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1  |  INTRODUC TION

Plate corners represent narrow, bent segments of the bound-
ary between lithospheric plates (Figure  1a). The transition zones 
separating the longer, straight to slightly concave zones of plate 
convergence (subduction or continental collision) are termed as 
“syntaxial orogens” (Bendick & Ehlers, 2014). Quasi-circular patterns 
of young thermochronometer ages (also called bull’s eye structures) 
found in the “syntaxial orogens” such as Southeast Alaska (Berger 
et al.,  2008; Enkelmann et al.,  2010, 2017; Koons et al.,  2010; 
Falkowski et al., 2014, 2016; Figure 1b), Nanga Parbat and Namche 
Barwa in the Himalaya (Stewart et al., 2008; Crowley et al., 2009; 
Enkelmann et al., 2011; Lang et al., 2016; Figure 1c), and the Olympic 
Mountains in Washington State, USA (Adams & Ehlers,  2017; 

Brandon et al., 1998; Michel et al., 2018; Pazzaglia & Brandon, 2001) 
are indicative of spatially focused rapid rock uplift (>5 mm/year) as-
sociated with localized lithospheric deformation in the overriding 
plate. It is worth noting that this phenomenon may not be restricted 
to plate corners or even plate boundaries, as rapid neotectonic uplift 
has also been reported for intracontinental regions of Precambrian 
cratons (Artyushkov et al., 2018, 2020).

Two conceptual models have been proposed to explain such de-
formation/rock uplift patterns at the convergent plate corners: (1) a 
“top-down” model (Figure 1d) referring to a positive feedback be-
tween locally enhanced erosion, thermal weakening of the crust, and 
focused exhumation (Koons et al., 2002, 2013; Zeitler et al., 2001; 
Zeitler et al., 2014), and (2) a “bottom-up” model (Figure 1e) that con-
siders tectonic processes, specifically the 3D geometry of curved 
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Abstract
Rapid, localized exhumation has been reported at many plate corners between adja-
cent subduction/collision segments. Here we use a fully-coupled geodynamic and ge-
omorphological modelling approach to investigate overriding plate deformation and 
resulting rock uplift patterns in these narrow, cuspate regions. In this study, we focus 
on the effects of internal deformation within a subducting convex-upward-shaped 
indenter and the strength of the interface between the upper and downgoing plate. 
The strongest localization of high rock uplift rates in the region above the indenter 
apex is predicted in experiments with a deformable lower plate, a weak interface layer 
and lateral shortening accommodated only by subduction (i.e., without an upper plate 
advance component). Our results suggest that bull’s eye shaped structures character-
ized by young thermochronological ages can, in principle, be reproduced numerically 
when taking into account a non-rigid subducting plate together with complex brittle-
ductile rheology and stratification of the overriding lithosphere and realistically im-
plemented fluvial erosion at its surface.
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subducting plates, as the main driver of rapid vertical movements 
of the surface (Bendick & Ehlers, 2014). In a recent modelling study 
by Nettesheim et al. (2018), it was shown that the deepest and fast-
est exhumation occurs in the catchment-scale areas where strong 
tectonic forcing spatially coincides with a large erosion potential. 
While the coupled geodynamic/geomorphic models of Nettesheim 
et al.  (2018) reconcile “top-down” and “bottom-up” models, they 
have a limited ability to reproduce the bull’s eye rock uplift struc-
tures observed in the “syntaxial orogens” (Bendick & Ehlers, 2014). 
As demonstrated in a subsequent thermo-mechanical numerical 
study by Koptev et al. (2019), the curved geometry of the subduct-
ing plate appears to be an insufficient condition for the spatial lo-
calization of the anomalous exhumation rates. According to their 
results, an appropriate combination of parameters defining the 
velocity boundary conditions, the horizontal width of the flexural 
bulge (indenter) on the subducting plate, and, most importantly, 
the thermo-rheological structure of the overlying continental lith-
osphere is also required to concentrate the fast rock uplift within 

isometric or slightly elongated regions with a characteristic diameter 
of ~100+ km (Koptev et al., 2019).

