Die Embryonalentwicklung von *Hibolithes*
(Belemnitida, Cephalopoda)

Embryonic Development of *Hibolithes*
(Belemnitida, Cephalopoda)

Von

Klaus Bandel, Erlangen, Theo Engeser und Joachim Reitner, Tübingen

Mit 29 Abbildungen im Text

Abstract: A study of unaltered mineral shell layers, the reconstruction of the organic layers and a comparison with the embryonic shells of other shell-bearing cephalopods indicate that the young *Hibolithes* hatching from the egg was a miniature adult. In contrast to other known sipunculate cephalopods a sipuncule was not yet developed at this stage, so that the first chamber was emptied by the tissue of the posterior visceral mass.

Keywords: Belemnoidea, Middle Jurassic, shell, ultrastructure, ontogeny (embryonic shell, juvenile shell), biologic evolution, reconstruction; Northeastern Polish Plain (Lukow).

Zusammenfassung: Der Entwicklungsverlauf eines *Hibolithes* bis zum Schlüpfen und während der Jugend wurde rekonstruiert. Dies wurde durch die Analyse der unveränderten mineralischen Schichten sowie die Wiederherstellung der organischen Lagen ermöglicht und im Vergleich zu Embryonalgebäusen lebender schalentragender Cephalopoden und der fossilen Ammoniten gedeutet. Der Schlüpfling ähnelt einem erwachsenen Tier, hatte allerdings noch keinen Siphon entwickelt, sondern pumpte die erste Kammer über ein organisches Septum mit dem Gewebe des rückwärtigen Eingeweidesackes leer. Erst während des freien Jugendlebens wurde ein Siphon differenziert.

1. Einleitung

2. Beschreibung

Das Objekt (REM Nr. 5226) ist unter der Nr. Geol. Paläont. Inst. Tübingen Ce 1599 hinterlegt.

2.1 Erste Kammer (Anfangskammer)

2.1.1 Schalenbau

Die annähernd kugelige Anfangskammer wird in aperturaler Richtung vom konvexen zweiten Septum (erstes mineralisches Septum) begrenzt. Zur Kugel ergänzt, wäre die Längsachse geringfügig länger als die Querachse. Die Breite der Querachse beträgt etwa 0,44 mm. Die Längsachse ist zum Apex hin ventral gekippt, so daß die dorsale Seite länger ist als die ventrale (Abb. 1).

Die Kammerwand besteht aus vier Schichten:

a) Eine nahezu gleichmäßig dicke innere mineralisierte Schicht.
b) Eine organische Zwischenschicht (jetzt Hohlräum).
c) Eine unterschiedlich dicke äußere mineralisierte Schicht, die in das aragonitische Primordialrostrum übergeht.
d) Eine äußere organische Schicht (jetzt Hohlräum), die in das ebenfalls als Hohlräum erhaltene organische Primordialrostrum übergeht.
Die innere mineralisierte Schicht ist etwa 2 μm dick. Sie besteht aus nadeligen Aragonitkristallen, die ihrerseits aus kleinen kissenartigen Grundelementen aufgebaut sind (Bandel, 1977). Die Kristalle sind vertikal zur Wuchsoberfläche ausgerichtet. Es gibt zwei Bereiche, in denen sich die ansonsten gleichmäßige Dicke ändert: im Bereich der Gewebeanlattstelle (Abb. 18) und im Bereich der Apertur, wo die Schicht vollständig ausklingt (Abb. 10).

Die mittlere, zwischen den beiden mineralisierten Lagen befindliche Schicht bestand aus organischem Material, in welches von beiden Seiten einzelne Kristallite eingedrungen sind (Abb. 10). Die ursprüngliche Schicht war etwa 1 μm dick und liegt nun als Hohlräume vor. Sie setzt sich über die erste Kammer fort (Abb. 10) und ist nur im Bereich der Gewebeanlattstelle mineralisiert (Abb. 18).

Die äußere mineralisierte Schicht ähnelt in ihrem Aufbau der inneren Schicht. Ihre Dicke ist sehr variabel, beträgt jedoch mindestens das Doppelte der inneren Schicht. Apikal geht sie in das Primordialrostrum über (Abb. 4), apertural verdickt sie sich und setzt sich über die Apertur hin fort (Abb. 10). Ihre Bauelemente sind feine, gleich dicke Aragonitprismen.

Die äußere organische Schicht ist nach außen hin scharf begrenzt, von innen dringen einzelne Kristallite in sie ein. Sie ist unterschiedlich mächtig, mindestens jedoch 1 μm dick. Apikal bildet sie einen Teil des Primordialrostrums (Abb. 1, 3, 14).

