
1. Introduction
Earth tides have long been observed to influence groundwater systems (Meinzer, 1939), a phenomenon that is 
commonly expressed as harmonic water level fluctuations in monitoring wells (Merritt, 2004). Analytical solu-
tions based on simplified concepts have been developed to enable calculation of subsurface hydraulic and geome-
chanical properties (Cutillo & Bredehoeft, 2011; Rau, et al., 2020a; Wang & Manga, 2021). Since Earth tides 
are an ubiquitous natural force, their response should be contained in the data from numerous wells around the 
world. In fact, a recent review found that interpreting the groundwater response to Earth tides is underutilized and 
that further development offers the potential for widespread application, which in turn would lead to increased 
knowledge of the subsurface (McMillan et al., 2019b).

Changes in strain produced by Earth tides exert deformation onto the (semi-) confined subsurface resulting in 
pressure variations of the pore water. Such effects are embedded in the water levels measured within wells as 
small harmonic fluctuations with frequencies that depend on the Earth tide component (Figure 1). These signals 
have long been observed and can be used to estimate the subsurface hydro-geomechanical properties (McMillan 
et al., 2019a; Merritt, 2004). However, this requires good quality monitoring data-sets of the well water level 
measured at sufficient time intervals as well as predictions of Earth tide strains (Rau, Cuthbert, Post, et al., 2020). 
The magnitude of Earth tide impacts on groundwater is most pronounced in well-known frequencies between 0.5 
and 2.5 cycles per day (cpd) and can be extracted from groundwater measurements and Earth tide predictions 
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(Rojstaczer, 1988; Rojstaczer & Riley, 1990). For a given frequency, the ratio between the measured head at the 
observation well and the confined pore pressure produced by the change in strain is known as amplitude ratio (i.e., 
h1/P1 in Figure 1), whereas the time lag between these parameters is known as phase shift (i.e., t2 − t1 in Figure 1). 
If field data is available, harmonic least squares (HALS) with the main tidal components can be directly applied 
to the time series to obtain the amplitude ratio and phase shift between both signals (Schweizer et al., 2021; 
Turnadge et al., 2019).

Field measurements of the groundwater response to Earth tides has resulted in negative and positive phase shifts 
between strain and well water levels. Negative phase shifts are interpreted as fully confined conditions and hori-
zontal flow only (Hsieh et al., 1987). For example, hydraulic conductivity and specific storage were estimated 
from negative phase shifts (Roeloffs et al., 1989). However, positive phase shifts in the field were also observed 
and attributed to vertical flow through leaky aquitards (Allègre et al., 2016; Xue et al., 2016). This was inter-
preted using the analytical solution of vertical flow in an homogeneous aquifer caused by a harmonic load or 
stress ignoring the effect of the observation well (Wang, 2017).

Early research developed and tested an analytical solution to estimate subsurface properties from the relationship 
between strain and water levels in observation wells in a fully confined aquifer (Cooper Jr. et al., 1967; Hsieh 
et al., 1987). This was extended to include leaky conditions and allow concurrent use of multiple frequencies 
(Rojstaczer, 1988; Rojstaczer & Riley, 1990). Rojstaczer and Agnew (1989) studied the dependency of porosity 
and elastic parameters to a real deformation of a poroelastic medium. High sensitivity was reported when the 
applied strains occurs in low porosity and the increase with decreasing compressibility (inverse of the bulk modu-
lus) of the solid matrix.

Recent research included modifications to the original analytical solution by Hsieh et al. (1987) to account for 
more realistic conditions. Most notable is the work by Wang et al. (2018) who developed an extended analytical 
solution which includes vertical leakage to model a two-layered aquifer system. Gao et al. (2020) investigated 
the well skin effect which originates from the fact that the formation around a well is disturbed and well water 
storage on the well water level response to Earth tides. The authors found that the skin effect may significantly 
delay the well water level phase response to Earth tides. In addition, Guo et al. (2021) developed a model for tidal 
response  with a fault passing through the aquifer based on a fault-guided fracture network to estimate fracture 
properties. They found that the hydraulic diffusivity in the fault damage zone higher than previously established 

Figure 1. Representation of the pore pressure change and well water level in a semi-confined aquifer due to Earth tide strains. Earth tides induce subsurface stress 
which results in strains that generate changes in the pore water pressure. This leads to pressure gradients between the subsurface and observation wells that cause water 
movement in or out of the well. The ratio between the Earth tide strain and the well water level response can be expressed as amplitude ratio whereas the time difference 
between both signals as phase shift. (a) Aquifer and well pressure are in hydro-static equilibrium. (b) Earth tidal strain changes confined pore pressure. (c) Pressure 
gradients move fluid to the observation well. (d) Confined pore pressure changes due to Earth tidal forcing and well water level changes over time.
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values, but also that it remains below estimates based on induced seismicity migration. Sun et al. (2020) reviewed 
four of the most common analytical models to estimate hydraulic properties with Earth tidal analysis. They esti-
mated hydraulic properties from a real data set and provide a range of applicability of the different models based 
on the transmissivity of the aquifer.