Here we build upon work by Nettesheim et al. (2018) and Koptev 
et al.  (2019) with thermo-mechanical geodynamic simulations cou-
pled in 3D with landscape evolution model. Our focus is on the in-
fluence of the internal deformation in the downgoing plate and the 
viscosity of the interface layer between the subducting slab and the 
overriding lithosphere. The modelling approach and experimental 

Statement of significance

Our work represents the first successful attempt to re-
produce the rapid rock exhumation and associated young 
thermochronometric ages observed in many plate corners 
in a fully-coupled numerical experiment, combining state-
of-the-art 3D techniques in thermo-mechanical geody-
namic and landscape evolution modelling.

F I G U R E  1  (a) Global plate corner 
locations (shown by red circles): CB, 
Caribbean; CR, Costa Rica; CS, Cascadia; 
SA, South America; SC, South scotia; 
NP, Nanga Parbat; JA, Java; JP, Japan; 
KD, Kodiak Island; KM, Kamchatka; MA, 
Mariana Islands; MS, Marsyandi; NB, 
Namche Barwa; PA, Palau; SE, St. Elias; SJ, 
Sutlej; SM, Solomon Islands; SU, Sumatra; 
TW, Taiwan. (b, c) Known distribution 
of zircon fission-track (ZFT) ages <4 ma 
in the mount St. Elias region, Southeast 
Alaska (Enkelmann et al., 2010; Koons et 
al., 2013; panel “b”) and in the Namche 
Barwa area, Himalaya (Burg et al., 1998; 
Enkelmann et al., 2011; panel “c”). The 
dashed lines represent the inferred 
extent, with uncertainties due to the 
limited number of sample sites. Figures 
are taken from Bendick and Ehlers (2014). 
(d, e) Schematic representation of two 
competing models for the origin of 
localized uplift: “top-down” (panel “d”, 
from Zeitler et al., 2001) and “bottom-up” 
(panel “e”; from Bendick & Ehlers, 2014) 
[Colour figure can be viewed at 
wileyonlinelibrary.com]

(d) (e) « Bottom-up »« Top-down »
Syntaxial
orogen

Indenter

(a)

(b) (c)

https://onlinelibrary.wiley.com/


212  |    KOPTEV et al.

design used in our study allow us to investigate the combined impact 
of geodynamic/tectonic processes and geomorphic/climatic condi-
tions on the development of focused, rapid exhumation.

2  |  MODEL DESIGN AND MODELLING 
PROCEDURE

We produced the numerical simulations presented here using the 
finite element thermo-mechanical code DOUAR (Braun et al., 2008; 
Thieulot et al., 2008) coupled in 3D with the surface processes code 
FastScape (Braun & Willett, 2013). For the governing equations and 
material properties used in the geodynamic and landscape evolu-
tion models, and for details on the integration of FastScape into 

DOUAR (Figure S1), we refer the reader to the Numerical Methods 
in Data S1.

A characteristic feature of our model setup (Figure  2) is a 3D 
bending of the downgoing slab (as required for subduction on a 
spherical Earth at the plate corners; see Mahadevan et al.,  2010) 
approximated by a central convex-upward-shaped bulge or indenter 
(Figure 2a,b). The overriding continental plate is modelled as a rhe-
ologically stratified lithosphere (Burov, 2011; Burov & Watts, 2006) 
with an alternation of brittle and ductile layers (Figure 2c).

Since both lithospheric- and mantle-scale numerical studies (e.g., 
Bonnardot et al., 2008; Schellart et al., 2007) as well as observations 
from subduction zones (e.g., Ramos & Folguera, 2009) highlight the 
importance of the internal dynamics of the lower plate for upper plate 
deformation, the entire downgoing slab (including the indenter bulge) 