2.1.2 Primordialrostrum

2.1.3 Die Innenoberfläche der Anfangskammer

Die Innenoberfläche der Anfangskammer ist teilweise von einer dünnen apatitischen Schicht ausgekleidet (Abb. 16, 18, 19). Diese ist oft zerrissen, erscheint verbucht und ganz oder teilweise von der inneren Aragonitschicht abgelöst (Abb. 19). Auf der Dorsalseite, unterhalb der Mitte ist in die innere Schicht eine etwa 20 μm große ovale Gewebeanlattznarbe eingetieft. Ihre äußere Begrenzung ist unregelmäßig (Abb. 16, 18). In der Vertiefung
Abb. 1 und 2 (Legenden s. S. 279)
der Narbe und in ihrer direkten Umgebung finden sich 1—3 μm große sphärolitische Kristallaggregate (Abb. 18).

2.1.4 Kammer-Aperture

Bevor die innere Schicht im Bereich der Kammer-Aperture ausklingt, verdickt sie sich und bildet eine Stufe (Abb. 10). Hier war die organische Abschlußmembran der Anfangskammer angeheftet. Die organische Abschlußmembran ist zwar nicht mehr erhalten, läßt sich jedoch anhand einer Spalte zwischen erstem Septum und der inneren mineralisierten Schicht der Anfangskammer sowie ihrer stufenartigen mineralischen Anheftung an der Außenwand gut nachweisen (Abb. 10). Man kann sie als erstes organisches Septum bezeichnen.

2.2 Zweites (mineralisiertes) Septum

2.3 Siphonallapparat und Konothek

2.3.1 Septen

Der Aufbau der Septen ist vom dritten Septum an, abgesehen von der Dimension, im wesentlichen gleich (Abb. 1). Die Dicke der Septen beträgt etwa 3—4 μm. Sie sind in apikaler Richtung regelmäßig uhrglasförmig

Abb. 1a/1b. Die linke Hälfte des untersuchten Hibolithes sp.
Fig. 1a/1b. The left half of the studied Hibolithes sp.

Fig. 2. First chamber with some following chambers of an Anisian Atractites. Septa distances regular. First septum closed.
Abb. 3–7 (Legenden s. S. 281)

2.3.2 Siphonal duten

Die Siphonal duten sind in apikaler Richtung umgebogen (retrochoanitisch) und zeigen auf der Außenseite ein deutliches Rillenmuster (Abb. 11). Sie sind im oberen Teil von gleicher Struktur wie das Septum. Der untere Teil war organisch und ist deshalb nicht mehr erhalten. Der minerali-

Abb. 3. Das aragonitische Embryonalrostrum setzt sich zum Teil aus regelmäßig übereinanderlagernden Schichten, teils aber auch aus radiär aufgebauten Gebilden zusammen.

Fig. 3. The aragonitic embryonic rostrum is partly composed of evenly layered laminae, partly consists of spherulitic structures.

Abb. 4. Das Embryonal- (Primordial-)rostrum besteht aus einem aragonitischen Teil, der sich in die äußere mineralische Schicht fortsetzt und einem organischen Teil, der mit der äußeren organischen Schicht zusammenläuft.

Fig. 4. The embryonic (primordial) rostrum consists of a lower aragonitic and an upper organic part. The lower is continuous into the upper mineral layer of the conch while the upper is connected to the outer organic layer.

Abb. 5. In einer zentralen Zone (Apikallinie), von der das radiale Wachstum der Kalzitprismen ausgeht, sind Sphärolite entwickelt, die ursprünglich in organischem Schalenmaterial lagen, wie sie Abb. 20 zeigt.

Fig. 5. The central line formed by the radial growth of calcite prisms of the rostrum consists of spherulites which had been connected to organic fibres as seen in Fig. 20.

Abb. 6. Die Wechsellagen von dicken kalzitischen Lagen und dünnen organischen Schichten (jetzt hohl) im adulten Rostrum entsprechen den Anwachszenen.

Fig. 6. Intercalation of thick calcite and thin organic (now hollow) layers in the adult rostrum follow lines of growth.

Fig. 7. During diagenesis some larger crystal following the original orientation have grown into the space which had held organic shell originally.
Abb. 8—11 (Legenden s. S. 283)

2.3.3 Erstes Siphonalrohrsegment

Fig. 8. Attachment of the second septum to the outer wall and the top of the mineral part of the first septum. The end of the inner mineral layer of the first chamber is clearly visible, while the outer layer continues. Detail to fig. 10.

