for the emissivity
is an appropriate way for an atmospheric correction of land surface thermal images. A
similar emissivity correction was first presented in a master thesis by (Lippert, 1995).
The “Regression” - Approach is explained on the case of nighttime conditions. The
results are discussed for simulated day- and nighttime data.

4.2.1 Bi-spectral Linear Regression

At-sensor radiances for Bird’s Mir and Tir channels were simulated for the entire
data set described in the section before according to the following radiative transfer
equation. All occurred quantities are channel-integrated. In their calculation the re-
sponse functions of the Ir sensors were considered (Chapter 2). Due to a Lambertian
surface is assumed, the directional hemispheric %hi and bidirectional reflectivity %bi can
directly be related to (1− εi). Bird will measure in nadir direction thus the view and
azimuth angles are equal to zero.

Ltoa
i = Bi(Ti) = εiBi(TS)τ̃i + Latm↑

i + (1− εi)L
atm↓
i τi + (1− εi)τ

sun
i

Esun
i

π
cos θsτi

︸ ︷︷ ︸

MODTRAN

(4.1)

with i index that indicates integrated values for the channels
i = 1, 2 (Mir, Tir)

Ltoa
i Toa radiance

Bi(Ti) blackbody radiance of the brightness temperature Ti
corresponding to the Toa radiance Ltoa

i
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Bi(TS) blackbody radiance of the surface temperature TS
εi surface emissivity
τ̃i effective transmittance (see below)
τi atmospheric transmittance

Latm↑
i upwelling atmospheric radiance (solar diffuse and thermal)

Latm↓
i downwelling atmospheric radiance (solar diffuse and thermal)

Esun
i extraterrestrial solar irradiance already corrected

for the Earth-Sun distance
θs solar zenith angle
τ suni transmittance in solar incidence direction

Note, that the solar reflected and diffuse radiances are negligible within the Tir channel
and the definition of Latm↓

i is given in Chapter 3.

The so-called effective atmospheric transmittance τ̃i was derived from

LB,i(TS) ≈ εiBi(TS)τi (4.2)

assuming that the land surface emittance is almost constant across the band width
of each channel. The transposition of the latter equation to the transmission τi and
the setting of the surface temperature TS to 300 K which is called “Modtran-Run-
Temperature” (MRT ) lead to the effective transmittance τ̃i.

τ̃i =
LB,i(TS = MRT )

εiBi(TS =MRT )
(4.3)

It has been shown that the error for a temperature range from ∼ 260 K to ∼ 320 K ap-
plying the effective transmittance lies in a 0.01 % - range (Lippert, 1995). It turned out
that the used effective transmittance has the same properties as the real atmospheric
transmission function (independent on surface properties) but is more practical for
time consuming model calculations.
In order to consider uncertainties of the radiative transfer simulations using Mod-
tran random noise is included in the simulated at-sensor radiance. An appropriate
noise according to a Gaussian function of 1 % of the Toa radiance was chosen.

The measured Toa radiance Ltoa
i can be related to a radiometric temperature Ti ac-

cording to the Planck function (Chapter 3, Eq. (3.6)). Utilizing these two brightness
temperatures Ti a linear regression approach is likely to apply for the estimation of
surface temperatures T ∗∗

S assuming the land surface emissivity were unity and constant
within both channels.

methodA : T ∗∗
S = a0 + a1T1 + a2T2 (4.4)

Since the water vapor is a main absorber in the infrared the inclusion of its information
could lead to a decrease of the retrieval errors.

methodB : T ∗∗
S = a0 + a1T1 + a2T2 + a3W (4.5)

The parameter W describes the total atmospheric water vapor amount in g/cm2. The
parameters a0, a1, a2, a3 are the regression coefficients.
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Assuming that the user of the described regression algorithm has some information
on the humidity of the atmosphere and the surface temperature range the entire data
set was split up into four subsets according to these quantities, where each of them
has Nj, j=1..4 different surface and atmospheric states (Table 4.5 and 4.6). The range
of the quantities was adapted to common meteorological conditions in mid latitude
regions. The AP-index (A Priori information index) indicates the type of the a priori
information and is employed for the identification of the used subsets. If the AP-index
is set to non all atmospheric and surface models of the entire mid latitude data set
were considered in the simulation (no division into subsets).

subset j

1 2 3 4

cold warm

dry wet dry wet

Table 4.5: Characterization of the subset number j

AP-index atmospheric a priori information W [g/cm2]

AD dry 0.47 - 2.71

AW wet 1.61 -4.79

AP-index surface a priori information T � [K]

SC cold 268 - 293

SW warm 283 - 313

Table 4.6: Subset intervals according to the water vapor amount W and surface tem-
perature TS

As can be seen from error tables, e.g. Table 4.7, the a priori knowledge and an overlap
in the transitional ranges of the meteorological quantities decrease the temperature
retrieval errors.
The results of applying both regression methods to the blackbody data set consisting
of 202.400 coupled atmospheric and surface models using nighttime simulated data
as an example are summarized in Table 4.7. For comparing reasons the results of
methodB using daytime simulated data are additionally included in this table. The
used simulated Bird data set covers a large variety of naturally occurring atmospheric
and surface conditions featuring a very dense step width of the parameters which have
been varied. A monotonic and steady dependence of the temperature retrieval error
on the parameters investigated has been observed. Therefore, the creation of an inde-
pendent atmospheric data set for the estimation of the retrieval error is not expected
to change the results significantly and has thus not been done.
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Throughout this chapter, the root mean square (rms) ∆1.0
j T ∗∗

S and the maximum
∆1.0

j T ∗∗
S max

temperature retrieval errors are defined as

∆1.0
j T ∗∗

S =

√
√
√
√
√

Nj∑

k=1

(T ∗∗
Sk
− TSk)

2

Nj

(4.6)

∆1.0
j T ∗∗

S max
= max[|(T ∗∗

S − TS)|] (4.7)

The index 1.0 denotes that the retrieval errors were achieved using the regression
coefficients for a blackbody data set (εi = 1.0). Nj indicates the number of considered
coupled atmospheric and surface models.

AP-Index N� ∆1 � 0� T � �� [K]

nighttime daytime

methodA methodB

SC-AD 55978 1.69 1.33 1.54

SC-AW 57382 1.55 1.50 1.85

SW-AD 66743 1.15 0.67 0.85

SW-AW 68417 1.25 0.83 0.98

non 202400 1.78 1.38 1.59

Table 4.7: Mean (rms) temperature retrieval errors ∆1.0
j T ∗∗

S [K] for a blackbody data
set (εi = 1.0) applying methodA or methodB using night- or daytime sim-
ulated data

The mean (rms) temperature retrieval errors applying methodA or methodB using
nighttime simulated data are similar. But in general, it can be seen that the inclu-
sion of the atmospheric water vapor amount as a third source of information in the
regression decreases the temperature retrieval errors. Thus, further investigations on
the regression approach were focused on methodB. In the following the method type
corresponding to methodB is not explicitly mentioned.
The used regression coefficient for a blackbody data set applying methodB are to be
found in Appendix A (Tables A.1 and A.2).
The temperature retrieval distribution for the blackbody data set related to the sur-
face temperature is displayed in Figure 4.2 applying methodB and utilizing nighttime
simulated data. The figure for daytime simulated data is given in Appendix A. The
largest temperature retrieval errors are in the cold surface temperature range. The
reason is the difficulty to distinguish between the contributions of the atmosphere and
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Figure 4.2: Temperature retrieval errors (T ∗
S − TS) versus true surface temperatures

(TS) utilizing the blackbody data set and simulated nighttime data with
|∆jTS| = ±∆1.0

j TS (methodB). Note, that T ∗∗
S = T ∗

S for the blackbody
data set since no emissivity correction is needed.

the surface since their temperatures are similar. The information on surface tempera-
tures included in the emitted ground radiance on its way through the atmosphere to the
satellite sensor is almost completely covered by the atmospheric radiative contribution.
Therefore, the quality of a correlation between the at-sensor brightness temperatures
and the original surface temperature found by a regression method is less than for
higher surface temperatures.

4.2.2 Emissivity Correction

In the last subsection the results of the bi-spectral regression method applied on the
blackbody data set were presented. Land surfaces cannot be regarded as blackbodies
due to their surface composition expressed in an emissivity value of less than 1.0. The
investigation of a regression coefficient database for all possible combinations of Mir
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and Tir emissivity values characterizing a naturally occurred surface type would be
very time consuming and ineffective. Thus, a way of exploring an emissivity correction
consisting of two steps was chosen. For a certain land surface character as e.g. bare soil
the emissivity correction has to be employed after applying the bi-spectral regression
utilizing the coefficients for a blackbody data set. The “blackbody regression” underes-
timates the surface temperature for land surfaces with an emissivity below one. This
fact results in the following main question for an emissivity correction:
How does the derived surface temperature T ∗∗

S change if the emissivity varies, but the
signal at the sensor (the integrated radiance at Toa) should be constant?

In the first step of the emissivity correction a temperature correction dT ∗∗
S has

been computed. It is based on the linear dependence between the integrated radiance
in the spectral region from 8.5 µm to 9.3 µm (Tir range) and the emissivity for an
arbitrary grey body.
Considering the three radiative transfer terms within the Tir channel, the radiance
emitted from the ground surface and attenuated by the atmosphere (ε2B2(TS)τ̃2), the
downwelling atmospheric radiance reflected by the surface ((1 − ε2)L

atm↓
2 ) and the

upwelling pathradiance emitted by the atmospheric constituents (Latm↑
2 ), in regard

to the dependence on the emissivity, only the emitted ground radiance is important.
Latm↑
2 is not a function of the emissivity and the reflected downwelling radiance is only

dependent on (1− ε2), thus its impact is negligible against the impact of the emitted
ground radiance.
In the spectral region from 8.5 µm to 9.3 µm the emitted integrated radiance for a
blackbody can be described by the following weakly nonlinear equation (Eq. 4.8).

B∗
2(T

∗∗
S ) = b0 + b1T

∗∗
S + b2T

∗∗
S

2 (4.8)

where the coefficients have the value b0 = 43.8, b1 = 0.4 and b2 = 0.0009. Therefore,
the Toa radiance emitted from the ground surface and attenuated by the atmosphere
can be written as

LB2 = ε2 (b0 + b1T
∗∗
S + b2T

∗∗
S

2)
︸ ︷︷ ︸

B∗
2
(T ∗∗

S )

τ̃2 (4.9)

The formation of the total differential of LB2 , its zero-setting and an inversion to T ∗∗
S

leads to the necessary first surface temperature correction.

dT ∗∗
S = −(b0 + b1T

∗∗
S + b2T

∗∗
S

2)

(b1 + 2b2T ∗∗
S )

dε∗

ε∗
(4.10)

with dε∗ = ε2 − ε∗, ε2 < 1, ε∗ = 1.0

After this approach an error distribution near zero will not be achieved. An offset T ∗∗
0

exists for every true temperature in each subset. The reason is the coarse first emissivity
correction and the neglect of the downwelling atmospheric radiance reflected by the
surface (1 − ε2)L

atm↓. In Figure 4.3, the temperature retrieval errors after applying
the first emissivity correction are plotted using the data set for the emissivity class
water/vegetation as an example.
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Figure 4.3: Temperature retrieval errors (T ∗
S − TS) versus true surface temperatures

(TS) after applying the first emissivity correction (T ∗
S = T ∗∗

S + dT ∗∗
S )

utilizing the water/vegetation data set and simulated nighttime data

Thus, the second step of the emissivity correction is the adjustment of the offset-
function for every subset by a 3rd order polynomial. Figure 4.3 shows the “offset-
problem” where a solid curve denotes T ∗∗

0 . The parameter j indicates the subset
number.

T ∗∗
0 = c0,j + c1,j(T

∗∗
S − 280) + c2,j(T

∗∗
S − 280)2 + c3,j(T

∗∗
S − 280)3 for j = 1, 2 (4.11)

T ∗∗
0 = c0,j + c1,j(T

∗∗
S − 300) + c2,j(T

∗∗
S − 300)2 + c3,j(T

∗∗
S − 300)3 for j = 3, 4 (4.12)

cl,j with l = 0, . . . 3 denotes the fitting coefficients.