F I G U R E  2  Model setup. (a) 3D view: A vertically layered overriding plate with upper crust, lower crust, and lithospheric mantle, and a 
subducting plate with a convex-upward-shaped indenter in its central part (between Y ≈ 200 km and Y ≈ 600 km; the shape is highlighted by 
white isolines). The S-line, analogous to the S-point definition of Willett et al. (1993), refers to the intersection of the downgoing plate with 
the bottom of the model box. Spatial resolution is 6.25 and 1.54 km in horizontal and vertical directions, respectively. At the left (X = 0 km) 
and right (X = 800 km) sides of the model domain, uniform and time-independent velocities parallel to X-axis are applied. (b) Vertical 
cross-section along the X-axis through the central part of the model domain (Y = 400 km). The upper and lower plates are separated by an 
interface layer whose rheology is of particular interest to this study. The grey line indicates the relative position of the subducting plate 
along the background (non-indenter) portion outside the central bulge. (c) Vertical profile of the effective viscosity calculated for the initial 
temperature distribution (see panel “d”) and a constant strain rate of 10−15 s−1. Colours denote the different compositional units as in panels 
“a–b”; lighter shades of the interface layer illustrate the tested viscosity variations. In the overriding lithosphere, the viscous-plastic rheology 
is temperature-, pressure-, and strain rate-dependent (see Numerical Methods in Data S1): effective viscosity is defined by a Christmas tree-
like criterion (Burov, 2011; Ranalli, 1995), assuming ductile flow laws of wet granite and dry diabase (Carter & Tsenn, 1987) for the upper 
crust and lower crust and the creep law of olivine aggregates (Hirth & Kohlstedt, 2003; Jadamec & Billen, 2012) for the mantle. In contrast, 
the purely viscous downgoing plate and interface layer are characterized by constant viscosity values of 1 1025 Pa s and 3–8 1021 Pa s, 
respectively. (d) Vertical profile of the initial temperature. The nonlinear steady-state geotherm is defined by boundary temperatures of 0°C 
(Z = 0 km) and 930°C (Z = −80 km) taking into account radiogenic heat production in the crustal layers. Thermal and rheological parameters 
are given in Table S1; surface processes parameters can be found in Table S2. To account for the flexural response of the lithosphere to the 
combined effect of tectonics/geodynamics and erosion/diffusion processes, the upper surface (like all other surfaces in the DOUAR 3D grid) 
is subjected to an isostatic adjustment calculated for the assumed value of the effective elastic thickness (Burov & Diament, 1995) of 25 km 
[Colour figure can be viewed at wileyonlinelibrary.com]
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is allowed to be deformed (in a ductile manner with constant viscosity; 
see Figure 2c). To investigate the relative role of the internal deforma-
bility of the lower plate, we have also performed several experiments 
with an absolutely rigid (undeformed) slab which keeps its initial ge-
ometry in time as in all previous simulations with similar model setups 
(Koptev et al., 2019; Nettesheim et al., 2018). In addition, we have also 
systematically explored the viscosity of the interface layer between 
the upper and lower plates, which is known to be an important factor 
in mountain building (e.g., Lamb & Davis, 2003). The ratio between 
the boundary velocities applied to the right (upper plate advance 
component) and left (lower plate subduction) sides of the model also 
represents a variable parameter (see below), while the total shorten-
ing rate remains the same in all experiments (30 mm/year).

Overall, we performed numerical simulations for a series of three 
experiments with four different permutations (12 models in total; 
Table 1). We do this by varying four controlling parameters includ-
ing (a) strength of the interface layer (strong, medium or weak); (b) 
rheology of the lower plate (deformable or rigid); (c) type of surface 
erosion (total or fluvial); and (d) contribution of upper plate advance 
in the total shortening (half or none).

The first series (models 1–4) consists of the experiments charac-
terized by total (flat) erosion and half upper plate advance. Here we 
start with variations in the interface strength from strong to weak 
for the case of a deformable slab (models 1–3). Subsequently, we 
test a rigid (undeformable) rheology of the subducting plate in com-
bination with a medium viscosity of the interface layer (model 4). In 
the second series (models 5–8), we switch the surface erosion from 

total to fluvial, while keeping the other parameters as in the first set 
of models. Finally (the third series; models 9–12), we investigate the 
velocity boundary conditions without upper plate advance compo-
nent, keeping the realistically implemented fluvial erosion and vary-
ing the interface strength and deformability of the lower plate. Note 
that in the last set of models, the comparison with a rigid indenter is 
made for the weak interface layer.

In this study, we analyse not only the resulting distributions of de-
formation and rock uplift rates but also thermochronometric cooling 
ages (e.g., Braun, 2003; Ehlers et al., 2005; Huntington et al., 2007; 
Whipp et al., 2009) which are calculated from the time–temperature 
history of the tracer particles (Figure  S2), thus, providing a proxy 
for integrated exhumation from the corresponding annealing/reten-
tion zone to the surface (Dodson, 1973; Reiners et al., 2005). See 
Numerical Methods in Data S1 for more detail.