Abb. 9. Der Ansatz eines Perlmuttseptums an der Wand der Konothek zeigt den Gegensatz der Strukturen.
Fig. 9. Attachment of a nacreous septum to the wall of the conotheck. The nacreous structure of the septum is clearly differentiated from the prismatic structure of the inner wall of the conotheck.

Fig. 10. Aperture of the first chamber with second septum. The first organic septum is preserved with its mineral attachment. Organic intermediate layer and outer mineral layer continue across the constriction.

Abb. 11. Die äußere Oberfläche des Septenkragens eines Perlmuttseptums zeigt Rillen, die im elastischen organischen Septum entstanden und bei seiner Mineralisierung fixiert wurden.
Fig. 11. The outer surface of the septal neck of a nacreous septum shows grooves and ridges which have formed when the first organic septum was mineralized.
Abb. 12—15 (Legenden s. S. 285)

2.3.4 Gewebeansätze

2.3.5 Konothekwand

2.4 Adultrostrum

Die Mineralogie des Adultrostrums ist durchgehend kalzitisch. Von der Oberfläche des organischen Teils des Primordialrostrums gehen Sphärolithsektoren von 10—15 µm Breite aus (Abb. 15). Von der Spitze des Primordialrostrums verläuft ein vornehmlich organischer Bereich, die sogenannte Apikkallinie. Aus der Apikkallinie sind von kugeligen Aggregaten ausgehend,

Fig. 12. Organic sheets of the original attachment membranes of the siphuncle to the forming septum are preserved now diagenetically altered into phosphatic material.

Fig. 13. A single tissue attachment scar with longitudinal ridges and spherulitic growths near the apical and apertural cover by septa.

Fig. 14. Tissue attachment scars in the camerae following the initial one.

Abb. 15. Kalzitische Prismenbündel bilden das Rostrum im Anschluß an das organisch-aragonitische Primordialrostrum.
Fig. 15. Calcitic spherulite-sectors form the rostrum in the continuation of the organic-aragonitic primordial rostrum.
Abb. 16—21 (Legenden s. S. 287)
allseitig Sphärolithsektoren gesprossen (Abb. 5). Die Einzelkristallite haben etwa um 1 μm Durchmesser. Mit zunehmendem Abstand zur Apikallinie erfolgte eine immer weitergehende Ausrichtung der Kristallite bis sie parallel zueinander und senkrecht auf der Oberfläche stehen. Eine ganz vergleichbare Struktur ist in der Argonauta-Schale entwickelt (Abb. 21). Im Phragmokonbereich ist nur in den ersten Lagen eine sphärolithische Ausrichtung zu erkennen. In den folgenden Schichten sind die Kristallite ebenfalls parallel ausgerichtet. Es ist eine Wechsellagerung von mehr organischen und mehr mineralisierten Anwachszone festzustellen, wobei die organischen Lagen jeweils als Hohlräume vorliegen (Abb. 6). In diese Hohlräume hinein sind diagenetisch einzelne Kristalle hineingewachsen, wobei zwei Typen zu unterscheiden sind:

a) Vertikaler Weiterwuchs einzelner Kristallite unter Zunahme der Kristallgröße (Abb. 7).

b) Schichtparalleles, unorientiertes, manchmal sternförmiges Sprießen von Kristalliten (Abb. 20).

Fig. 16. The phosphatic innermost layer of the first chamber and at other places within the phragmocone is a product of diagenesis of an original mucus cover present on all chamber walls.

Abb. 17. Das mineralisierte zweite Septum besitzt nach vorne umgebogene Septen-krüegen zwischen denen der poröse Endteil des Siphonalrohres erhalten ist, aber beim Bruch etwas hochgeklappt wurde.
Fig. 17. The mineralized second septum shows septal necks which are twisted forwards. The septal aperture was closed by the porous end of the siphuncle tube, now somewhat fractured and bend up.

Fig. 18. The attachment scar within the dorsal side of the first chamber consists of an irregularly rounded depression with some aragonitic spherulitic knobs. All surface is covered by a thin, wellcrystallized phosphatic layer of diageneric origin.

Fig. 19. The phosphatic layer can become detached from its surface of growth.

Abb. 20. Wie Abb. 7, nur sprossen die Kristalle in radialer Weise.
Fig. 20. Like Fig. 7, only crystal growth in radial arrangement.