Now, the estimated land surface temperature T ∗
S will be retrieved by applying the

following equation:
T ∗
S = T ∗∗

S + dT ∗∗
S − T ∗∗

0 (4.13)

An extensive verification on the emissivity correction was presented in (Lippert, 1995).
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4.3 Results

In Table 4.8 the results for the mean (rms) and maximum temperature retrieval er-
rors for nighttime conditions after applying the entire temperature retrieval algorithm
on the data set “mid latitude” containing the subsets according to land surface types
water/vegetation, bare soil, urban and forest are shown. The given range of the errors
is attributed to the different emissivity classes. For most cases the maximum errors
correspond to the surface type forest and the minimum to wat-veg. That means, sur-
faces with high emissivity will have smaller temperature retrieval errors as surfaces
with lower emissivity.
Assuming that the user of the described regression algorithm has some information
on the humidity of the atmosphere and the surface temperature range the whole data
set was split up into four coarse subsets according to these quantities. The a priori
knowledge and the overlap in the transitional ranges of the meteorological quantities
avoid a decrease in the temperature retrieval error. The elimination of extreme atmo-
spheric states like “thick cirrus” results in smaller errors too. Including these states is
definitely necessary for the estimation of realistic temperature retrieval errors.
The mean (rms) ∆1.0

j TS and maximum ∆1.0
j TSmax

temperature retrieval errors are de-
fined in the same way as in Equation (4.6) and (4.7) only T ∗∗

Sk
and T ∗∗

S are replaced by
T ∗
Sk

and T ∗
S , respectively.

retrieval errors [K]

AP-Index mid latitude data set without thick cirrus and

urban aerosols

∆1.0
j TS ∆1.0

j TSmax
∆1.0

j TS ∆1.0
j TSmax

SC-AD 1.43 - 1.87 8.06 - 10.76 1.18 - 1.72 5.49 - 8.50

SC-AW 1.62 - 2.21 10.52 - 14.10 1.09 - 1.55 5.79 - 7.96

SW-AD 0.67 - 1.21 3.83 - 4.70 0.58 - 0.98 3.43 - 4.50

SW-AW 0.81 - 1.35 5.29 - 8.21 0.49 - 0.86 3.03 - 5.20

Table 4.8: Temperature retrieval errors after applying the entire algorithm consider-
ing the mid latitude data set and using simulated nighttime data

The distribution of the temperature retrieval error utilizing simulated nighttime data
and the water/vegetation data set is expressed in Figure 4.4. The figures for the other
emissivity classes are provided in Appendix A.
In Figure 4.4, TS is the true surface temperature and Nj with j = 1...4 is the total
number of different atmospheric and surface related states included into the statistical
data subset. The largest temperature retrieval errors again appear in the cold surface
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Figure 4.4: Temperature retrieval errors (T ∗
S − TS) versus true surface temperatures

(TS) after applying the entire algorithm utilizing the water/vegetation
data set and simulated nighttime data with |∆jTS| = ±∆1.0

j TS

temperature range due to the predominant atmospheric influence in case of cold surface
temperatures (see previous Subsection 4.2.1). The subset ranges according to the sur-
face temperature and the humidity were carefully chosen to get realistic combinations
of surface and atmospheric models. Nevertheless, some quite unnatural coupling are
included especially in the subset SC − AW , e.g. TS = 260 K and W = 4.19 g/cm2.
The highest maximum errors are to be explained by such models. As to be expected
the smallest errors occur within the region around the Modtran run temperature
of 300 K (see Eq. 4.3). The colors point out the different contribution of extreme
atmospheric condition to the error distribution.

“Thick” cirrus and volcanic aerosols are mainly responsible for the large (maximum)
temperature retrieval errors. Their extinctive properties induce a low atmospheric
transmittance as seen in Figure 4.6 and strongly influence the ground radiation con-
taining the information on the surface temperature. In that case it is more difficult to
find a qualified correlation between the true and estimated surface temperature apply-
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color atmospheric condition aerosol content aer

blue “thick” cirrus, urban aerosol aer > 1.0

red no cirrus, volcanic aerosol 0.5 < aer < 1.0

green no cirrus, volcanic & urban aerosol aer < 0.5

Table 4.9: Included “extreme” atmospheric conditions. aer is given in MU which is
the Modtran unit for the aerosol content and corresponds to the total
vertical aerosol optical depth at 550 nm (nadir view) (Shettle, 2000).

ing a linear regression method. The temperature retrieval error distribution reflects the
interference of the discussed errors and their sources. The distribution of the frequency
of all occurred temperature retrieval errors show a Gaussian behavior (e.g. Fig. 4.5).
Thus, the application of the proposed bi-spectral linear regression on the chosen mid
latitude data set is justified.

Figure 4.5: Frequency distribution of occurred temperature retrieval errors (T ∗
S−TS)

versus true surface temperatures (TS) after applying the entire algorithm
utilizing the water/vegetation data set and simulated nighttime data with
|∆jTS| = ±∆1.0

j TS



44 Chapter 4. “Regression” - Approach

Figure 4.6: Temperature retrieval errors (T ∗
S − TS) versus Tir transmission after ap-

plying the entire algorithm utilizing the water/vegetation data set (subset
warm/dry) and simulated nighttime data
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Unfortunately, the proposed method and emissivity correction only works for high
emissivity values (emissivity class: water/vegetation) during nighttime because under
daytime conditions the sensor signal is additionally contaminated by the solar
radiation within the mid infrared range. In this spectral range the thermal and
solar radiation are of the same order of magnitude. The reason for unsatisfied
retrieval errors is that the regression considers the Mir and Tir information but
the emissivity correction is focused on the thermal infrared radiation. From the
radiative transfer equation can be seen that for smaller emissivities the solar radiative
contribution gets more influence on the total radiation. Results for the emissivity
classes water/vegetation and bare soil as examples utilizing the regression method
with and without emissivity correction and daytime simulated data are summarized
in Table 4.10.

data set for mean (rms) retrieval errors [K]

emissivity regression subsets

class coefficient SC-AD SW-AD SC-AW SW-AW

wat-veg blackbody 1.96 2.40 1.49 1.43

wat-veg 1.73 2.10 1.17 1.30

bare soil blackbody 5.12 6.71 6.74 4.91

bare soil 1.74 2.58 1.91 2.18

Table 4.10: Temperature retrieval errors after applying the entire algorithm with or
without emissivity correction utilizing water/vegetation or bare soil data
sets as well as simulated daytime data

The retrieval errors using blackbody regression coefficients and applying the emissivity
correction are not acceptable for vegetation exploration under daytime conditions.
Applying a regression on the data sets of the exemplary chosen surface types
(water/vegetation, bare soil ...) lead to smaller retrieval errors but the usage of
the investigated regression coefficients are strongly restricted on the chosen (input)
emissivity. It is impossible to provide a database of regression coefficients for all
possibly naturally occurred combinations of Mir and Tir emissivities. Finally, the
application of the “Regression” - Approach during daytime is not recommended.
Instead, the Tisie - Approach presented in the next chapter should be used for the
retrieval of surface temperatures using daytime measurements.
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Chapter 5

“TISIE” - Approach

The basic problem of land surface temperature retrieval is that the ground radiance
includes coupled information on the emissivity and the surface temperature. In this
chapter a method is proposed for retrieving land surface emissivity as well as tem-
perature separately without a priori information on these quantities. A similar model
applied on Avhrr data was first mentioned by Goita & Royer (Goita & Royer, 1997).
The retrieval technique utilizes the ground radiances measured in the Mir and Tir
channel of Bird. An atmospheric correction has to be applied before starting the
retrieval algorithm. The main issue of the model is the usage of the Tir brightness
temperature derived from the Tir ground radiance for the estimation of the Mir
emissivity. Due to the emissivity differences between both channels a correction fac-
tor called Tisie (Temperature Independent Spectral Index for Emissivity) has to be
introduced. Knowing the mid infrared emissivity, the surface temperature and the
emissivity in the Tir channel can be recovered. In the next sections the investigations
on the “Tisie” - Approach are explained in detail.

5.1 Surface and Atmospheric Models

A synthetic data set of surface and atmospheric models was generated for the derivation
of the “Tisie” - Approach which is partly based on a statistical method. Thermal at-
ground and at-sensor (Toa) radiances were simulated applying the radiative transfer
model Modtran3.5 (Berk et al., 1989) and the spectral characteristic of Bird’s Ir-
sensors (Section 2.2).

The atmospheric model is set up by Modtran’s standard atmospheres (tropical,
mid latitude summer, mid latitude winter, Us-standard) assuming rural aerosols with
a visibility of 23 km as a typical example. According to Bird’s measurement geometry
the view zenith angle and the relative azimuth angle are set equal to zero. The values
θs = 0◦, 15◦, 30◦, 45◦, 60◦ were chosen for the sun zenith angle.

The surface conditions are an assortment of emissivity extracted from the Salisbury
& D’Aria database (Salisbury & D’Aria, 1992a; Salisbury & D’Aria, 1994). Surface



48 Chapter 5. “TISIE” - Approach

temperatures were taken out of the range from 250 K to 350 K in steps of 0.1 K.
The used emissivity classes and their channel-integrated emissivity values of the sam-
ples are summarized in Table 5.1. The channel-integrated emissivity εi of each sample
was calculated as

εi =

ν2∫

ν1

fri(ν)εν dν

ν2∫

ν1

fri(ν) dν

(5.1)

with i channel index: 1 = Mir, 2 = Tir
ν wavenumber in[cm−1]
εν spectral emissivity for the wavenumber ν
fri spectral response function of the infrared channel i

emissivity classes emissivity emissivity range

samples ε1 ε2
meteorites 60 0.88 - 0.99 0.97 - 0.99

soils 43 0.68 - 0.93 0.81 - 0.98

metamorphic rocks 38 0.57 - 0.96 0.72 - 0.96

igneous rocks 36 0.84 - 0.97 0.66 - 0.98

sedimentary rocks 24 0.72 - 0.96 0.80 - 0.97

minerals 22 0.42 - 0.70 0.51 - 0.96

vegetation 9 0.84 - 0.99 0.96 - 0.99

water 3 0.96 - 0.98 0.98 - 0.99

Table 5.1: Emissivity database (Salisbury & D’Aria, 1992a; Salisbury & D’Aria, 1994)

One objective of the Bird mission is the detection of natural hot spots such as volcanic
activities. Therefore, the high number of rock samples in the emissivity database is
reasonable. Almost all Mir emissivity values ε1 lie in the range from 0.6 to 1.0. Tir
emissivities ε2 may exhibit low values for some bare rocks and dry bare soils in desert
areas (silicates). Serious difficulties in handling Bird data for these situations can be
foreseen from the results presented in Chapter 4. In order to be consistent with consid-
eration of Bird main objectives, the values of Tir emissivity ε2 were confined to the
range from 0.94 to unity. Although this is somewhat arbitrary, this range encompasses
most situations likely to be encountered. Note, the resulted Mir emissivity range is
still quite large.
Realistic combinations of all surface and atmospheric models lead to an extensive data
set allowing the application of statistical methods. The coupled surface and atmo-
spheric models represent a variety of natural conditions. The information on them are
combined in Toa radiances which are expected to be measured by Bird’s sensors.



5.2. Method Description 49

5.2 Method Description

As mentioned in the introduction chapter the retrieval of the surface temperature from
airborne or satellite data consists of two main procedures, the atmospheric correction
and the separation of the ground information in emissivity and surface temperature.
The content of this section is focused on the separation problem. For the investigation
of an approach it is always useful to prove its applicability under the assumption of
Lambertian surfaces first.

The daytimeMir ground radiance for a Lambertian surface can be generally expressed
as:

Lgrd
1 = B1(T

grd
B,1 ) = ε1B1(TS) + (1− ε1)L

atm↓
1 + (1− ε1)τ

sun
1

Esun
1

π
cos θs (5.2)

with index i = 1 indicates integrated values for the Mir channel

Lgrd
1 ground radiance

B1(T
grd
B,1 ) blackbody radiance of the brightness temperature T grd

B,1

corresponding to the Mir ground radiance Lgrd
1

B1(TS) blackbody radiance of the surface temperature TS
ε1 surface emissivity
θs solar zenith angle

Latm↓
1 downwelling atmospheric radiance

Esun
1 extraterrestrial solar irradiance already corrected

for the variation of the Earth-Sun distance
τ sun1 transmittance in solar incidence direction

The Tir ground radiance equation mainly consists of two radiative transfer terms
because the solar reflection contribution is negligibly small against the other radiation
parts.