While analytical models offer a convenient approach to estimate hydraulic properties, their applicability is limited 
through simplifying assumptions arising from fundamental physics, conceptual model or boundary conditions. 
These include for example, only radial flow, negligible horizontal displacement of the aquifer, confined and 
undrained conditions, unconsolidated materials and no gravity. Moreover, it has been reported that some of 
these assumptions may significantly influence the estimated subsurface properties (Wang et al., 2019; Zhu & 
Wang, 2020).

Numerical modeling of tidal effects is common in coastal (Abarca et al., 2013; M. Zhang et al., 2021) and adja-
cent settings (Alcaraz et al., 2021; Jardani et al., 2012; Pendiuk et al., 2020), likely because the loading effect of 
ocean tides is much larger than that caused solely by Earth tide forces. So far, modeling the subsurface response 
to ocean tides has considered poroelastic conditions and harmonic loading by the weight of the water, therefore, 
solved as a consolidation problem. In contrast, the pressurization of an inland aquifer is produced by changes in 
the pore space volume of the porous material due to strains (i.e., eigenstrains) caused by the gravitational influ-
ence from the movement of celestial bodies. Moreover, the change of the confined pore pressure is generally 
measured using an observation well which causes fluid movement.

To the best of our knowledge, only hydraulic modeling approaches neglecting any geomechanical effects, that is, 
groundwater flow without coupled poroelasticity, have so far been used to investigate the groundwater response 
to Earth tides. For example, Wang et al. (2019) simulated the effect of capillarity of the unsaturated zone in one 
dimension. They found out that the assumption of fixed water table can lead to erroneous estimation of subsurface 
properties with analytical solutions. Zhu and Wang (2020) simulated a multi-layered system to study the effect of 
leakage through an aquitard and concluded that simplifications in the analytical model lead to overly conservative 
estimates of vertical flux between layers. Wang and Manga (2021) provide a summary of these works.

The confined pore pressure generated as result of Earth tide strains is a mechanical phenomenon caused by the 
elastic deformation of the porous matrix. Furthermore, unlike for traditional hydraulic testing approaches, there 
is a general lack of work investigating the effect of realistic conditions and assumptions on interpretations using 
analytical solutions. Investigating the influence of limiting assumptions and realistic subsurface conditions to 
better understand the applicability and robustness of analytical solutions requires development of more advance 
numerical models that also consider coupling with geomechanics.

The objective of this study is therefore to (a) critically examine assumptions upon which analytical solutions are 
based, (b) develop a numerical model for the groundwater responses to Earth tides, which couples hydraulic and 
geomechanical processes, (c) investigate and compare response conditions as well as the influence of geomechan-
ical properties. Thus, our work significantly improves our understanding of the coupled physics, which controls 
the well response in a poroelastic medium. These results can act as a practical guide for improved estimation of 
aquifer properties due to the groundwater response to Earth tides.

2. Methodology
2.1. Fundamental Theory of the Groundwater Response to Earth Tides

Earth tides are displacements of the solid Earth's crust caused by the gravitational forces of celestial bodies 
that move in relation to the Earth. Such displacements are typically expressed as harmonic signals that can be 
predicted from well-known astronomical relationships. Earth tide forces are dominant at distinct frequencies 
within the semi-diurnal and diurnal range, for example, M2 at 1.97322 cpd or S1 at 1.0 cpd. Under tidal forcing, 
the poroelastic space and the porous material elastically deforms depending on the mechanical properties of the 
system resulting in a small change of volume. If the subsurface is saturated, the filling fluid has to adapt to the 
new available pore space which raises or lowers the pore pressure. The processes can be mathematically repre-
sented by the Biot consolidation theory.