Fig. 21. Shell of Argonauta in transversal fracture. The central layer shows the same features as the central line of the posterior belemnite rostrum. x 900.
Abb. 22. Schematische Zeichnung der Schale von *Hibolithes* sp.

a: Zentrallinie, von der das Wachstum des hinteren Kalzitostrums nach außen und hinten allseitig erfolgt
b: Organischer Teil des Primordialrostrums
c: Aragonitischer Teil des Primordialrostrums
d: Erste Kammer
e: Äußere organische Schicht der ersten Kammer
f: Äußere mineralische Schicht der ersten Kammer
g: Innere organische Schicht (Zwischenschicht) der ersten Kammer
h: Innere mineralische Schicht der ersten Kammer
i: Prismatische Stufe der Anheftung des ersten Septums
j: Erstes, organisches Septum
k: Siphonalrohrende mit organischen Hafthäutchen am ersten Septum
l: Zweites mineralisches prismatisches Septum
m: Drittes mineralisches perlmuttriges Septum
n: Kalzitostrum
2.5 Rekonstruktion des Ontogeneseablaufes von *Hibolithes*

Fig. 22. Schematic drawing of the conch of *Hibolithes*.

a: Central line of calcitic prismatic growth into all directions.
b: Organic portion of the primordial rostrum.
c: Aragonitic portion of the primordial rostrum.
d: First chamber.
e: Outer organic layer of the first chamber.
f: Outer mineral layer of the first chamber.
g: Inner organic layer (intermediate layer) of the first chamber.
h: Inner mineral layer of the first chamber.
i: Prismatic ridge of the attachment of the first septum to the wall of the chamber.
j: First organic septum.
k: End of the siphuncular tube with organic attachment sheets connecting it to l: the first septum.
m: Second septum composed of prismatic aragonite structure.
n: Third septum composed of nacreous aragonite structure.
Calcitic rostrum.

3. Vergleich der Embryonal- und Juvenilgehäuse von *Spirula*, *Quenstedtoceras* und *Hibolithes* in Stichpunkten

3.1 *Spirula*

Überwachung der Schalendrüse durch den Muskelmantel.
Bildung einer organischen Schale;
Umbau der Anheftung des Weichkörpers vom schalenbildenden Gewebe (später Periostrakumdrüse) an die Innenseite der ersten Kammer;
Mineralisierung der ersten Schale von innen;
teilweiser Rückzug des Weichkörpers aus der ersten Kammer;
Verlagerung der Körperanheftung nach vorne;
Umhüllung des in der Kammer verbliebenen Eingeweidesackes durch eine organische Schale, die in der ersten Kammer angesetzt ist (Prosipho);
Differenzierung des Gewebes des Siphonalstranges;
Ausscheidung einer porösen organischen Kappe im apikalen Teil und eines birnenförmigen, perlmutterigen Rohres (1. Septum) im aperturalen Bereich durch das Siphonalgewebe);
Beginn der Leerung der ersten Kammer;
Schlüpfen aus dem Ei (vielleicht auch erst nach der Bildung eines 2. oder 3. Septums);
Weiterbau des Siphonalsystems durch Bildung von vollständigen Septen und Siphonalrohrsegmenten;
Unregelmäßige mineralische Abscheidungen auf die Schale (Bandel & Boletzky, 1979).

3.2 Quenstedtoceras

Bildung der Schalendrüse, die nicht überwachsen wird;
Ausscheidung einer organischen Schale, die einen runden Anfangsteil und eine ganz Windung umfaßt;
Verlagerung der Anheftung des Weichkörpers vom Schalenrand auf die Innenseite der Innenlippe in die Anfangskammer hinein;
Mineralisierung der organischen Embryonalschale von innen, wobei nur die Außenwände erfaßt werden;
Bildung einer mineralischen Innenschicht in der ersten Kammer;
teilweiser Rückzug des Weichkörpers aus der ersten Kammer unter Beibehaltung der Körperanheftung;
Anheftung des sich differenzierenden Siphonalstranges;
Bildung eines ersten Septums (Proseptum), das von den folgenden Septen verschieden ist;
Verlagerung der Körperanheftungsstelle von der Innenlippe auf das erste Septum;
Umhüllung des Siphonalstranges mit organischer Substanz und Einhängen in die Apertur des ersten Septums (über organische Haftbänder, Prosipho);
Bau des zweiten Siphonalrohrsegmentes bestehend aus perlmutterigem Septum, Septenkragen und organischem Sipho mit poröser Zone im Ansatz zum vorherigen Siphonalrohrsegment;
weiterer Ausbau des Siphonalsystems, bis mehrere Kammern funktionsfähig sind;
Schlüpfen;
Weiterbau des Siphonalsystems, der Septen und Vergrößerung der Schale (BANDEL, 1982).