Lgrd
2 = B2(T

grd
B,2 ) = ε2B2(TS) + (1− ε2)L

atm↓
2 (5.3)

Equation (3.1) in Chapter 3 is a combined version of Equation (5.2) and (5.3) addition-
ally containing the atmospheric contribution itself. As can be seen from the equations
the problem is underestimated: we have three unknown surface parameters (ε1, ε2, TS)
but only two equations according to the number of Birds infrared channels. This prob-
lem is tackled by introducing a factor TISIE = ε1/ε2. In a regression procedure Tisie
is linearly approximated, depending on the ratio of ground radiances. The regression is
based on ε1, ε2-combinations taken from the Salisbury database. Once Tisie is known
from the ground radiances, the number of independent variables is reduced to two.
Now, the equation system can be solved.
In order to get an impression of the orders of magnitude, the ground radiances and
their brightness temperatures in the Mir and Tir channel as well as the correspond-
ing surface temperatures for four standard atmospheres coupled to a soil surface are
opposed as an example in Figures 5.1 and 5.2. Although the combination of a mid
latitude winter atmospheres and a sun zenith angle of 45◦ is quite unrealistic this case
is nevertheless included in the figures for comparing reasons.
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Figure 5.1: Ground radiances in the Mir and Tir channels and the corresponding
surface temperatures for four standard atmospheres coupled to a soil sur-
face (angles: θs = 45◦, θv = 0◦)
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Figure 5.2: Brightness temperatures according to ground radiances in the Mir and
Tir channels and the corresponding surface temperatures for four stan-
dard atmospheres coupled to a soil surface (angles: θs = 45◦, θv = 0◦)
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On the next pages the retrieval equations for the surface emissivities ε∗i and the surface
temperature T ∗

S are derived. Separating Equation (5.2) for the Mir emissivity ε1 re-
quires an assumption on the surface temperature TS. The applied method utilizes the
Tir at-ground brightness temperature T grd

B,2 for the estimation of the thermal contri-

bution (ε1B1(TS)) to the Mir at-ground radiance Lgrd
1 . From the replacing of B1(TS)

by B1(T
grd
B,2 ) follows that a correction factor has to be introduced to account for the

emissivities differences between the Mir and Tir channels. This factor can be derived
as follows. The radiance of the surface emission in the channel i is described by

LSi = Bi(T
S
B,i) = εiBi(TS) (5.4)

The integrated Planck radiance can be approximated for both Ir channels of Bird by
a simple power function

B∗
i (TS) = αiT

ni
S (5.5)

The parameters αi, ni were determined by a non-linear least square fit for the temper-
ature range from 250 K to 350 K in steps of 0.1 K for each channel i. The fitting
procedure is available as Idl - code called “curvefit.pro” (RSI, 1999). Using one set of
(αi, ni) over the entire temperature range only is not enough to get the highest accuracy
on the channel radiance. Some discrepancies are mainly to be observed at the lower
temperature side. Figures 5.3 and 5.4 are essentially given for illustration purpose.
As will be seen later (see Eq. (5.27), (5.28)), the coefficients, αi and ni, will actually
appear in combinations that will be determined by direct fitting to the appropriate
radiance ratio. Hence, full accuracy is recovered.

Figure 5.3: Non-linear least square fit for the Planck function integrated over
wavenumbers and normalized by the Mir channel width
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Figure 5.4: Non-linear least square fit for the Planck function integrated over
wavenumbers and normalized by the Tir channel width

Introducing the fitted Planck function B∗
1(TS) (Eq. (5.5)) in Equation (5.4) the emitted

Mir radiance of the surface is rewritten as

LS1 = B1(T
S
B,1) = ε1α1T

n1
S (5.6)

Multiplying both sides of the last equation with a powered Tir emissivity εn122 where
n12 = n1/n2 leads to the expression

LS1 = B1(T
S
B,1) =

ε1
εn122

α1ε
n12
2 T n1

S

=
ε1
εn122

α1 (ε2T
n2
S )n12 (5.7)

Assuming the reflected downwelling Tir radiance is negligibly small against the other
radiative transfer terms Eq. (5.3) reduces to

Lgrd
2 (TS, ε2) = ε2B2(TS) (5.8)

Considering the radiance Lgrd
2 as an integrated Planck radiance a temperature, called

the brightness temperature TB,2 , can be assigned. Thus, the last equation can be
rewritten as

B2(T
grd
B,2 ) = ε2B2(TS) (5.9)

Applying the simple power function according to Equation (5.5) the latter equation
changes to

α2(T
grd
B,2 )

n2 = α2ε2T
n2
S (5.10)
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Thus, the Tir brightness temperature T grd
B,2 can be directly related to the surface tem-

perature TS

T grd
B,2

n2
= ε2T

n2
S (5.11)

Using the latter equation the formula of the emittedMir radiance at ground (Eq. (5.7))
changes to

B1(T
S
B,1) =

ε1
εn122

α1T
grd
B,2

n1
(5.12)

The ratio ε1/ε
n12
2 is called Tisie (Temperature Independent Spectral Index for Emis-

sivity). It was first defined and applied by Becker & Li (Becker & Li, 1990a; Li &
Becker, 1993). Now, the assumption on the surface temperature is made (TS ≈ T grd

B,2 ).
Thus, the blackbody radiance for the Mir channel can be rewritten as

B1(TS) ≈ B1(T
grd
B,2 ) = B∗

1(T
grd
B,2 ) = α1T

grd
B,2

n1
(5.13)

where B∗
1(T

grd
B,2 ) is calculated as in Eq. (5.5) only TS is replaced by T grd

B,2 .
Inserting the equation above into Eq. (5.12) the emitted ground radiance in the Mir
channel is simplified to

B1(T
S
B,1) =

ε1
εn122
︸︷︷︸

TISIE

α1T
grd
B,2

n1

︸ ︷︷ ︸

B∗
1
(T grd

B,2 )

B1(T
S
B,1) = TISIE B∗

1(T
grd
B,2 ) (5.14)

At this point Tisie is assumed to be known. The next section contains studies on
the determination of the Tisie parameter. The replacement of ε1B1(TS) by B1(T

S
B,1)

(Eq. (5.14)) in Eq. (5.2) enables the derivation of the Mir emissivity ε∗1:

ε∗1 = 1−
Lgrd
1 − TISIE B∗

1(T
grd
B,2 )

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.15)

The retrieved Mir emissivity ε∗1 is introduced in Equation (5.2) which is rearranged to

B1(T
∗
S) =







Lgrd
1 − (1− ε∗1)

(

τ sun1

Esun
1

π
cos θS + Latm↓

1

)

ε∗1







︸ ︷︷ ︸

X

(5.16)

Now, T ∗
S is estimated from a look-up-table containing temperatures out of the range

from 250 K to 350 K and the corresponding radiances X. The radiances for the
look-up-table were obtained by numerical integration over the Planck function within
Bird’s Mir and Tir channels (see Section 2.1).
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Finally, the Tir emissivity ε∗2 is recovered using the equation for the Tir ground
radiance (Eq. (5.3)).

ε∗2 =
Lgrd
2 − Latm↓

2

B2(T ∗
S)− Latm↓

2

(5.17)

The results and a retrieval error discussion of the presented theory, applied on the data
set described in Section 5.1, are analyzed in Section 5.4.

5.3 TISIE Determination

In this section the explored emissivity and radiance ratios as well as the relation between
both of them are summarized and discussed.
Becker & Li (Becker & Li, 1990a; Li & Becker, 1993) defined temperature independent
quantities called Tisi (Temperature Independent Spectral Index) and Tisie (Temper-
ature Independent Spectral Index for Emissivity) for the separation problem of the
emissivity and temperature information from infrared remote sensing data.

5.3.1 Temperature Independent Spectral Indices

For the optimization of the Tisie - Approach two emissivity ratios, TISIEa and
TISIEb, were parallel investigated. They are defined as

TISIEa =
ε1
ε2

(5.18)

TISIEb =
ε1
εn122

(5.19)

The indices a and b characterize the kind of the emissivity ratio. Although TISIEb is
by definition a temperature independent parameter, TISIEa is not the “true” TISIE
according to the definition given by Becker & Li. Actually, TISIEa is not temperature
independent (see Subsection 5.3.2). However, the symbol TISIE is kept for symmetry
and ease of handling.

The relation between emissivity and radiance ratios can be derived from the radiative
transfer equations (Eq. (5.2), (5.3)). First, only the ground emission of the surface is
considered. That is the case of nighttime measurements (indicated by index n in the
following equations) assuming the reflected radiance is negligible. The ground emission
in both Ir channels of Bird is given according to Equation (5.4) and (5.5) by

Lgrd
1,n = B1(T

grd
B,1 ) = ε1B1(TS) = ε1α1T

n1
S (5.20)

Lgrd
2,n = B2(T

grd
B,2 ) = ε2B2(TS) = ε2α2T

n2
S (5.21)
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Thus, the emissivity can be expressed as

ε1 =
B1(T

grd
B,1 )

α1T
n1
S

(5.22)

ε2 =
B2(T

grd
B,2 )

α2T
n2
S

(5.23)

The ratio of ε1 and εn122 leads to

ε1
εn122

=
B1(T

grd
B,1 )

α1T
n1
S

(α2T
n2
S )n12

(

B2(T
grd
B,2 )

)n12 (5.24)

where the left and right sides of the equation are called TISIE and TISIB, respectively.

ε1
εn122
︸︷︷︸

TISIE

=
αn122

α1

B1(T
grd
B,1 )

(

B2(T
grd
B,2 )

)n12

︸ ︷︷ ︸

TISIB

(5.25)

with

n12 =
n1
n2

and M =
αn122

α1

Hence, the radiance ratio TISIB is defined as

TISIB = M
B1(T

grd
B,1 )

(

B2(T
grd
B,2 )

)n12 =M
Lgrd
1,n

(

Lgrd
2,n

)n12 (5.26)

and is equal to TISIE for nighttime measurements. Bi(T
grd
B,i ) is calculated for each

sample of each emissivity class, for each surface temperature and for both channels.
The non-linear least square fitting procedure “curvefit.pro” was again used to determine
the parameters n12 and M . For the estimation of the parameters the ratio of the Mir
and the powered Tir Planck function, B1(TS) and B2(TS) was calculated, respectively.

B1(TS)

(B2(TS))
n12 =

α1T
n1
S

αn122 (T n2
S )n12

(5.27)

The values, n12 = 2.3 and M = 3.9, were determined by minimizing the reformulation
of Equation (5.27). The calculated values for n12 ≈ 2.1 and M ≈ 4.1 using αi and ni
given in Figures 5.3 and 5.4 slightly differ from the fitted values due to uncertainties
in numerical calculations (see explanation before Fig. 5.3).

lnB1(TS) = n12 lnB2(TS)− lnM (5.28)

In the least square fitting method 1000 pairs of surface temperatures and their corre-
sponding Planck functions were included.
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The radiance ratio TISIL is mentioned here as well for comparision. For daytime
conditions all radiative transfer terms (that includes the solar contributions) in Equa-
tions (5.2) and (5.3) have to be considered. Applying the same mathematical procedure
as for the derivation of TISIB the radiance ratio TISIL is defined as

TISIL =M
Lgrd
1

(

Lgrd
2

)n12 (5.29)

The relation between TISIE and TISIL is then given by

TISIL = C12 TISIE (5.30)

with

C12 =
C1

Cn12
2

(5.31)

C1 = 1 +
(1− ε1)L

atm↓
1 + (1− ε1)τ

sun
1

Esun
1

π
cos θs

ε1B1(TS)
(5.32)

C2 = 1 +
(1− ε2)L

atm↓
2

ε2B2(TS)
(5.33)

All ratios were calculated for 1000 surface temperatures out of the range from 250 K
to 350 K and each sample of the emissivity database. The considered atmospheric and
surface models were introduced in Section 5.1 .

Figure 5.5 shows the temperature independent quantities and radiance ratios defined
above. The equivalence of TISIEb and TISIB is obvious from Equation (5.25). The
difference between TISIL and TISIB is based on the influence of the solar reflected
radiative contribution on theMir ground radiance. The higher the surface temperature
the more predominant is the surface emission. The same effect can be seen in the lower
part of Figure 5.5. The difference between the ratio of Toa radiances (Ltoa

1 /Ltoa
2 ) and

the ratio of ground radiances (Lgrd
1 /Lgrd

2 ) decreases with increasing surface temperature.
The different extinctive behavior of the standard atmospheres is responsible for the
variation of the ratios seen in the upper part of Figure 5.5.

5.3.2 Estimation of TISIE Using Linear Regression

In order to solve Equation (5.2) to retrieve the Mir emissivity it is desirable to deter-
mine the Tisie parameter by a model using measured Bird data. A linear relation
between the parameters TISIEa,b and the ratio of Mir and Tir ground radiances

Lgrd
1 /Lgrd

2 = B1(T
grd
B,1 )/B2(T

grd
B,2 ) was observed using the entire data set. For a cer-

tain surface temperature within the range from 250 K to 350 K the relation can be
described by a linear function which can be computed by a linear regression.

TISIEa,b = Ia,b + Sa,b
B1(T

grd
B,1 )

B2(T
grd
B,2 )

(5.34)
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Figure 5.5: Several radiance ratios in relation to the surface temperature for a soil
surface, different atmospheres and the angles, θs = 45◦, θv = 0◦
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The regression coefficient Ia,b (intercept) and Sa,b (slope) are estimated for each stan-
dard atmosphere (Trop, Mls, Mlw, Us-st) and sun angle (θs = 0◦, 15◦, 30◦, 45◦, 60◦).
The indices a and b refer to TISIEa and TISIEb, respectively. A reduced emissiv-
ity database consisting of 114 samples was used for the investigations. A significant
regression correlation coefficient (R > 0.95) was found for most coupled atmospheric
and surface models using the parameter TISIEa (see tables in Appendix B). Utilizing
TISIEa instead of TISIEb in the model (Eq. 5.15) is justified because the parameter
n12 is around two and the Tir emissivity is greater than 0.94 (see Eq. 5.35).

TISIEb =
ε1
εn122

=
ε1
ε2
︸︷︷︸

TISIEa

1

ε2
︸︷︷︸

1...1.06

(5.35)

Thus, TISIEa, further simply called TISIE, was chosen to be used for ongoing inves-
tigations on this approach.