3  |  RESULTS

3.1  |  Reference experiment (model 2)

The strain rate distribution of the reference experiment (2_MDTH; 
Figure  3) is characterized by two oppositely dipping thrust-sense 
shear zones rooting at the model bottom near its intersection with 
the subducting plate (see vertical cross-sections in Figure 3d,e). These 
deep-seated lithospheric-scale faults (Frezzotti et al.,  2009; Koptev 
et al., 2021; Kovács et al., 2020; Vauchez et al., 2012) are accompanied 

Model title
Interface 
strength

Lower plate 
deformability

Erosion 
type

Upper 
plate 
advance Figure Section

1_SDTH Strong Deformable Totalb Half 4 3.2

2_MDTHa Medium Deformable Total Half 3, 4, S2, S3 3.1, 3.2

3_WDTH Weak Deformable Total Half 3 3.2

4_MRTH Medium Rigid Total Half 3 3.2

5_SDFH Strong Deformable Fluvialb Half 5 3.3

6_MDFH Medium Deformable Fluvial Half 5 3.3

7_WDFH Weak Deformable Fluvial Half 5, 7 3.3

8_MRFH Medium Rigid Fluvial Half 5 3.3

9_SDFN Strong Deformable Fluvial None 6, 7 3.4

10_MDFN Medium Deformable Fluvial None 6 3.4

11_WDFN Weak Deformable Fluvial None 6, 7, 8 3.4

12_WRFN Weak Rigid Fluvial None 6, 7 3.4

Note. The model titles denote the sequence number and identifiers of the four controlling 
parameters: (1) interface layer strength (viscosity): S (strong, 8 1021 Pa s), M (medium, 5 1021 Pa s), 
or W (weak, 3 1021 Pa s); (2) lower plate rheology: D (deformable) or R (rigid); (3) surface erosion: T 
(total) or F (fluvial); and (4) upper plate advance component: H (half) or N (none).
aReference experiment.
bIn total (or flat) erosion, all of the resulting topography is immediately removed down to the base 
level. In this case, modelled surface vertical (rock uplift) velocities are equal to the rock exhumation 
rates (England & Molnar, 1990). More realistic fluvial (and diffusive) erosion is implemented by the 
FastScape landscape evolution model, which is coupled with the geodynamic code DOUAR in our 
study (see Numerical Methods in Data S1).

TA B L E  1  Controlling parameters of 
numerical experiments
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by shear zones confined to the upper crust (i.e., crustal-scale shear 
zones; see Figure  3f). The combination of lithospheric- and crustal-
scale faults, that intersect at the vertical level close to the boundary be-
tween the upper and lower crust, creates pop-up structures localizing 
vertical motion between steep fault zones (grey arrows in Figure 3f). 
As shown in plan view (Figure 3a), both pro- and retro- lithospheric-
scale shear zones (as well as associated crustal-scale faults) traverse 

the entire model domain in the direction of the Y-axis, forming continu-
ous bands that are elongated perpendicular to subduction and slightly 
curved towards the overriding plate in the central part above the in-
denter bulge. The shallow retro-decollement zone rooting into the 
lower part of the crust forms the third major structure (see central ver-
tical cross-section in Figure 3e). In contrast to steeply dipping pro- and 
retro-shear zones, this shallowly dipping decollement develops only in 

F I G U R E  3  Reference model (2_MDTH: Medium interface strength, deformable lower plate, total erosion, and half upper plate advance) 
after 6 Myr modelling time. (a–c) Plan views of (a) second invariant of strain rate (at 5 km depth) and particle trajectories (streamlines) 
originating at 10 and 30 km depth, (b) rock uplift rates, and (c) apatite fission-track (AFT) ages. (d, e) Vertical cross-sections parallel to the 
X-axis show second invariant of strain rate and particle trajectories. (f) Zoom inset shows the kinematics of shallowly dipping decollement 
and lithospheric- and crustal-scale faults. The black lines in panel “b” show the locations of the vertical cross sections in panels “d–e”. Pro- 
and retro- lithospheric-scale shear zones are labelled by “P” and “R”, and shallowly dipping decollement by “D” (panels “d–e”). Crustal- and 
lithospheric-scale shear zones are labelled by “C” and “L”; grey arrows indicate high exhumation rates (panel “f”). The motion streamlines 
demonstrate a nearly parallel influx of material from both sides with only a minor component perpendicular to the direction of convergence 
(panel “a”). The strongest upward motion occurs within small V-shaped wedges squeezed between crustal- and lithospheric-scale shear 
zones (see particle trajectories originating at 10–20 km depth in panels “d–e”), while the shallowly dipping decollement produces less upward 
deflection (panel “d”). For details on the temporal evolution of rock uplift at the surface, strain rate in the overriding plate, and internal 
deformation of the indenter, see Figures S3 and S4 [Colour figure can be viewed at wileyonlinelibrary.com]
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the area above the indenter (Figure 3a) while it attenuates towards the 
background (non-indenter) portion of the downgoing slab (Figure 3d).