3.3 Hibolithes

Überwachsung der Schalendrüse durch den Muskelmantel;
Bildung einer organischen Schale durch das über den Eingeweidesack vorwachsende Drüsegewebe;
Umbau der Anheftung des Weichkörpers vom schalenbildenden Gewebe an die Innenseite der ersten Kammer;
Mineralisierung der Embryonalschale erst von innen und dann von außen und allmählicher Aufwuchs des Primordialrostrums;
Verlagerung der Körperanheftung nach vorne und Rückzug des Weichkörpers aus der ersten Kammer;
Abschluß der ersten Kammer durch eine organische Wand (das erste Septum);
Leerung der ersten Kammer über den Bereich des ganzen Septums;
Schlüpfen (wahrscheinlich frühester Zeitpunkt);
Ausbau des Siphonalrohrsystems;
Bildung eines zweiten, von den folgenden Septen verschiedenen Septums (Proseptum);
Bau des ersten Segmentes des Siphonalrohrsystems, bestehend aus perlmuttrigem Septum, Septenkragen und porösem, blind endendem Siphonalrohr mit Aufhängung im Kragen des 2. Septums und mit Haftbändern am 1. organischen Kammerverschluß (1. Septum);
Einbau weiterer Siphonalrohrsegmente und Septen;
Ausbildung des Belemniten-typischen Proostrakums;
Bau des Adultrostrums.

3.4 Hauptunterschiede

Siphonalrohres mit porösem organischem Rohrteil legen nahe, daß Hibolithes im Gegensatz zu Nautilus und Spirula und wohl auch Quenstedtoceras ein Bewohner ausschließlich des flachen Wassers war.

Fig. 23. Reconstruction of the ontogeny of a belemnite following description and illustration of Müller-Stoll (1936). Gas in the first shell and yolk sac are supposed to be present upon hatching (a). A larva develops (b, c). Only after disappearance of the yolk sac vertical position changes into horizontal and a rostrum is formed.
4. Organisches erstes Septum bei anderen Cephalopoden

Mapes (1979) beschrieb aus dem obersten Karbon (Missourium) aus den USA einen neuen Bactriten (Bactrites woodi) der im Gegensatz zu den bei Bactriten glatten Septum ein retikulat gemustertes besitzen. Während bei den Bactriten normalerweise das erste Septum vom Sipho durchsetzt ist, ist das erste Septum bei Bactrites woodi geschlossen (Mapes, 1979; Taf. 18, Fig. 8).

5. Diskussion und Historisches

apparat dem Tier positiven Auftrieb verleihen würde. Von der falschen Beobachtung geleitet, daß die rezenten Sepia den Dorn ihres Schulpfes als Grabstachel nutzt, meinte Abel, daß das Rostrum einiger Belemniten, darunter auch Hibolithes, dazu gedient hätten, Pflanzendickichte zu durchpflügen und im Boden herumzustoßen und somit Beutetiere aufzustöbern.

Im übrigen folgte er Stolleys Vorstellungen der Belemniten-Ontogenese. Hanai (1952) hielt am Embryonalrostrum Stolleys fest, stellte ihn aber in das Aragonit-Primordialrostrum hinein verlängert vor (Abb. 25), was in Wirklichkeit ja nicht der Fall ist. Hanai deutete den Faden als organische Zentralachse wie er bei den konischen kambrischen Fossilien Volborthella und Salterella vorkommt. Das Primordialrostrum wird dabei als ein Hin-

Fig. 24. Reconstruction of the development of a belemnite drawn according to Stolley (1911). An embryonic thread (a) is supposed to become covered by a embryonic rostrum (b). This is then enlarged to form the first chamber (c). The “larva” afterwards was thought to metamorphize into a belemnite (d) that uses its rostrum to dig in the sediment.

Abb. 25. Umgezeichnet nach Hanai (1952, pl. 7, fig. 4). Hanai stellt sich vor, daß die Belemnitenontogenese über eine Salterella-Larve (a) in die Orthoceras-Phase (b) verläuft, ehe mit der Abscheidung des Proostrakums und Kalzitrostrums die Belemnitenphase (c) beginnt.