Figures 5.6 and 5.7 show as an example the regression model for several surface tem-
peratures TS = 270, 300, 320 K, a sun zenith angle of θs = 45◦ and aMls atmosphere.
The dependence of the coefficients for a TISIEa - regression on the surface and bright-
ness temperature as well as on the sun zenith angle is displayed in Figure 5.8 sharing
the same simulated conditions as explained in the previous sentence.

It would be an advantage if no a priori information concerning the atmospheric
conditions were necessary for the estimation of Tisie. Investigations on including
the entire data set for the Tisie regression were performed. It turned out that the
relations between the emissivity and ground radiance ratios strongly depend on the
surface temperature and the sun zenith angle as well as on the type of the atmosphere.
The dependence of Tisie on the surface temperature can be approximately (neglecting
the reflected terms) explained by the following equations.

TISIE = I + S
Lgrd
1

Lgrd
2

= I + S
ε1α1T

n1
S

ε2α2T
n2
S

= I + S
ε1α1
ε2α2

T n1−n2
S (5.36)

∂ TISIE

∂ TS
= S

ε1α1
ε2α2

(n1 − n2)T
n1−n2−1
S (5.37)

Introducing the values n1 ≈ 11.5 and n2 ≈ 5 the derivation of TISIE to the surface
temperature TS can be approximately written as.

∂ TISIE

∂ TS
≈ T 5

S (5.38)

Thus, the quality of the TISIE determination using the described linear regression
method approximately changes with the fifth power of surface temperature TS.
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Figure 5.6: Relation between emissivity ratio (TISIEa) and the ratio of ground ra-
diances (Eq. (5.18), (5.34)) for several surface temperatures, mid latitude
summer standard atmosphere and the angles, θs = 45◦, θv = 0◦. Solid
lines correspond to a linear regression model. R is the correlation coeffi-
cient.
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Figure 5.7: Same as Figure 5.6 but the emissivity ratio is TISIEb (Eq. (5.19))
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Figure 5.8: Variation of the regression parameters for TISIEa (Eq. (5.18), (5.34))
with the surface temperature TS and the brightness temperatures at
ground T grd

B,1 , T
grd
B,2 for a mid latitude summer standard atmosphere
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In Figure 5.9 and 5.10 all coupled surface and atmospheric models are included. From
these figures can be seen that a determination of Tisie using a regression method sub-
ject to atmospheric states is useful and improves the quality of the regression (increase
of the value of the regression correlation coefficients). Since one will have information
on the sun zenith angle during the overpass of the satellite it is useful to divide the
entire data set into data subsets according to the sun zenith angle and running the
regression on these data subsets (see Fig. 5.10). The dependence on the surface tem-
perature has to be kept for any Tisie regression model. For the application of the
algorithm the surface temperature TS is replaced by the Tir brightness temperature
T grd
B,2 which can be assumed to be almost equal to the surface temperature.

A study on using simulated TOA data for the determination of the Tisie parameter
was done as well. The quality of the regression using Toa data was worse than of
the regression using ground simulated data (Rtoa data ≤ Rground data). For that reason
and since the “Tisie” - Approach requires an atmospheric correction anyway (utilizes
ground radiances Lgrd

i ) the usage of Toa data for the determination of TISIE will
mainly improve the method retrieval errors of the “Tisie” - Approach. Thus, the
results are not further discussed in this document. Regression coefficients and the
corresponding plots for the study using Toa data are summarized in an internal Dlr
report (Lippert, 2000).



64 Chapter 5. “TISIE” - Approach

Figure 5.9: Relation between emissivity ratio (TISIEa) and the ratio of ground ra-
diances (Eq. (5.18), (5.34)) for the entire data set. Solid lines correspond
to a linear regression model. R is the correlation coefficient.
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Figure 5.10: Same as Figure 5.9 but data set points are marked according to their
sun zenith angles.
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5.4 Results

In this section the results of the proposed emissivity and surface temperature separa-
tion method (“Tisie” - Approach) are discussed. The quality of the presented model is
analyzed in terms of retrieval errors for the emissivity and the surface temperature. It
has been distinguished between method retrieval errors (Subsection 5.4.1) and overall
simulation errors (Subsection 5.4.2). The method retrieval errors express the quality of
the methods itself whereas the uncertainty of the atmospheric correction is included in
the calculation of the overall retrieval errors. An estimation of final errors considering
all relevant error sources is given in Chapter 6.
Both error types, method and overall, are based on the comparison between the re-
trieved surface parameters (see Eq. (5.15), (5.16), (5.17)) and the corresponding input
values of the simulation which are the coupled surface and atmospheric models de-
scribed in Section 5.1. Thus, the data set contains four types of standard atmospheres,
five sun zenith angles, 114 emissivity samples and 1000 surface temperatures. For the
tropical region surface temperatures greater than 280 K are only considered. In the
error plots only 100 surface temperatures are included in order to get a manageable
size of the plots.
The parameter Tisie is estimated by the linear regression fit using the coefficient for
TISIEa (Eq. (5.34)).

The root mean square and the maximum errors were computed according to Equa-
tions (5.39) and (5.40).

(∆Q)rms =

√
√
√
√
√
√

N∑

j=1

(Q∗
j −Qj)

2

N − 1
(5.39)

(∆Q)max = max
[

|(Q∗
j −Qj)

j=N
j=1 |

]

(5.40)

with rms root mean square error
max maximum error
j = 1 . . .N
N number of considered data points
Qj true (input) value for ε1, ε2, TS
Q∗
j estimated value for ε1, ε2, TS

5.4.1 Method Retrieval Errors

The method retrieval error quantifies the consistency of the developed approach. In
Table 5.2 the mean (rms) and maximum errors are summarized considering the entire
data set. Rms - errors between 0.006 and 0.02 for the mid infrared emissivity lead to
temperature retrieval rms - errors around 0.6 K and rms - errors for the Tir emissivity
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θ � [
�

] (∆Q) � ��� (∆Q) � � �

∆ε1 ∆ε2 ∆T � [K] ∆ε1 ∆ε2 ∆T � [K]

0 0.0065 0.015 0.61 0.0391 0.066 2.21

15 0.0068 0.015 0.61 0.0410 0.066 2.19

30 0.0078 0.015 0.59 0.0476 0.066 2.13

45 0.0103 0.014 0.56 0.0643 0.065 2.04

60 0.0186 0.013 0.47 0.1170 0.064 1.86

all θ � 0.0100 0.014 0.57 0.0618 0.065 2.09

Table 5.2: Method retrieval errors for Mir and Tir emissivity and surface temper-
ature for different solar zenith angles θs, estimating Tisie by linear re-
gression (Eq. (5.34)), considering the data set described in Section 5.1;
260 < TS < 320 K, except: 280 < TS < 320 K for tropical standard at-
mosphere

around 0.014. The maximum errors may arise up to 0.1 for the emissivity and around
2 K for the surface temperature. The error distribution is displayed in Figures 5.11, 5.12
and 5.13. The plots for the Mir emissivity show that the maximum errors occur at
higher temperatures. The effect can be explained by the dependence of the calculated
Mir emissivity ε1 according to Equation (5.15) from the surface temperature TS.

ε∗1 = 1−
Lgrd
1 − TISIE B∗

1(T
grd
B,2 )

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.41)

A coarse estimation of the error magnitude can be given by neglecting the reflected
terms for the description of Lgrd

1 = ε1B1(TS). Inserting the approximated integrated
Planck function B∗

1(TS) = α1T
n1
S for B1(TS) and using the relation B∗

1(T
grd
B,2 ) ≈

B∗
1(TS) = α1T

n1
S the last equation can be rewritten to

ε∗1 = 1− ε1α1T
n1
S − TISIE α1T

n1
S

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.42)

Applying the latter assumptions TISIE can be expressed by

TISIE = I + S
Lgrd
1

Lgrd
2

= I + S
ε2B

∗
1

ε2B
∗
2

= I + S
ε1α1T

n1
S

ε2α2T
n2
S

(5.43)



68 Chapter 5. “TISIE” - Approach

Now, the equation for ε∗1 can be rewritten to

ε∗1 = 1−
ε1α1T

n1
S −

(

I + S
ε1α1
ε2α2

T n1−n2
S

)

α1T
n1
S

τ sun1

Esun
1

π
cos θS + Latm↓

1

= 1−
α1(ε1 − I)T n1

S −
(

S
ε1α

2
1

ε2α2
T 2n1−n2
S

)

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.44)

The derivation of ε∗1 to TS is then given by

∂ε∗1
∂TS

=

n1α1(ε1 − I)T n1−1
S −

(

S
ε1α

2
1

ε2α2
(2n1 − n2)T

2n1−n2−1
S

)

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.45)

Introducing the values n1 ≈ 11.5 and n2 ≈ 5 the error magnitude of theMir emissivity
is approximated by

∂ε∗1
∂TS

≈
n1α1(ε1 − I)T 10.5

S −
(

S
ε1α

2
1

ε2α2
(2n1 − n2)T

17
S

)

τ sun1

Esun
1

π
cos θS + Latm↓

1

(5.46)

From this equation follows that the error magnitude is mainly controlled by the sev-
enteenth power of the surface temperature TS. This term arises from the product of
TISIE × B∗

1 . The estimated power dependence agrees with the shape of the error
distribution in Figure 5.11. Therefore, the quality of the linear regression method used
for the determination of Tisie is mainly responsible for the quality of the estimated
Mir emissivity.
The error distribution for the Tir emissivity is almost inverse to the error distribution
of theMir emissivity. This results from the equation for the determination of the Tir
emissivity. Applying statistical approaches like a linear regression method a Gaussian
error distribution is desired. As seen in Appendix C this condition is given.
In order to analyze the dependence of the errors on the type of the atmosphere the
entire data set was divided into four data subsets according to standard atmosphere
types, Trop, Mls, Mlw, Us. Their resulting retrieval errors for the emissivity as
well as the temperature are similar. The mean (rms) errors lie around 0.011 and 0.014
for the Mir and Tir emissivity respectively. The temperature retrieval errors vary
from 0.4 K to 0.7 K. An overview on the errors according to atmosphere types are
given in Table 5.3.
In the error tables the dependence of the method retrieval errors on the sun zenith
angle is obvious. The behavior is displayed for aMls atmosphere in Figures 5.14, 5.15
and 5.16. The figures for the other three atmospheres are located in Appendix C.
Finally, the achieved method retrieval errors demonstrate that the developed Tisie
approach will be applicable for the analysis of upcoming Bird data.



5.4. Results 69

ATM θ � [
�

] (∆Q) � ��� (∆Q)� � �

∆ε1 ∆ε2 ∆T � [K] ∆ε1 ∆ε2 ∆T � [K]

0 0.0058 0.0134 0.417 0.0299 0.0493 1.420

15 0.0061 0.0133 0.413 0.0314 0.0492 1.398

TROP 30 0.0071 0.0129 0.399 0.0370 0.0488 1.321

45 0.0096 0.0122 0.366 0.0520 0.0481 1.185

60 0.0196 0.0104 0.281 0.1142 0.0461 0.947

all θ � 0.0109 0.0125 0.378 0.1142 0.0493 1.420

0 0.0058 0.0148 0.482 0.0338 0.0662 1.676

15 0.0060 0.0147 0.477 0.0355 0.0662 1.650

MLS 30 0.0070 0.0145 0.463 0.0416 0.0660 1.582

45 0.0094 0.0139 0.430 0.0575 0.0656 1.463

60 0.0175 0.0125 0.350 0.1131 0.0646 1.251

all θ � 0.0101 0.0141 0.443 0.1131 0.0662 1.676

0 0.0072 0.0164 0.770 0.0391 0.0452 2.212

15 0.0075 0.0163 0.765 0.0410 0.0451 2.192

MLW 30 0.0086 0.0161 0.747 0.0476 0.0450 2.128

45 0.0113 0.0154 0.708 0.0643 0.0447 2.036

60 0.0191 0.0139 0.615 0.1170 0.0441 1.864

all θ � 0.0116 0.0157 0.723 0.1170 0.0452 2.212

0 0.0068 0.0157 0.678 0.0378 0.0434 2.053

15 0.0071 0.0156 0.673 0.0396 0.0433 2.035

US 30 0.0082 0.0153 0.656 0.0461 0.0431 1.971

45 0.0108 0.0147 0.618 0.0626 0.0427 1.859

60 0.0186 0.0132 0.528 0.1162 0.0417 1.665

all θ � 0.0112 0.0149 0.633 0.1162 0.0434 2.053

Table 5.3: Same as Table 5.2, but the entire data set is split into four standard at-
mospheres
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Figure 5.11: Mir emissivity retrieval errors in relation to surface temperatures con-
sidering the entire data set (Section 5.1)
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Figure 5.12: Tir emissivity retrieval errors in relation to surface temperatures con-
sidering the entire data set (Section 5.1)
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Figure 5.13: Temperature retrieval errors in relation to surface temperatures consid-
ering the entire data set (Section 5.1)
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Figure 5.14: Mir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for a mid latitude summer standard atmosphere
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Figure 5.15: Tir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for a mid latitude summer standard atmosphere
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Figure 5.16: Temperature retrieval errors in relation to surface temperatures and
solar zenith angles for a mid latitude summer standard atmosphere
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5.4.2 Overall Simulation Error

The intention of calculating the overall simulation error was to demonstrate the increase
of the retrieval error magnitude due to atmospheric correction using Modtran and
due to inclusion of noise in the Toa radiance. Thus, the investigations were limited to
a mid latitude summer atmosphere. The simulation of the overall error for the entire
data set (≈ 2.3 × 106 Modtran runs for each Ir channel) would be extremely time
and memory consuming. The purpose of the presented analysis was to approximately
examine the influence of the mentioned error sources.