Biot (1941) developed the constitutive laws which relate the applied forces (stresses) with deformation (strains) 
and motion within a elastically compressible porous medium. For the purpose of modeling, these laws are 
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formulated in the form of mathematical equations which consist of four basic variables; total stress (σij), strain 
(ϵij), pore pressure (pf) and increment of fluid content (ξ). The mechanical variables (stress or strain) can be 
related with one of the fluid quantity (pore pressure or fluid content) to form independent variable and therefore 
mathematical equations. For the particular case of Earth tides, is convenient to express the poroelastic equations 
in terms of total stress and pore pressure as independent variables, also termed pure stiffness formulation. The 
basic relation between total stress and pore pressure is,

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎′

𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 , (1)

where 𝐴𝐴 𝐴𝐴′

𝑖𝑖𝑖𝑖
 is the effective stress, δij is the Kronecker delta and α is the Biot poroelastic coefficient,

𝛼𝛼 = 1 −
𝐾𝐾

𝐾𝐾𝑠𝑠

, (2)

Ks is the solid material bulk modulus, K is the porous medium bulk modulus. The latter is related to the undrained 
bulk modulus, Ku, as

𝐾𝐾𝑢𝑢 = 𝐾𝐾 + 𝛼𝛼2𝑀𝑀𝑀 (3)

here, M, is the Biot modulus which is defined as,

1

𝑀𝑀
=

𝑛𝑛

𝐾𝐾𝑓𝑓

+
(1 − 𝛼𝛼)(𝛼𝛼 − 𝑛𝑛)

𝐾𝐾
=

𝛼𝛼

𝐵𝐵𝐾𝐾𝑢𝑢

, (4)

where n is the porosity, Kf is the bulk modulus of the fluid and B is the Skempton coefficient.

The effective stress, 𝐴𝐴 𝐴𝐴′

𝑖𝑖𝑖𝑖
 , is related to elastic strain by the generalized Hooke's law through the compliance tensor 

Cijlk (Berryman, 1999; Dropek et al., 1978),

𝜎𝜎′

𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∶ 𝜖𝜖𝑖𝑖𝑖𝑖 =

(

𝐾𝐾𝑢𝑢 −
2𝐺𝐺

3

)

𝛿𝛿𝑖𝑖𝑖𝑖𝜖𝜖 + 2𝐺𝐺𝜖𝜖𝑖𝑖𝑖𝑖 , (5)

where G is the solid material shear modulus, ϵ is the volumetric strain (ϵ = ϵxx + ϵyy + ϵzz). Combining Equations 1 
and 5 results

𝜎𝜎𝑖𝑖𝑖𝑖 =

(

𝐾𝐾𝑢𝑢 −
2𝐺𝐺

3

)

𝛿𝛿𝑖𝑖𝑖𝑖𝜖𝜖 + 2𝐺𝐺𝜖𝜖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝑓𝑓𝛿𝛿𝑖𝑖𝑖𝑖 , (6)

and the dynamic property pf can be related to the volume change as

𝑝𝑝𝑓𝑓 = 𝑀𝑀(−𝛼𝛼𝛼𝛼 + 𝜉𝜉), (7)

Note that Equation 6 is the effective stress equation, but for convenience is expressed in terms of total stress and 
the effective stress is reduce to the first and second terms of the right hand side.

Fluid transport is modeled with the fluid balance equation as

𝑆𝑆𝜖𝜖

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐵𝐵𝐵𝐵𝑢𝑢

𝜕𝜕𝜖𝜖

𝜕𝜕𝜕𝜕

)

=
𝑘𝑘𝜕𝜕𝑝𝑝𝑝𝑝𝑝

𝜇𝜇
∇

2𝜕𝜕𝑓𝑓 +𝑄𝑄 (8)

where kp,ij is the porous medium permeability tensor, μ is the fluid viscosity, Q represents sinks or sources, 
ϵij = ∇ui relates strain with displacement, often preferred in simulation codes (Flemisch et al., 2011; Keilegavlen 
et al., 2021; Kolditz et al., 2012; Verruijt, 2013), and the effective stress can be related to the strain though the 
Hooke's law (i.e., Equation 5). Sϵ is the specific storage at constant strain and is related to the Biot modulus as

𝑆𝑆𝜖𝜖 =
1

𝑀𝑀
, (9)

Equations 6–8 can be solved in a coupled manner with appropriate boundary conditions and represent the elastic 
deformation and fluid movement in a porous medium.
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2.2. Analytical Solution