Fig. 25. Redrawn from Hanai (1952, pl. 7, fig. 4). Hanai reconstructed the ontogeny of belemnites as a three phase happening with a Salterella stage (a) followed by an Orthoceras stage (b) and the final belemnite stage (c).

Abb. 26. Rekonstruktion des Entwicklungsablaufes der Belemnitenkörperform nach den Angaben von Jeletzky (1966) gezeichnet. Eine tassenformige erste Schale (a) wird vergrößert indem weitere Schalenklappen von innen aufgelagert werden (b). So wird die erste Kammer und das Primordialrostrum aufgebaut. Nun soll das Gewebe um die bisher nicht endocochleate Schale herumwachsen (c) und das erste Septum (closing membrane) bildet sich. Später soll die Schale zur Innenschale werden (d) und der Siphon bildet sich mit einem typischen Fuß-förmigen Ende. Fig. 26. Reconstruction of the development of a belemnite as described by Jeletzky (1966). A cup like first shell (a) is enlarged by further cups (b) until the first chamber and the primordial rostrum have been secreted. Now the tissue is thought to grow over the shell (c) and the “closing membrane” forms a first organic septum. Later the shell became interior (d) and the siphuncle with a “foot” formed (d).
Abb. 27. Entwicklungsmodell eines Belemniten nach Prell (1921, Fig. 4). Er rekonstruierte nach dem Modell von Spirula und daher mit Caecum und Prosipho (a—d), aber ohne Primordialrostrum. Daneben ist die Schale eines Belemniten schlüpfings gestellt, wie Naef (1922) sie sich vorstellte (e) und wie sie schon von Quenstedt (1845—1849) beschrieben wurde.

Fig. 27. Development of a belemnite as Prell (1921, Fig. 4) reconstructed it. As model Spirula was taken (a—d), thus a caecum and prosipho was drawn and the primordial rostrum omitted. He shows the shell of a hatching belemnite as Naef (1922) imagined it and like Quenstedt (1845—1849) described it.

Abb. 28. Barskov (1973, Fig. 2) rekonstruierte den Gang der Ontogenese (a—e) ähnlich wie Jeletzky (1966) über eine ectocochleate Larvalphase (a, b) und mit Zuhilfenahme diagenetisch gebildeter Phosphatkruste.

Fig. 28. In the model of belemnite development represented by Barskov (1973, Fig. 2) an external shell (a, b) is supposed to become internal during larval life. Diagenetically formed phosphatic layers are here used in the reconstruction.

Naef (1921—28, 1922) hatte zwar die Gestalt der Embryonalenschale eines Belemniten im Prinzip richtig gedeutet. Allerdings hat er vom Modell der rezenten Spirula und der fossilen Ammoniten, den Prosiphon und das erste Caecum übernommen. Dabei hatte Grandjean (1910) bereits das Septum im wesentlichen richtig beschrieben und bemerkt, daß der Siphonie bis in die erste Kammer hineinreicht, sondern vorher endet. Christensen
Abb. 29. **Grandjean** (1910, Fig. 17) umgezeichnet (links) und **Christensen** (1925, Fig. 22) umgezeichnet (rechts) beschrieben die Schalenbeziehungen des Belemnitenjuvenilgehäuses in vielen Punkten richtig. **Grandjean** hält die Schale der Anfangskammer (a) für kalzitisch und das erste Septum sowie die Innen- schichten für phosphatisch (b). Der Siphon endet bei ihm in einem Fuß. **Christensen** bemerkte die Anheftungsmembranen (b) des Siphos am organischen ersten Septum (a). Allerdings interpretierte er das 2. Septum (c) als Siphofuß und meinte das 3. Septum (d) sei das erste Kalkseptum.

Fig. 29. **Grandjean** (1910, Fig. 17) (redrawn at left) and **Christensen** (1925, Fig. 22) (redrawn at right) described many features of the juvenile shell of belemnite quite correctly. **Grandjean** thought that the walls of the first chamber (a) were calcitic and the first septum as well as the inner shell layers (b) were phosphatic. The siphuncular tube (c) was reconstructed to end in a foot-like extension. **Christensen** noticed the attachment sheets (b) of the siphuncle-end to the first septum (a). The second septum (c) was erroneously interpreted as “foot of the siphuncle”. Only the third septum (d) was considered to represent the first calcareous one.

Literatur

Die Embryonalentwicklung von *Hibolithes* (Belemnitida, Cephalopoda) 303

Anschriften der Verfasser:

Priv.-Doz. Dr. Klaus Bandel, Paläont. Institut, Loewenichstr. 28, 8520 Erlangen,