The flow chart (Fig. 5.17) gives an overview on the calculation procedure. The Mls
data set (see Section 5.1) was used as input data including the true values for the
emissivities εi, the surface temperature TS, and the atmospheric properties. For the
simulation of realistic conditions, the final atmospheric signal consists of Toa radiances
calculated with Modtran and a contribution due to atmospheric noise. One cannot
presume that Modtran’s atmospheric transfer simulations are error free. Therefore,
an experience value of 1 % of the Toa radiance calculated withModtran was chosen
as random noise based on a Gaussian function.
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Figure 5.17: Flow chart for the estimation of the overall simulation error
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Once having the at-sensor radiance an atmospheric correction is necessary for the
determination of the ground radiances. According to the radiative transfer equation at
Toa (Eq. (3.1)) an estimation of the ground radiances Lgrd

i is possible if one neglects
the reflected terms. This procedure is appropriate due to the relation of radiance
magnitude between emitted and reflected contributions. Thus, the error which is made
using the assumption is included in the determined overall retrieval error. Atmospheric
quantities like τi, L

atm
i are given by simulations using Modtran depending on the

chosen atmospheric conditions.

Ltoa
1 (TB,1)
︸ ︷︷ ︸

sensor signal

= ε1B1(TS)
︸ ︷︷ ︸

L
grd
1

τ1 + Latm↑
1
︸ ︷︷ ︸

MODTRAN

+(1− ε1)L
atm↓
1 τ1 +

(1− ε1)

π
τ sun1 Esun

1 cos θS τ1
︸ ︷︷ ︸

neglected

(5.47)

Ltoa
2 (TB,2)
︸ ︷︷ ︸

sensor signal

= ε2B2(TS)
︸ ︷︷ ︸

L
grd
2

τ2 + Latm↑
2
︸ ︷︷ ︸

MODTRAN

+(1− ε2)L
atm↓
2 τ2

︸ ︷︷ ︸

neglected

(5.48)

From Equations (5.47) and (5.48) follows that the ground radiances can be estimated
by

Lgrd
i =

Ltoa
i − Latm↑

i

τi
(5.49)

If the Tir ground radiance is provided the corresponding brightness temperature T grd
B,2

can be assigned using precalculated look-up tables. T grd
B,2 is needed for the choice of the

appropriate regression coefficients I and S presuming T grd
B,2 ≈ TS. The precalculated

regression coefficients are used to retrieve the parameter Tisie which is then inserted
in the equation for getting the Mir emissivity (Eq. (5.15)). Again, the atmospheric
quantities are calculated using Modtran. Now, the surface temperature and the
Tir emissivity are easy to recover. The differences between the estimated (ε∗i , T

∗
S)

(Eq. (5.17), (5.16)) and true values lead to the overall simulation errors (∆εi, ∆TS).
The described procedure was applied to each sample of the Mls data set.

The overall simulation errors for Mir and Tir emissivity and surface temperature
for the Mls data set are summarized in Table 5.4. Comparing the results with
the method retrieval errors in Table 5.2 it turns out that both, the atmospheric
correction and simulated radiances including random noise, increase the method
retrieval error about 100 %. Nevertheless, temperature retrieval errors (rms) of less
than 1 K, only arising from the applied method and radiative transfer simulations
itself, are acceptable in respect of the Bird mission objectives. Plots of the overall
simulation errors are not presented in this document because the distribution of the
overall simulation errors is almost the same as for the method retrieval errors (see
Figures 5.11, 5.12, 5.13). The entire retrieval error including all possible error sources
and its propagation is discussed in Chapter 6.1.
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MLS

θ � [
�

] (∆Q)� ��� (∆Q) � � �

∆ε1 ∆ε2 ∆T � [K] ∆ε1 ∆ε2 ∆T � [K]

0 0.0208 0.0239 0.898 0.0554 0.0606 3.121

15 0.0212 0.0239 0.896 0.0532 0.0609 2.790

30 0.0218 0.0240 0.868 0.0493 0.0608 2.837

45 0.0238 0.0243 0.903 0.0645 0.0614 2.900

60 0.0303 0.0255 0.831 0.1285 0.0612 2.656

all θ � 0.0238 0.0243 0.879 0.1285 0.0614 3.121

Table 5.4: Overall simulation errors for Mir and Tir emissivity and surface temper-
ature for a Mls atmosphere



Chapter 6

Outlook on Both Approaches

In this chapter an estimation of the final retrieval errors for the surface temperature
as well as the Mir and Tir emissivity are given.
The algorithms for the application of the presented approaches, “Tisie” and “Re-
gression”, using upcoming Bird data are summarized in flow charts.

6.1 Final Retrieval Error Estimation

The quality of the retrieved surface temperature and emissivity using one of the inves-
tigated methods depends on

• the accuracy of the applied retrieval approach itself (∆TS,∆εi)

• the quality of radiance measurements at the sensor (∆T sensor,∆εsensori )

• uncertainty of a priori information on the atmosphere (∆T AP ,∆εAPi )

Thus, the final maximum retrieval errors can be expressed as

∆T final
S ≤ ∆TS +∆T sensor +∆TAP (6.1)

∆εfinali ≤ ∆εi +∆εsensori +∆εAPi (6.2)

where index i = 1, 2 indicates the infrared Bird channels Mir and Tir, respectively.
Assuming a Gaussian shape for the error distributions the final error distribution
∆T final

S ,∆εfinali is represented by a Gaussian function with the standard deviation
∆Tmean

S ,∆εmean
i .

∆Tmean
S =

√

(∆TS)2 + (∆T sensor)2 + (∆TAP )2 (6.3)

∆εmean
i =

√

(∆εi)2 + (∆εsensori )2 + (∆εAPi )2 (6.4)
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Then, the probability to find the true value within the interval [T ∗
S−Tmean

S , T ∗
S+Tmean

S ]
and [ε∗i − εmean

i , ε∗i + εmean
i ] is 68 % where T ∗

S and ε∗i are the estimated values.
In the following each error distribution is separately discussed.

Accuracy of investigated approaches

The mean (rms) temperature retrieval errors for the “Tisie” - Approach and the “Re-
gression” - Approach under nighttime condition lie within a range of 0.5 to 2.5 K.
The application of the “Regression” - Approach under daytime condition is not recom-
mended due to mean square temperature retrieval errors greater than 5 K to account
for extreme atmospheric conditions as volcanic aerosols. The advantage of applying the
“Tisie” - Approach is that the temperature as well as the emissivity will be retrieved
and thus, no a priori information on the emissivity are necessary.
Average errors between 0.005 and 0.02 for the mid infrared emissivity and around 0.01
for the emissivity in the Tir channel result from the simulation.

Influence of sensor noise on the retrieved quantities

The approaches utilize the at-sensor brightness temperatures either Ti determined by
the inversion of the Planck function for the center wavelength of channel i or the at-
ground radiances. The impact of sensor noise on the Toa brightness temperature can
be estimated by

∆Ti =

∣
∣
∣
∣

∂Ti
∂Ltoa

i

∣
∣
∣
∣
∆Ltoa

i (6.5)

According to the definition of the Planck function (see Chapter 3) the brightness tem-
perature Ti is given as

Ti =
c2

λ̄i ln

(

c1λ̄
−5
i

Ltoa
λ̄i

+ 1

) (6.6)

where λ̄i is the center wavelength of channel i. Thus, ∆Ti can be derived

∆Ti =

∣
∣
∣
∣
∣
∣
∣
∣
∣

c1c2λ̄
−6
i

Ltoa
λ̄i

(

ln

(

c1λ̄
−5
i

Ltoa
λ̄i

+ 1

))2

(c1λ̄
−5
i + Ltoa

λ̄i
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Zi

∆Ltoa
i (6.7)

The determination of the sensor noise ∆Ltoa
i for “normal” surface temperatures is still

under evaluation. Therefore, a final value for ∆Ti cannot be given at the moment.
Introducing typical mean channel-integrated radiances Ltoa

i for the Mls standard at-
mosphere, assuming a blackbody (εi = 1.0) and the associated center wavelength of
Bird’s Mir and Tir channel in Equation (6.7), a coarse estimation of factor Zi can
be made. As an example, a sensor error ∆Ltoa

i of 3 % of the at-sensor radiance Ltoa
i

leads to brightness temperature errors ∆Ti of about 1 K within the Mir and about
2.5 K for the Tir channels.
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channel i λ̄� L
� 	 �
� Z� ∆L

� 	 �
� ∆T �

[ �	� ] [
���

(� 2 � � �	� )]

���
���

(� 2 � � �	� ) � [
���

(� 2 � � �	� )] [
�
]

Mir 1 3.8 0.3 73.3 0.009 ≈ 0.7

Tir 2 8.9 7.6 6.70 0.228 ≈ 1.5

Table 6.1: Exemplary values for an error estimation (part1)

The error propagation of ∆Ti on the surface temperature and emissivity retrieval is
summarized and expressed in equations for both approaches in the following.

Taking the basic equation of the “Regression” - Approach (Eq. 4.13)

Tregr = a0 + a1T1 + a2T2 + a3W + Tεcorr (6.8)

the surface temperature error due to sensor noise ∆T sensor
regr can be calculated as:

∆T sensor
regr =

∣
∣
∣
∣

∂Tregr
∂T1

∣
∣
∣
∣
∆T1 +

∣
∣
∣
∣

∂Tregr
∂T2

∣
∣
∣
∣
∆T2 (6.9)

= |a1|∆T1 + |a2|∆T2

The application of the “Regression” - Approach presumes that an emissivity class is
known. Therefore, an investigation of an error propagation of sensor noise on the
emissivity is not necessary.

In contrast thereto, for the “TISIE” - Approach the error propagation of sensor
noise has to be considered on the determined surface temperature as well as on the
retrieved emissivity.
Based on Equations (5.15) the Mir emissivity εTISIE,1 estimated using the “Tisie” -
Approach is given by

εTISIE,1(L
toa
i ) = 1− (Lgrd

1 (Ltoa
1 )−

TISIE(Lgrd
i (Ltoa

i )) B∗
1(T

grd
B,2 (L

toa
2 ))

1

τ sun1

Esun
1

π
cos θS + Latm↓

1
︸ ︷︷ ︸

Y

= 1− Lgrd
1 Y − TISIE B∗

1 Y (6.10)

The Mir ground radiance Lgrd
1 is determined according to Equations (5.49).

Lgrd
i =

Ltoa
i − Latm↑

i

τi
(6.11)
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Thus, the Mir emissivity error due to sensor noise can be estimated as

∆εsensorTISIE,1 =

∣
∣
∣
∣
∣

∂ εTISIE,1

∂ Lgrd
1

∂ Lgrd
1

∂ Ltoa
1

+
∂ εTISIE,1
∂ TISIE

∂ TISIE

∂ Lgrd
1

∂ Lgrd
1

∂ Ltoa
1

∣
∣
∣
∣
∣
∆ Ltoa

1 + (6.12)

∣
∣
∣
∣
∣

∂ εTISIE,1
∂ TISIE

∂ TISIE

∂ Lgrd
2

∂ Lgrd
2

∂ Ltoa
2

+
∂ εTISIE,1
∂ B∗

1

∂ B∗
1

∂ T grd
B,2

∂ T grd
B,2

∂ Lgrd
2

∂ Lgrd
2

∂ Ltoa
2

∣
∣
∣
∣
∣
∆ Ltoa

2

Introducing the partial derivations of B∗
i to TB,2 according to the definition of B∗

i

(Eq. (5.5)), the partial derivations of TISIE to Lgrd
i (Ltoa

i ) according to (Eq. (5.34))
and the partial derivation of Lgrd

1 to Ltoa
1 the last equation changes to

∆εsensorTISIE,1 =

∣
∣
∣
∣
Y τ−11 +

Y SB∗
1

τ1L
grd
2

∣
∣
∣
∣
∆Ltoa

1 +

∣
∣
∣
∣
∣

Y SB∗
1L

grd
1

τ2(L
grd
2 )2

+

TISIE α1n1 Y
(

T grd
B,2

)n1−1

τ−12 Z2|Lgrd
2

∣
∣
∣
∣
∆Ltoa

2 (6.13)

The Tisie - Approach starts with the retrieval of the Mir emissivity, then the surface
temperature is determined and finally theTir emissivity is estimated (Eq. (5.15), (5.16)
and (5.17)). The propagation of ∆εsensorTISIE,1 on the retrieved surface temperature T sensor

TISIE

and on the Tir emissivity εTISIE,2 can be calculated using the following equations.