Consistent with the deformation pattern (Figure 3a), the highest 
rates of rock uplift at the surface (~5–6 mm/year) are concentrated 
within two narrow bands extending along the pro- and retro-shear 
zones, while another region of relatively rapid rock uplift (~3–4 mm/
year) is located above the indenter (Figure 3b) in the hanging wall 
of the thrust-sense decollement (Figure 3f). This isolated indenter-
centred uplift region, however, remains indiscernible in the field of 
the predicted apatite fission-track (AFT) ages where it is overshad-
owed by the two continuous bands of very young ages (<1 Ma) along 
the trench-parallel S-line (Figure 3c).

3.2  |  Effect of interface layer strength and 
subducting plate rheology (models 1–4)

The reduction in the strength of the interface between the upper 
and downgoing plate leads to higher deformation in the shallow 
retro-decollement at the expense of the steeply dipping pro- and 
retro-shear zones which become, in contrast, less pronounced (cf. 
strain rate distribution of models 1_SDTH, 2_MDTH and 3_WDTH 
in Figure 4b-d). Accordingly, the localization of rock uplift in the 
isolated region above the indenter is stronger in the models with 
a weaker interface layer (Figure 4f–h). The rigid lower plate model 
(4_MRTH) produces a similar deformation and rock uplift pattern 
as the experiment with the weak interface (3_WDTH), but with 
even more active retro-decollement (Figure  4e) resulting in the 
highest vertical velocities (~5 mm/year) in the hanging wall, which 
in this case exceeds the localized rock uplift (~3–4 mm/year) in the 
trench-parallel bands located towards the continent (Figure 4a).

3.3  |  Effect of erosional efficiency (realistic fluvial 
erosion; models 5–8)

Switching from total (flat) erosion to more realistic fluvial erosion 
leads to a general reduction in rock uplift rates, which are distributed 
over larger areas (cf. Figures 4f–i and 5f–i). Deformation along faults 
and shear zones is also less localized in the fluvial erosion models (cf. 
Figures 4b-e and 5b–e). In the experiments with deformable (non-
rigid) lower plate, rock uplift rates above the indenter do not ex-
ceed ~2.5 mm/year, although it can reach ~3 mm/year and ~4 mm/
year at the band related to the retro-shear zone in the models with 
medium (6_MDFH) and strong (5_SDFH) interface, respectively 
(Figure 5a). Similar to flat erosion model series, the highest degree of 
spatial focusing of rock uplift is observed in the rigid slab experiment 
(8_MRFH; Figure 5i). It is noteworthy that in this model the maxi-
mum vertical velocities (~4 mm/year; Figure 5a) localized within the 
indenter-centred region are associated with a small pop-up structure 
(crustal-scale wedge confined between oppositely dipping shear 
zones; Figure 5e) rather than a shallowly dipping decollement as in 
the case of the flat-erosion counterpart (Figure 4e).

3.4  |  Effect of velocity boundary conditions (no 
upper plate advance; models 9–12)

In the models with lateral shortening provided only by subduction 
(i.e., without an upper plate advance component), most of the defor-
mation is localized in the pro-shear zone that nucleates where the 
subducting plate intersects the overriding plate's Moho (models with 
strong (9_SDFN) and medium (10_MDFN) interface; Figure 6b,c) or in 
a crustal-scale indenter-centred wedge (models with weak interface 
(11_WDFN) and undeformable indenter (12_WRFN); Figure  6d,e). 
The area of focused uplift associated with these structures 
(Figure 6f–i) migrates towards the downgoing plate as the strength 
of the interface layer decreases (Figure 6a). The experiment with a 
weak interface and deformable lower plate (11_WDFN) produces the 
highest maximum rock uplift rates (~6 mm/year; Figure 6a) which are 
confined to an isolated region above the indenter (Figure 6h). This 
result is in contrast to the models with stronger interface (9_SDFN 
and 10_MDFN; Figure 6f,g) where localized uplift also occurs along 
the entire length of the background slab segment (i.e., non-indenter 
portion outside the central bulge; see Figure 2). The rigid lower plate 
model (12_WRFN) shows focused indenter-centred uplift (Figure 6i) 
but at a lower maximum rate (~4.5 mm/year; Figure 6a). The locali-
zation of the strain rate in the crustal pop-up structure is also less 
pronounced compared to the corresponding experiment with de-
formable subducting slab (cf. Figure 6d,e).