∆T sensor
TISIE =

∣
∣
∣
∣

∂T sensor
TISIE

∂B1

∂B1

∂X

∂X

∂εTISIE,1

∣
∣
∣
∣
∆εsensorTISIE,1 (6.14)

The first fraction
∂T sensor

TISIE

∂B1
is defined in the same way as Equations (6.5) to (6.7) where

Ltoa
λ̄i

is replaced by B1. The derivation of B1 to X(εTISIE,1) is zero. According to
Eq. (5.16) X(εTISIE,1) is defined as

X(εTISIE,1) =







Lgrd
1 − (1− εTISIE,1)

(

τ sun1

Esun
1

π
cos θS + Latm↓

1

)

εTISIE,1







The third term is given by

∂X

∂εTISIE,1

=
L
grd
1

−(1−εTISIE,1)

�
τsun1

Esun
1
π

cos θS+L
atm↓
1 � −

�
τsun1

Esun
1
π

cos θS+L
atm↓
1 � εTISIE,1

(εTISIE,1)
2

Finally, ∆T sensor
TISIE and ∆εsensorTISIE,2 can be calculated as

∆T sensor
TISIE =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Z1

Lgrd
1 −

1/Y
︷ ︸︸ ︷(

τ sun1

Esun
1

π
cos θS + Latm↓

1

)

(εTISIE,1)
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∆εsensorTISIE,1 (6.15)
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∆εsensorTISIE,2 =

∣
∣
∣
∣

∂εsensorTISIE,2

∂B2(T
sensor
TISIE)

∂B2(T
sensor
TISIE)

∂TTISIE

sensor∣∣
∣
∣
∆T sensor

TISIE

=

∣
∣
∣
∣
∣

Lgrd
2 − Latm↓

2

(B2(T sensor
TISIE)− Latm↓

2 )2
α2n2(T

sensor
TISIE)

n2−1

∣
∣
∣
∣
∣
∆T sensor

TISIE (6.16)

In the following an example of the error estimation for ∆εsensorTISIE,i,∆T
sensor
TISIE is given.

Utilizing the values in Table 6.1 and 6.2 the errors due to sensor noise, which is con-
servatively assumed to be 3 % of the sensor signal, are:

∆εsensorTISIE,1 ≈ 2.6 ∗ 10−7 + 6 ∗ 10−7 + 1.2 ∗ 10−6 = 2 ∗ 10−6

∆T sensor
TISIE ≈ 2 K

∆εsensorTISIE,2 ≈ 0.16

∆T sensor
regr ≈ 3 K

MLS standard atmosphere

quantity unit MIR TIR

i=1 i=2

T � K 289,2

ε� 1.0

θ � ◦ 30

λ̄ � µm 3.8 8.9

L
� 	 �
� W/(m2sr µm) ≈ 0.30 ≈ 7.64

L
� � 
� = B � W/(m2sr µm) ≈ 0.313 ≈ 7.99

T
� � 

� � � = T � K 289,2

τ � 0.85 0.75

a � 2.26 1.24

α � W/(m2sr µm)/Kn 1.5 ∗ 10−29 3.9 ∗ 10−12
n � 11.50 5.26

Y [W/(m2sr µm)]−1 ≈ 7 ∗ 10−5 -

S ≈ −16.6

Table 6.2: Exemplary values for an error estimation (part2)
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Uncertainty of a priori information

The results of the sensitivity study (Chapter 3.1) are utilized for the error evaluation
due to the uncertainty of a priori information on atmospheric conditions. Assuming
a realistic estimation error of 25 % for atmospheric parameters (aerosols, temperature
profile and water vapor) the temperature errors summarized in Table 6.3 will be made
for a humid Mls atmosphere including rural aerosol. The temperature errors were
determined performing radiative transfer simulations for each channel (Mir and Tir)
separately (see Chapter 3.1; e.g. ∆ W = Wmls ∗ 0.25).

atmospheric ∆T
� �

� [K]

parameters MIR (i=1) TIR (i=2)

aerosols 2 1

T-profile 1 3

water vapor 1 3

∆T
� � � � � � �

[K] 2.5 4.3

Table 6.3: Uncertainties of a priori information on atmospheric parameters.

∆Tmean,AP =

√

(∆T
AP,aerosols
i )2 + (∆T

AP,T−profile
i )2 + (∆T

AP,water vapor
i )2

From this summary it is evident that a temperature retrieval error (∆T AP =
∆Tmean,AP ) of about 3.5 K due to uncertainties in the estimation of atmospheric pa-
rameters has to be taken into account.
The uncertainty of a priori information on the emissivity has to be considered for the
“Regression” - Approach only and is assumed to be 0.1 for both channels.

In conclusion, the mean final retrieval error for the surface temperature and the emis-
sivity will approximately have a magnitude of

∆Tmean
S,regr =

√

(∆TS)2 + (∆T sensor
regr )2 + (∆TAP )2

.
√

(1.5 K)2 + (3 K)2 + (3.5 K)2 . 4.8 K (6.17)

∆Tmean
S,TISIE =

√

(∆TS)2 + (∆T sensor
TISIE)

2 + (∆TAP )2

.
√

(1.5 K)2 + (2 K)2 + (3.5 K)2 . 4.3 K (6.18)

∆εmean
i =

√

(∆εi)2 + (∆εsensori )2 + (∆εAPi )2

∆εmean
1 .

√

0.022 + (2 ∗ 10−6)2 + 0.12 . 0.1 (6.19)

∆εmean
2 .

√
0.022 + 0.162 + 0.12 . 0.2 (6.20)

These errors are not comparable with the results of the common temperature retrieval
methods using for instance Avhrr data since the utilized channels do not completely
lie within the optimal atmospheric window around 10 µm. It has to be pointed out
that the error magnitudes result from a trade-off between the main and secondary



6.2. Algorithm for Upcoming Bird Data 85

objectives of the Bird mission which are the Hte detection and vegetation monitoring,
respectively. These errors might be acceptable within the frame of these objectives for
some vegetation studies under the condition that a sufficient amount of precise a priori
information are provided.

6.2 Algorithm for Upcoming BIRD Data

The flow charts on the next pages (Fig. 6.1, 6.2) demonstrate the sequence of tem-
perature and emissivity retrieval for upcoming Bird data utilizing the investigated
methods.
For both approaches a priori information is needed. Look-up tables for certain pa-
rameters (integrated Planck function, regression coefficients) are required. They were
calculated in the course of this work and are provided in files that are accessible
through the Institute of Space Sensor Technology and Planetary Exploration of Dlr
(maria.schoenermark@dlr.de). The advantage of the “Tisie” - Approach is that the
surface temperature as well as the emissivity for both channels can be retrieved. Fur-
thermore, the investigations of this approach show a feasibility for daytime conditions,
while the “Regression” - Approach is applicable under nighttime conditions only .

Both algorithms are intended to be used for case studies (non operational usage) of
upcoming Bird images since some a priori information has to be provided. Consid-
ering the focus of the Bird mission, which shall demonstrate the new technological
and scientific feasibility of a remote sensing small satellite mission under low budget
constrains, the possible accuracy of surface temperature retrieval is encouraging. Pro-
vided the proper a priori information, a total maximum retrieval error of ≈ ±3.5 K
for the temperature is predictable for normal surface temperatures. However, the need
of a priori information is a serious drawback for an operational application.
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Figure 6.1: Flow chart for the application of the “Regression” - Approach
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Chapter 7

Conclusions

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt - Dlr)
is going to launch a multi-spectral sensor system called Bird (Bi-spectral InfraRed
Detection) in 2001. The main scientific objectives of the Bird mission are the investi-
gation of High-Temperature-Events and vegetation exploration (see Chapter 2). Bird
does not have any thermal channel located within the atmospheric window between 10
and 12 µm. This spectral region is generally used for temperature retrieval due to the
high transparency of the atmosphere. Although several methods using atmospheric
window channels are established and validated none of them can be applied to Bird.
For that purpose temperature retrieval methods for land surfaces adapted to the spec-
ified channel configuration of Bird (3.4 − 4.2 µm and 8.5 − 9.3 µm) were necessary
to be developed.

Two land surface temperature retrieval approaches are presented in this document. One
method is based on a bi-spectral technique utilizing the top-of-atmosphere brightness
temperatures of both infrared Bird channels (see Chapter 4). For the investigation
of that approach a large synthetic data set consisting of 792 000 coupled surface and
atmospheric models was produced using the radiative transfer modelModtran. Land
surfaces are characterized by the emissivity. Therefore, a two-step emissivity correction
was employed.
The second approach separates the temperature and emissivity using ground radiances
from Bird’s Mir and Tir channels (see Chapter 5). The Tir at-ground brightness
temperature is utilized for the estimation of the thermal contribution to theMir ground
radiance. Thus, an emissivity correction factor called Tisie was introduced to account
for the emissivity differences between both Ir channels. Once the Mir emissivity is
derived from the inverted radiative transfer equation, the temperature and the Tir
emissivity can be retrieved as well. An atmospheric correction has to be applied first.

Both investigated methods lead to similar results for surfaces with high emissivity
which is the case for considered samples such as lake water, soil, and vegetation. The
results are valid for the Lambertian condition and homogeneous pixels. The tempera-
ture retrieval rms-errors for the “Tisie” - Approach and the “Regression” - Approach
under nighttime conditions lie around 1 K and within a range of 0.5 to 2.5 K, respec-
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tively, considering high emissivity. The advantage of applying the “Tisie”-approach is
that no a priori information on the emissivity are necessary although an atmospheric
correction has to be applied first. The maximum error could arise up to 3 K for the
“Tisie” - Approach and up to around 8 K for the “Regression” - Approach due to the
inclusion of extreme atmospheric states as volcanic aerosols. The extreme models must
be considered in order to estimate realistic errors for the usage of upcoming Bird data.
The application of the “Regression” - Approach during daytime is not recommended
due to rms temperature retrieval errors greater than 5 K.
A final discussion of all possible error sources given in Chapter 6 leads to temperature
retrieval errors of about 5 K and emissivity errors of 0.15. The maximum errors of the
“Regression” - Approach are not satisfactory for vegetation applications.

It turns out that Bird’s infrared channels are inappropriate for “normal” temperature
retrieval with an accuracy known from Avhrr data algorithm. The error magnitude
results from a trade-off between the main and secondary objectives of the Birdmission,
which are the Hte detection and vegetation monitoring, respectively. The algorithm
might be applicable within the frame of these objectives for particular vegetation stud-
ies using certain a priori information which has to be provided with a good precision.
But, considering the focus of the Bird mission, which shall demonstrate the new tech-
nological and scientific feasibility of a remote sensing small satellite mission under low
budget constrains, the possible accuracy of surface temperature retrieval is encouraging
particularly as in the framework of later missions as Focus. Within that mission the
Fourier transform spectro-radiometerMiror (Michelson Interferometer with ROtating
Retroreflector) might deliver more and precise information on the atmospheric state
during the overpass time.
In conclusion, the presented results are to be considered as a first case study of utiliz-
ing Bird’s Mir and Tir channel to examine vegetation surfaces. Finally, it is obvious
that both algorithms have to be validated on air- and spaceborne data. Further inves-
tigations on the presented subject are in progress.



Appendix A

Further Results of
“Regression” - Approach

In this appendix the regression coefficients for the bi-spectral regression method
(methodB) using the blackbody data set are summarized for simulated night- and day-
time data. Further plots of the temperature retrieval distributions for certain surface
types are included.

surface type simulated data

blackbody daytime

water/vegetation daytime

bare soil nighttime

urban areas nighttime

forest nighttime

91
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AP-Index coefficients

a0 a1 a2 a3 R

SC-AD -77.89 1.81 -0.65 -2.01 0.97

SC-AW -95.23 2.24 -1.06 -0.52 0.96

SW-AD -48.22 2.26 -1.24 -1.75 0.99

SW-AW -35.16 2.09 -1.10 -1.02 0.99

non -67.81 2.03 -0.92 -0.91 0.99

Table A.1: Temperature retrieval regression coefficients ai, i = 0, . . . 3 and the regres-
sion correlation coefficient R between true and estimated surface temper-
atures utilizing a blackbody data set εi = 1.0 and simulated nighttime data
(AP-index=non: no division into subsets)

AP-Index coefficients

a0 a1 a2 a3 R

SC-AD -72.31 1.10 0.09 -1.98 0.96

SC-AW -108.82 1.69 -0.42 -0.89 0.94

SW-AD -53.20 2.09 -1.04 -1.61 0.99

SW-AW -41.72 2.03 -1.02 -1.01 0.99

non -76.10 1.85 -0.71 -0.86 0.99

Table A.2: Same as Table A.1 but using simulated daytime data
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Figure A.1: Temperature retrieval errors (T ∗
S − TS) versus surface temperatures

(TS) utilizing the blackbody data set and simulated daytime data with
|∆jTS| = ±∆1.0

j TS. Note, that T
∗∗
S = T ∗

S for the blackbody data set since
no emissivity correction is needed.
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Figure A.2: Temperature retrieval errors (T ∗
S −TS) versus surface temperatures (TS)

utilizing the water/vegetation data set and simulated daytime data with
|∆jTS| = ±∆1.0

j TS
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Figure A.3: Temperature retrieval errors (T ∗
S − TS) versus surface temperatures

(TS) utilizing the bare soil data set and simulated nighttime data with
|∆jTS| = ±∆1.0

j TS
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Figure A.4: Temperature retrieval errors (T ∗
S −TS) versus surface temperatures (TS)

utilizing the data set for urban areas and simulated nighttime data with
|∆jTS| = ±∆1.0

j TS
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Figure A.5: Temperature retrieval errors (T ∗
S − TS) versus surface temperatures (TS)

utilizing the forest data set and simulated nighttime data with |∆jTS| =
±∆1.0

j TS
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Appendix B

TISIE Regression Coefficients

The tables on the regression and correlation coefficients for the linear fit of TISIEa

and TISIEb (Eq. (5.34)) are included in this appendix.