4  |  DISCUSSION

Large thrust fault systems dipping in opposite (pro- and retro-)di-
rections (e.g., Contact Fault and Border Ranges Fault in the Yakutat 
collision zone of southeast Alaska; Arkle et al.,  2013) are charac-
teristic features of many continental orogens described as “doubly 
vergent” (Argand, 1916; Eizenhöfer et al., 2021; Willett et al., 1993). 
Our results show that a higher viscosity of the interface layer (i.e., a 
stronger mechanical connection between the subducting and over-
riding plate) favours deformation accommodation along trench-
parallel lithospheric-scale shear bands and, therefore, reduces the 
influence of the curved geometry of the subducting plate (i.e., the 
central indenter bulge) on the overall rock uplift patterns. A weaker 
interface, in contrast, enhances the indenter-centred fault struc-
tures (shallowly dipping retro-decollement or crustal-scale wedge) 
and focuses the rock uplift in the isolated region above. Note that 
although many decollement layers have been observed in the thrust 
belts around the world (Sommaruga, 1999; Tang et al., 2008) and 
their role has been extensively studied in both analogue (Koyi & 
Vendeville,  2003; Pichot & Nalpas,  2009) and numerical (Feng 
et al.,  2015; Ruh et al.,  2012) approaches, a decollement dipping 
in the foreland (or retro) direction is less likely to correspond to 
known geological settings in nature. Importantly, such retro-
dipping decollement is reproduced only in experiments that as-
sume an unrealistically high erosional efficiency (Figures 3 and 4). 
In contrast, in models with realistically implemented fluvial erosion, 
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indenter-centred uplift is usually associated with a small pop-up 
structure squeezed between the crustal-scale pro- and retro-shear 
zones (Figures 5 and 6).

The deformability of the lower plate has a twofold effect: under 
the boundary conditions of half upper plate advance, a rigid slab 
intensifies localized uplift above the indenter, while the opposite 

F I G U R E  4  Models with variable strength of the interface layer and deformability of the lower plate (1_SDTH, 2_MDTH, 3_WDTH, and 
4_MRTH) after 6 Myr modelling time. (a) Rock uplift rates and indenter deformation along the profile at Y = 400 km. (b–e) Vertical cross-
sections parallel to the X-axis show second invariant of strain rate and motion streamlines. (f–i) Plan views of rock uplift rates. The location 
of the profiles and cross-sections in panels “a–e” is shown by the black lines in panels “f–i”. Note that the upward deformation of the indenter 
is strongest in the strong interface model (1_SDTH; panel “a”, lower part), but this is not reflected in the rock uplift at the surface, which is 
better expressed in the experiments with weaker interface (panel “a”, upper part) [Colour figure can be viewed at wileyonlinelibrary.com]

150 200 250 300 350 400 450 500 550

0.0

1.5

3.0

4.5

6.0
U

pl
ift

 [m
m

/a
]

150 200 250 300 350 400 450 500 550
X [km]

-6.0

-3.0

0.0

3.0

6.0

Δ
Z 

[k
m

]

strong interface
medium interface
weak interface
rigid indenter,
medium interface

0

-20

-40

-60

-80

Z 
[k

m
]

0

-20

-40

-60

-80

Z 
[k

m
]

0

-20

-40

-60

-80

Z 
[k

m
]

150 200 250 300 350 400 450 500 550
X [km]

0

-20

-40

-60

-80

Z 
[k

m
]

0

200

400

600

800

Y 
[k

m
]

0

200

400

600

800

Y 
[k

m
]

0

200

400

600

800

Y 
[k

m
]

0 200 400 600 800
X [km]

0

200

400

600

800

Y 
[k

m
]

800

.10 .18 .32 5.61.0 1.8 3.2 10
Strain rate [10     s  ]

.56 -1.0 0.0 1.0 2.0 3.0 4.0
Rock uplift rate [mm/yr]

5.0

(f)

(g)

(a)

(h)

(i)

(b)

(c)

(d)

(e)

1_SDTH  strong interface

2_MDTH  medium interface

3_WDTH  weak interface

1_SDTH  strong interface

3_WDTH  weak interface

4_MRTH  medium int.; rigid ind.
4_MRTH  medium interface; rigid indenter

Material boundaries
Mohoupper/lower

crust
lower plate 
(S-line)

80 70 60 50 40 30 20 10
Streamline depth [km]

0

2_MDTH  medium interface

-15 -1

18

D D’

B B’

C C’

B B’

C C’

D D’

E E’

E E’

https://onlinelibrary.wiley.com/


    |  217KOPTEV et al.

F I G U R E  5  Models with realistically implemented fluvial (non-flat) erosion (5_SDFH, 6_MDFH, 7_WDFH, and 8_MRFH) after 6 Myr 
modelling time. Figure conventions as in Figure 4. Note that in the models with strong (5_SDFH) and medium (6_MDFH) interface, 
shortening is predominantly accommodated by the two large (lithospheric-scale) shear zones rooting at the S-line (panels “b” and “c”) 
whereas the reduction of the interface layer strength (model 7_WDFH) and the switching to an undeformable (rigid) lower plate (model 
8_MRFH) result in strain localization within smaller shear zones rooting at the Moho directly above the indenter apex (panels “d” and “e”). In 
panel “e”, the corresponding crustal-scale pro- and retro-shear zones are labelled by “p” and “r”. Oppositely dipping thrust faults have been 
commonly reproduced in previous 2D (Vogt et al., 2017; Auzemery et al., 2021) and 3D (Braun & Yamato, 2010; Ruh et al., 2013) numerical 
studies investigating the accumulation and localization of deformation in convergent geodynamic environments [Colour figure can be viewed 
at wileyonlinelibrary.com]
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is found for the models without upper plate advance component. 
Another important aspect of the no upper plate advance case is a 
much more focused, and faster, rock uplift compared to the corre-
sponding half-advance scenarios.

The highest rock uplift rates (up to ~6 mm/year), focused within 
an isolated indenter-centred region, are found in model 11_WDFN 
(Figure 7a), which is characterized by a weak interface layer, a de-
formable lower plate, realistic fluvial erosion and no upper plate 

F I G U R E  6  Models with realistically implemented fluvial (non-flat) erosion and under no upper plate advance (9_SDFN, 10_MDFN, 11_
WDFN, and 12_WRFN) after 6 Myr modelling time. Figure conventions as in Figure 4. Note that unlike the previous model series (Figures 4 
and 5), the experiment with rigid lower plate (12_WRFN) does not have the highest uplift rate, which is lower than in the experiment with 
deformable slab and weak interface layer (11_WDFN; see panel “a”) [Colour figure can be viewed at wileyonlinelibrary.com]
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advance. Switching to half upper plate advance (model 7_WDFH) 
results in a nearly symmetric profile of rock uplift rates and reduces 
their maximum value significantly (to ~2.5  mm/year; Figure  7b). 
Increasing the interface strength (model 9_SDFN) allows maximum 
vertical velocities to remain sufficiently high (~5 mm/year), but de-
localizes rock exhumation spatially, forming a broad (~200 km) area 
of relatively rapid rock uplift (>3 mm/year), which is also reflected 
in young (<4  Ma) AFT ages (Figure  7c). In contrast, the transition 
to a rigid indenter (model 12_WRFN) avoids spatial defocusing of 
exhumation while reducing the amplitude of maximum uplift rates to 
~4.5 mm/year (Figure 7d).

It is noteworthy that even a simplified setting with flat erosion 
and a rigid downgoing slab (model 4_MRTH) is able to generate high 
and isolated rock uplift above the indenter (Figure 4a,i). However, 
as shown in previous work by Koptev et al. (2019), such extremely 
high erosional efficiency always promotes a significant overestima-
tion of total rock exhumation, resulting in unrealistically young AFT 
ages (<1 Ma) systematically predicted within bull's eye structures. 
Implementation of realistic fluvial erosion at the surface is therefore 
an essential requirement for successful reproduction of not only the 
general exhumation patterns but also the thermochronometric ages 
observed in the plate corners. The temporal acceleration of rock 

uplift and exhumation (see Figure 8) is also indicative of the close 
link between tectonic forcing and focused surface erosion (e.g., 
Sharma et al., 2021).