• TISIEa

– mid latitude summer standard atmosphere (Mls), Fig. B.1

– tropical standard atmosphere (Trop), Fig. B.2

– mid latitude winter standard atmosphere (Mlw), Fig. B.3

– Us-standard atmosphere (Us), Fig. B.4

• TISIEb

– mid latitude summer standard atmosphere (Mls), Fig. B.5

– tropical standard atmosphere (Trop), Fig. B.6

– mid latitude winter standard atmosphere (Mlw), Fig. B.7

– Us-standard atmosphere (Us), Fig. B.8
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MLS

θ � [
�

] T � [K] Intercept Slope R

260 1.0322 -6.8254 0.96

270 1.0482 -8.6681 0.96

280 1.0741 -10.9427 0.96

0 290 1.1150 -13.8005 0.96

300 1.1798 -17.5028 0.95

310 1.2840 -22.5260 0.94

320 1.4576 -29.7920 0.93

260 1.0331 -7.1100 0.96

270 1.0499 -9.0356 0.96

280 1.0769 -11.4185 0.96

15 290 1.1198 -14.4238 0.96

300 1.1879 -18.3388 0.95

310 1.2982 -23.6929 0.94

320 1.4836 -31.5221 0.92

260 1.0365 -8.0956 0.96

270 1.0557 -10.3120 0.96

280 1.0868 -13.0788 0.96

30 290 1.1366 -16.6144 0.95

300 1.2170 -21.3098 0.95

310 1.3497 -27.9101 0.94

320 1.5799 -37.9252 0.91

260 1.0441 -10.3573 0.96

270 1.0691 -13.2633 0.96

280 1.1100 -16.9640 0.96

45 290 1.1768 -21.8372 0.95

300 1.2882 -28.6013 0.94

310 1.4817 -38.7282 0.93

320 1.8412 -55.3341 0.88

260 1.0634 -16.0835 0.96

270 1.1036 -20.8774 0.96

280 1.1716 -27.2943 0.95

60 290 1.2890 -36.4088 0.95

300 1.5025 -50.5623 0.93

310 1.9251 -75.1521 0.88

320 2.6314 -108.7659 0.66

Table B.1: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEa and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.18), (5.34))
for the mid latitude summer standard atmosphere
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TROP

θ � [
�

] T � [K] Intercept Slope R

260 1.0334 -7.0977 0.96

270 1.0500 -8.9977 0.96

280 1.0767 -11.3518 0.96

0 290 1.1192 -14.3254 0.96

300 1.1868 -18.2075 0.95

310 1.2964 -23.5346 0.95

320 1.4817 -31.3777 0.93

260 1.0345 -7.3976 0.96

270 1.0518 -9.3847 0.96

280 1.0797 -11.8535 0.96

15 290 1.1243 -14.9848 0.96

300 1.1955 -19.0975 0.95

310 1.3118 -24.7902 0.94

320 1.5102 -33.2751 0.93

260 1.0380 -8.4379 0.96

270 1.0579 -10.7316 0.96

280 1.0902 -13.6083 0.96

30 290 1.1421 -17.3093 0.96

300 1.2265 -22.2730 0.95

310 1.3675 -29.3559 0.94

320 1.6170 -40.3715 0.92

260 1.0461 -10.8334 0.96

270 1.0720 -13.8589 0.96

280 1.1148 -17.7368 0.96

45 290 1.1851 -22.8918 0.96

300 1.3035 -30.1502 0.95

310 1.5130 -41.2723 0.93

320 1.9162 -60.2877 0.89

260 1.0666 -16.9336 0.96

270 1.1089 -21.9906 0.96

280 1.1810 -28.8370 0.96

60 290 1.3070 -38.7347 0.95

300 1.5419 -54.5705 0.93

310 2.0302 -83.7174 0.89

320 2.8905 -126.0671 0.64

Table B.2: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEa and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.18), (5.34))
for the tropical standard atmosphere
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MLW

θ � [
�

] T � [K] Intercept Slope R

260 1.0298 -6.3176 0.96

270 1.0450 -8.0487 0.96

280 1.0691 -10.1710 0.96

0 290 1.1071 -12.8124 0.95

300 1.1667 -16.1884 0.95

310 1.2612 -20.6795 0.94

320 1.4150 -26.9855 0.92

260 1.0307 -6.5735 0.96

270 1.0465 -8.3794 0.96

280 1.0716 -10.5984 0.96

15 290 1.1113 -13.3691 0.95

300 1.1739 -16.9271 0.95

310 1.2735 -21.6920 0.94

320 1.4369 -28.4407 0.92

260 1.0337 -7.4569 0.96

270 1.0516 -9.5240 0.96

280 1.0805 -12.0829 0.95

30 290 1.1263 -15.3143 0.95

300 1.1993 -19.5322 0.94

310 1.3177 -25.3108 0.93

320 1.5164 -33.7339 0.91

260 1.0405 -9.4680 0.96

270 1.0635 -12.1461 0.96

280 1.1010 -15.5180 0.95

45 290 1.1615 -19.8853 0.95

300 1.2605 -25.7990 0.94

310 1.4275 -34.3176 0.92

320 1.7217 -47.4328 0.88

260 1.0575 -14.4875 0.96

270 1.0937 -18.7920 0.95

280 1.1542 -24.4402 0.95

60 290 1.2564 -32.2217 0.94

300 1.4354 -43.7243 0.92

310 1.7651 -62.0892 0.87

320 2.2975 -86.4052 0.70

Table B.3: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEa and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.18), (5.34))
for the mid latitude winter standard atmosphere
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US

θ � [
�

] T � [K] Intercept Slope R

260 1.0305 -6.4649 0.96

270 1.0459 -8.2289 0.96

280 1.0705 -10.3957 0.96

0 290 1.1094 -13.0997 0.95

300 1.1704 -16.5690 0.95

310 1.2677 -21.2100 0.94

320 1.4271 -27.7805 0.92

260 1.0314 -6.7290 0.96

270 1.0475 -8.5701 0.96

280 1.0732 -10.8368 0.96

15 290 1.1138 -13.6752 0.95

300 1.1779 -17.3350 0.95

310 1.2806 -22.2652 0.94

320 1.4501 -29.3100 0.92

260 1.0345 -7.6413 0.96

270 1.0528 -9.7519 0.96

280 1.0823 -12.3709 0.96

30 290 1.1293 -15.6892 0.95

300 1.2044 -20.0418 0.95

310 1.3268 -26.0479 0.93

320 1.5341 -34.8991 0.91

260 1.0415 -9.7227 0.96

270 1.0651 -12.4662 0.96

280 1.1036 -15.9315 0.95

45 290 1.1659 -20.4408 0.95

300 1.2683 -26.5889 0.94

310 1.4425 -35.5392 0.92

320 1.7537 -49.5497 0.88

260 1.0592 -14.9362 0.96

270 1.0965 -19.3768 0.96

280 1.1591 -25.2359 0.95

60 290 1.2654 -33.3757 0.94

300 1.4535 -45.5687 0.92

310 1.8064 -65.4639 0.87

320 2.3806 -91.9728 0.69

Table B.4: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEa and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.18), (5.34))
for the Us-standard atmosphere
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MLS

θ � [
�

] T � [K] Intercept Slope R

260 1.0390 -5.2458 0.76

270 1.0511 -6.6412 0.76

280 1.0705 -8.3492 0.75

0 290 1.1010 -10.4657 0.75

300 1.1484 -13.1461 0.73

310 1.2226 -16.6479 0.72

320 1.3400 -21.3800 0.68

260 1.0398 -5.4643 0.76

270 1.0524 -6.9220 0.76

280 1.0727 -8.7100 0.75

15 290 1.1045 -10.9327 0.74

300 1.1543 -13.7602 0.73

310 1.2326 -17.4758 0.71

320 1.3570 -22.5251 0.68

260 1.0423 -6.2209 0.76

270 1.0568 -7.8965 0.76

280 1.0801 -9.9675 0.75

30 290 1.1170 -12.5703 0.74

300 1.1754 -15.9325 0.73

310 1.2685 -20.4373 0.71

320 1.4184 -26.6579 0.66

260 1.0482 -7.9560 0.76

270 1.0670 -10.1468 0.76

280 1.0975 -12.9012 0.75

45 290 1.1467 -16.4501 0.74

300 1.2264 -21.1937 0.72

310 1.3575 -27.8091 0.68

320 1.5705 -36.9421 0.61

260 1.0629 -12.3434 0.76

270 1.0931 -15.9321 0.75

280 1.1434 -20.6395 0.74

60 290 1.2280 -27.0861 0.72

300 1.3735 -36.4033 0.69

310 1.6217 -49.7997 0.60

320 1.6811 -45.6958 0.29

Table B.5: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEb and at-ground radiance ratio Lgrd

1 /Lgrd
2 (Eq. (5.19), (5.34))

for the mid latitude summer standard atmosphere
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TROP

θ � [
�

] T � [K] Intercept Slope R

260 1.0403 -5.4776 0.77

270 1.0528 -6.9209 0.76

280 1.0729 -8.6960 0.76

0 290 1.1047 -10.9105 0.75

300 1.1545 -13.7419 0.74

310 1.2333 -17.4931 0.72

320 1.3599 -22.6746 0.69

260 1.0411 -5.7091 0.77

270 1.0542 -7.2182 0.76

280 1.0752 -9.0788 0.76

15 290 1.1085 -11.4083 0.75

300 1.1609 -14.4016 0.74

310 1.2442 -18.3940 0.72

320 1.3789 -23.9501 0.69

260 1.0438 -6.5120 0.77

270 1.0588 -8.2526 0.76

280 1.0832 -10.4167 0.76

30 290 1.1219 -13.1596 0.75

300 1.1837 -16.7459 0.74

310 1.2836 -21.6408 0.71

320 1.4484 -28.6115 0.67

260 1.0500 -8.3610 0.77

270 1.0697 -10.6529 0.76

280 1.1018 -13.5579 0.75

45 290 1.1540 -17.3451 0.74

300 1.2396 -22.4973 0.73

310 1.3835 -29.8921 0.69

320 1.6272 -40.6613 0.62

260 1.0659 -13.0699 0.77

270 1.0979 -16.8844 0.76

280 1.1517 -21.9595 0.75

60 290 1.2437 -29.0636 0.73

300 1.4066 -39.7202 0.70

310 1.7010 -56.2268 0.61

320 1.7394 -49.6878 0.26

Table B.6: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEb and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.19), (5.34))
for the tropical standard atmosphere
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MLW

θ � [
�

] T � [K] Intercept Slope R

260 1.0368 -4.8228 0.75

270 1.0481 -6.1275 0.75

280 1.0661 -7.7115 0.75

0 290 1.0942 -9.6520 0.74

300 1.1373 -12.0706 0.73

310 1.2038 -15.1586 0.71

320 1.3064 -19.1896 0.67

260 1.0375 -5.0176 0.75

270 1.0493 -6.3780 0.75

280 1.0680 -8.0324 0.74

15 290 1.0973 -10.0645 0.74

300 1.1425 -12.6062 0.72

310 1.2124 -15.8654 0.70

320 1.3203 -20.1334 0.67

260 1.0397 -5.6896 0.75

270 1.0532 -7.2438 0.75

280 1.0746 -9.1453 0.74

30 290 1.1083 -11.5016 0.73

300 1.1607 -14.4842 0.72

310 1.2425 -18.3625 0.70

320 1.3698 -23.4749 0.65

260 1.0448 -7.2175 0.75

270 1.0621 -9.2224 0.75

280 1.0898 -11.7089 0.74

45 290 1.1338 -14.8505 0.73

300 1.2036 -18.9302 0.71

310 1.3148 -24.3709 0.67

320 1.4858 -31.3624 0.60

260 1.0576 -11.0186 0.75

270 1.0845 -14.2064 0.74

280 1.1286 -18.2903 0.73

60 290 1.2010 -23.6863 0.71

300 1.3204 -31.0505 0.67

310 1.5093 -40.6655 0.59

320 1.6077 -40.5822 0.34

Table B.7: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEb and at-ground radiance ratio Lgrd