5  |  CONCLUSIONS

The results presented here reveal that first-order characteristics of 
the thermochronometer age patterns observed in “syntaxial oro-
gens” can be reproduced in numerical experiments under the condi-
tion of a deformable subduction slab and a rheologically stratified 
overriding plate on one hand, and a realistic implementation of the 
landscape evolution model on the other hand. This suggests that 
the extreme localized exhumation often detected at the corners of 
convergent plate boundaries is caused by combined and mutually 
reinforcing influences of factors such as rheologically controlled tec-
tonic deformation in the crust and lithospheric mantle, and fluvial 
erosion processes at the surface.

Although it has been known for more than two decades that 
surface erosion and associated sediment transport and deposition 
exert a first-order control on crustal stresses and fault activity 
(Burov & Cloetingh, 1997; Burov & Poliakov, 2001, 2003; Van Balen 

F I G U R E  7  Swath profiles of rock uplift rates, topography (upper panels), and apatite (U-Th)/he (AHe), apatite fission-track (AFT), and 
zircon fission-track (ZFT) ages (lower panels) for the following fluvial erosion scenarios after 6 Myr modelling time: (a) 11_WDFN (weak 
interface, deformable slab, and no upper plate advance); (b) 7_WDFH (same as 11_WDFN but half upper plate advance); (c) 9_SDFN (same 
as 11_WDFN but strong interface); and (d) 12_WRFN (same as 11_WDFN but rigid slab). All profiles are located in the central part of the 
model (Y = 400 km) and oriented parallel to the convergence direction. It should be noted that the highest uplift rates occur along orogen 
slopes, preferentially in steep valleys with high erosion potential (see Nettesheim et al., 2018 for more details). The minima in the predicted 
cooling ages are also slightly shifted with respect to the highest local relief. AFT ages are more representative of these settings because the 
modelled uplift rates are too high to generate much variance in the predicted AHe ages. ZFT ages are shown only for the model 11_WDFN, 
as they are completely unreset in the other cases [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  8  Overall view of the model 11_WDFN (weak interface, deformable slab, fluvial erosion, and no upper plate advance) after 6 Myr 
modelling time. (a) Plan view of second invariant of strain rate (at 5 km depth) and particle trajectories (streamlines) originating at 10 km and 
30 km depth. (b, c) Vertical cross-sections parallel to the X-axis show second invariant of strain rate and particle trajectories. (d) Plan view of 
rock uplift rates. (e) Temporal evolution of rock uplift rates along the profile at Y = 400 km. (f–h) Plan views of (f) apatite fission-track (AFT) 
ages, (g) exhumation depth, and (h) topography elevation. The locations of the profile and cross-sections in panels “b”, “c”, and “e” are shown 
by the grey and black lines in panel “d”. Note that in the early stages of model development, rock uplift rates are 1.8 times faster on the left 
summit than on the right summit (2.3 mm/year vs. 1.3 mm/year for X = 280 km and X = 420 km, respectively, after 2 Myr modelling time), 
while this ratio increases to 2.7 after 8 Myr modelling time (6.8 mm/year vs. 2.5 mm/year; see panel “e”) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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et al.,  1995), most hybrid geomorphological-geodynamic model-
ling studies are still limited to 2D analysis (e.g., Ballato et al., 2019; 
Beucher & Huismans,  2020; Burov et al.,  2014; Neuharth 
et al., 2022; Sternai, 2020) and/or to a simplified, diffusion-only im-
plementation of the surface processes (e.g., Neuharth et al., 2021; 
Ruh et al., 2013). However, many tectonic and geodynamic struc-
tures and processes are inherently 3D nature (Gerya,  2019), and 
regional denudation rates and patterns in tectonically active areas 
with relatively steep topography are primarily controlled not by dif-
fusion but rather by the efficiency of processes influencing river 
erosion (Schmid et al., 2018; Starke et al., 2020; Whipple, 2004). In 
this context, recently developed numerical techniques that couple 
thermo-mechanical geodynamic models with simulations of realis-
tic (including fluvial erosion) landscape evolution in 3D (Braun & 
Yamato,  2010; Collignon et al.,  2014; Thieulot et al.,  2014; Ueda 
et al.,  2015; Nettesheim et al.,  2018; this study) should be used 
more widely in future research.
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