1 /Lgrd
2 (Eq. (5.19), (5.34))

for the mid latitude winter standard atmosphere
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US

θ � [
�

] T � [K] Intercept Slope R

260 1.0374 -4.9446 0.75

270 1.0490 -6.2757 0.75

280 1.0674 -7.8955 0.75

0 290 1.0961 -9.8861 0.74

300 1.1405 -12.3783 0.73

310 1.2091 -15.5805 0.71

320 1.3157 -19.7998 0.68

260 1.0381 -5.1461 0.75

270 1.0502 -6.5347 0.75

280 1.0694 -8.2276 0.75

15 290 1.0994 -10.3138 0.74

300 1.1459 -12.9356 0.73

310 1.2181 -16.3201 0.71

320 1.3305 -20.7967 0.67

260 1.0405 -5.8418 0.75

270 1.0542 -7.4310 0.75

280 1.0762 -9.3809 0.75

30 290 1.1108 -11.8065 0.74

300 1.1648 -14.8942 0.72

310 1.2497 -18.9421 0.70

320 1.3831 -24.3439 0.65

260 1.0458 -7.4273 0.75

270 1.0635 -9.4849 0.75

280 1.0920 -12.0465 0.74

45 290 1.1374 -15.3005 0.73

300 1.2099 -19.5594 0.71

310 1.3264 -25.3074 0.67

320 1.5080 -32.8269 0.60

260 1.0591 -11.3880 0.75

270 1.0869 -14.6858 0.74

280 1.1327 -18.9379 0.73

60 290 1.2084 -24.6106 0.71

300 1.3345 -32.4704 0.68

310 1.5377 -42.9779 0.59

320 1.6286 -42.0315 0.32

Table B.8: Regression coefficients and correlation coefficient R for the relation be-
tween TISIEb and at-ground radiance ratio L

grd
1 /Lgrd

2 (Eq. (5.19), (5.34))
for the Us-standard atmosphere
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Appendix C

Further Results of
“TISIE”-Approach

This Appendix contains:

• plots of the retrieval errors in relation to solar zenith angles for the tropical
standard atmosphere (Fig. C.1, C.2, C.3)

• plots of the retrieval errors in relation to solar zenith angles for the mid latitude
winter standard atmosphere (Fig. C.4, C.5, C.6)

• plots of the retrieval errors in relation to solar zenith angles for the Us-standard
atmosphere (Fig. C.7, C.8, C.9)

• plots of the frequency distribution of errors on the retrieved surface parameters
(Fig. C.10, C.11, C.12)
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Figure C.1: Mir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the tropical standard atmosphere
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Figure C.2: Tir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the tropical standard atmosphere



112 Chapter C. Further Results of “TISIE”-Approach

Figure C.3: Temperature retrieval errors in relation to surface temperatures and solar
zenith angles for the tropical standard atmosphere
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Figure C.4: Mir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the mid latitude winter standard atmosphere
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Figure C.5: Tir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the mid latitude winter standard atmosphere
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Figure C.6: Temperature retrieval errors in relation to surface temperatures and solar
zenith angles for the mid latitude winter standard atmosphere
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Figure C.7: Mir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the Us-standard atmosphere
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Figure C.8: Tir emissivity retrieval errors in relation to surface temperatures and
solar zenith angles for the Us-standard atmosphere
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Figure C.9: Temperature retrieval errors in relation to surface temperatures and solar
zenith angles for the Us-standard atmosphere



119

Figure C.10: Frequency distribution of errors on the retrieved Mir emissivity using
sub-data sets according to standard atmospheres
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Figure C.11: Frequency distribution of errors on the retrieved Tir emissivity using
sub-data sets according to standard atmospheres
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Figure C.12: Frequency distribution of errors on the retrieved surface temperature
using sub-data sets according to standard atmospheres
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Satellitendaten. Diplomarbeit, Humboldt-Unversität zu Berlin, Institut für Physik
- Meteorologie.



References 125

Lippert, K. (2000). Temperature Retrieval Approaches for Upcoming Bird Data.
internal report (on request), German Aerospace Center (Dlr - Deutsches Zentrum
für Luft- und Raumfahrt), Institute of Space Sensor Technology and Planetary
Exploration, Berlin, Germany.

Lippert, K., Borel, C., & Gerstl, S. (1996). Misr Toa albedo retrieval for clear sky
scenes. interim report (on request), Los Alamos National Laboratory, Los Alamos,
New Mexico, Usa.

McMillin, L. (1975). Estimation of sea surface temperature from two infrared window
measurements with different absorption. J. Geophys. Res., 80, 5113–5117.

McMillin, L. & Crosby, D. (1984). Theory and validation of the multiple window sea
surface temperature technique. J. Geophys. Res., C9(89), 3655–3661.

Norman, J. & Becker, F. (1995). Terminology in thermal infrared remote sensing of
natural surface. Remote Sensing Reviews, 12, 159–173.
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Symbols

Variable Unit Description

i index for Bird channels: 1-Mir, 2-Tir
(channel-integrated)

j index for the subset data set used for the
“Regression” - Approach

ai fitting coefficients of the bi-spectral regres-
sion (“Regression” - Approach)

b, c fitting coefficients used within “Regression” -
Approach

αi, ni fitting coefficients used within “Tisie” - Ap-
proach

ref index for the reference model
pert index for the perturbed model
aer, A, AV aerosol amount defined as used in Mod-

tran = total vertical aerosol optical depth
at 550 nm (nadir view)

fri spectral response function for channel i
Bi(T ) [W/(m2 sr µm)] channel-integrated blackbody radiance ac-

[W/(m2 sr cm−1)] cording to a temperature T

Bi(T
grd
B,i ) q channel-integrated blackbody radiance ac-

cording to the at-ground brightness temper-
ature T grd

B,i

Bi(Ti) q channel-integrated blackbody radiance ac-
cording to the at-sensor (Toa) brightness
temperature Ti

Bi(TS) q channel-integrated blackbody radiance ac-
cording to the surface temperature TS

B∗
i (TS) q approximated channel-integrated blackbody

radiance according to the surface tempera-
ture TS

B−1
i (x) q channel-integrated inverse blackbody radi-

ance according to the expression x
Esun
i [W/(m2µm)] channel-integrated solar irradiance

I coefficient (intercept) of TISIE - regression
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Latm↓
i [W/(m2 sr µm)] channel-integrated hemispheric average

[W/(m2 sr cm−1)] downwelling atmospheric radiance (solar dif-
fuse and thermal)

Latm↑
i q channel-integrated directional upwelling at-

mospheric solar and thermal radiance

Lgrd
i (T grd

B,i ) q channel-integrated ground radiance accord-
ing to the at-ground brightness temperature
T grd
B,i

Lgrd
i,n q channel-integrated ground radiance for

nighttime conditions
Ltoa
i q channel-integrated top-of-atmosphere radi-

ance
LSi q channel-integrated emitted radiance of the

surface
Nj number of considered coupled atmospheric

and surface models within subset j
R correlation coefficient for TISIE - regression
S coefficient (slope) of TISIE - regression
TATM [K] atmospheric profile temperature
TATM
bound q atmospheric boundary temperature
T S
B,i q brightness temperature according the surface

emission for channel i

T grd
B,i q at-ground brightness temperature for chan-

nel i
Ti q Toa brightness temperature for channel i
TS q surface temperature
T ∗
S q estimated surface temperature
T ∗∗
S q estimated surface temperature before apply-

ing emissivity corrections (”Regression” -
Approach)

T ∗∗
0 q estimated ”offset”-temperature (2nd step of

emissivity correction within the ”Regres-
sion” - Approach)

TATM
S q surface temperature retrieved with a certain

standard atmosphere ATM

T ref
S q surface temperature retrieved with the refer-

ence model
T pert
S q surface temperature retrieved with a per-

turbed model
TISIE ratio of channel-integrated emissivity
TISIB ratio of channel-integrated blackbody radi-

ances (e.g. nighttime conditions)
TISIL ratio of channel-integrated ground radiances

(e.g. daytime conditions)
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W [g/cm2] atmospheric water vapor content
WATM

q atmospheric water vapor content for a cer-
tain standard atmosphere ATM

∆TATM
bound [K] certain temperature amount adding to the

boundary temperature
∆1.0

j TS q surface temperature retrieval error (rms) for
the subset j (”Regression” - Approach)

∆1.0
j TSmax

q surface temperature retrieval error (maxi-
mum) (”Regression” - Approach)

∆1.0
j T ∗∗

S q surface temperature retrieval error (rms) for
the subset j before applying emissivity cor-
rections (”Regression” - Approach)

∆1.0
j T ∗∗

S max
q surface temperature retrieval error (maxi-

mum) before applying emissivity corrections
(”Regression” - Approach)

(∆Q)rms q root mean square (rms) retrieval error with
Q = εi, TS (“Tisie” - Approach)

(∆Q)max q maximum retrieval error with Q = εi, TS
(“Tisie” - Approach)

∆T final
S q final maximum temperature retrieval error

∆T sensor
S q maximum temperature retrieval error due to

sensor noise
∆TAP

S q maximum temperature retrieval error due to
uncertainties of a priori information

εi channel-integrated emissivity for channel i
ε∗i estimated channel-integrated emissivity for

channel i
ελ spectral emissivity according to wavelength

λ
εν spectral emissivity according to wavenumber

ν

∆εfinali final maximum emissivity retrieval error in
channel i

∆εsensori maximum emissivity retrieval error due to
sensor noise in channel i

∆εAPi maximum emissivity retrieval error due to
uncertainties of a priori information in chan-
nel i

λ [µm] wavelength
ν [cm−1] wavenumber
%bi channel-integrated bi-directional reflectivity
%hi channel-integrated directional hemispheric

reflectivity
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θs [◦] sun zenith angle
θv q observer view angle
φs q solar azimuth angle
φv q observer azimuth angle
φ q azimuth angle relative to the solar azimuth

angle
τi channel-integrated atmospheric transmission

or transmittance
τ̃i channel-integrated effective atmospheric

transmittance
τ suni channel-integrated atmospheric transmission

in solar incidence direction



Abbreviations

AC AP-index: Atmosphere-Cold
AW AP-index: Atmosphere-Warm
Atm Atmospheric standard model
Atsr Along Track Scanning Radiometer
Avhrr Advanced Very High Resolution Radiometer
Bird Bi-spectral InfraRed Detection
Dlr Deutsches Zentrum für Luft- und Raumfahrt

Ensps École Nationale Supérieure de Physique de Strasbourg
Ers European Remote Sensing Satellite
Esa European Space Agency
Fov Field Of View
Fwhm Full Width at Half Maximum
Grtr Groupe de Recherche en Télédétection et Radiométrie
Ifov Instantaneous Field Of View
Lsiit Laboratoire des Sciences de l’Image, de l’Informatique et de

la Télédétection
Lst Land Surface Temperature
max MAXimum
Mu Modtran unit for aerosol amount = total vertical aerosol

optical depth at 550nm since nadir view (Shettle, 2000)
Mir Mid InfraRed spectral range
Miror Michelson Interferometer with ROtating Retroreflector
Misr Multi-angle Imaging Spectro-Radiometer (Nasa/Eos)
Mls Mid Latitude Summer atmosphere
Mlw Mid Latitude Winter atmosphere
Modtran MODerate resolution lowTRAN code
Mrt Modtran Run Temperature
NA number of considered atmospheric models according to

aerosols
NC number of considered atmospheric models according to cirrus

clouds
Nε number of considered surface models according to emissivity
NT number of considered surface models according to tempera-

ture
NV A number of considered atmospheric models according to vol-

canic aerosols
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NW number of considered atmospheric models according to water
vapor content

Ndvi Normalized Difference Vegetation Index
Nir Near InfraRed spectral range
AP A Priori information
rms Root Mean Square
Rt Radiative Transfer
Rtm Radiative Transfer Model
Sst Sea Surface Temperature
SC AP-index: Surface-Cold
SW AP-index: Surface-Warm
Tisi, TISI Temperature Independent Spectral Index for Radiances
Tisie, TISIE Temperature Independent Spectral Index for Emissivity
Tir Thermal InfraRed spectral range
TOL TOLerance
Toa Top Of Atmosphere
Trop Tropical atmosphere
Ulp Université Louis Pasteur Strasbourg
Us Us-standard atmosphere
Vis VISible spectral range
Waoss Wide Angle Optoelectronic Stereo Scanner
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Université Louis Pasteur Strasbourg (Ulp), France. I would like to acknowledge:

• Dr. Maria v. Schönermark (Dlr), Prof. Marc-Philippe Stoll (Ulp), Prof. Hans
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