When uniaxial-vertical strain and zero incremental vertical stress are assumed (this occurs only when one of the 
principal stresses is non-zero and the stress does not change with depth), the subsurface is mechanically restricted 
to move only in the vertical direction, for example, land surface subsidence due to consolidation occurs primarily 
in the vertical direction (Herrera-García et al., 2021). Under such conditions ϵxx = ϵyy = 0 and σzz = 0 which leads 
to a simplified version of Equations 6 and 7 as

𝜎𝜎𝑧𝑧𝑧𝑧 = 0 =

(

𝐾𝐾 +
4𝐺𝐺

3

)

𝜖𝜖𝑧𝑧𝑧𝑧 − 𝛼𝛼𝛼𝛼𝑓𝑓 (10)

and

𝑝𝑝𝑓𝑓 = 𝑀𝑀 (−𝛼𝛼𝛼𝛼𝑧𝑧𝑧𝑧 + 𝜉𝜉) . (11)

Combining Equations 10 and 11 to eliminate ϵzz gives

𝜉𝜉 = 𝑆𝑆𝑆𝑆𝑓𝑓 , (12)

where

𝑆𝑆 =
1

𝑀𝑀
+

3𝛼𝛼2

3𝐾𝐾 + 4𝐺𝐺
. (13)

This is the definition of storage coefficient in hydrology (Cheng, 2016; Verruijt, 2013; Wang, 2017). The specific 
storage, Ss, is obtained when the specific weight of the fluid is considered as

𝑆𝑆𝑠𝑠 = 𝑆𝑆𝑆𝑆𝑓𝑓𝑔𝑔𝑔 (14)

where ρf is the density of the filling fluid and g is the Earth's gravitational acceleration constant.

With this derivation, we stress the conceptual difference between the specific storage at constant strain (Equa-
tion 9) and the storage coefficient with uniaxial strain (Equation 13). Please note that S approaches Sϵ when 
K ≫ Kf, hence the second term of Equations 4 and 13 go toward zero. Physically, in such cases the amount of 
fluid coming out of storage will only depend on the fluid compressibility and the porosity of the porous medium, 
as the porous material is rigid (Freeze & Cherry, 1979; Lambe & Whitman, 1991; Verruijt & Van Baars, 2007).

Hydraulic head, 𝐴𝐴 𝐴 , can be used as a proxy for pore pressure in Equation 8, 𝐴𝐴 𝐴 = 𝑝𝑝𝑝𝑝−1
𝑓𝑓
𝑔𝑔−1 . Moreover, in a confined 

aquifer with a constant thickness Ha, hydraulic conductivity, ka = kp,ijρ −1g −1, can be express in terms of trans-
missivity (T = kaHa) and specific storage at constant strain in terms of storativity at constant strain Sϵ,t = SϵHa as 
(Cheng, 2016; Verruijt, 2013; Wang, 2017),

𝑆𝑆𝜖𝜖𝜖𝜖𝜖

(

𝜕𝜕𝜕

𝜕𝜕𝜖𝜖
+

𝐵𝐵𝐵𝐵𝑢𝑢

𝜌𝜌𝑓𝑓𝑔𝑔

𝜕𝜕𝜖𝜖

𝜕𝜕𝜖𝜖

)

= 𝑇𝑇

[

𝜕𝜕2𝜕

𝜕𝜕𝜕𝜕2
+

𝜕𝜕2𝜕

𝜕𝜕𝜕𝜕2
+

𝜕𝜕2𝜕

𝜕𝜕𝜕𝜕2

]

+
𝑄𝑄

𝜌𝜌𝑓𝑓𝑔𝑔
. (15)

For practical reasons, Equation 15 can be reformulated into cylindrical coordinates assuming only radial flow (C. 
E. Jacob, 1946; C. Jacob & Lohman, 1952), also the effect of a leaky layer on top of the aquifer can be included 
as vertical leakage in the sink/source in terms of hydraulic conductivity of the layer on top (kl) and thickness of 
such layer (Hl) expecting 𝐴𝐴 𝐴𝐴𝑎𝑎𝐴𝐴

−1

𝑙𝑙
≫ 1 as 𝐴𝐴 𝐴𝐴∕𝜌𝜌𝑓𝑓𝑔𝑔 = 𝑘𝑘𝑙𝑙ℎ𝐻𝐻

−1

𝑙𝑙
 ,

𝑆𝑆𝜖𝜖𝜖𝜖𝜖

(

𝜕𝜕𝜕

𝜕𝜕𝜖𝜖
+

𝐵𝐵𝐵𝐵𝑢𝑢

𝜌𝜌𝑓𝑓𝑔𝑔

𝜕𝜕𝜖𝜖

𝜕𝜕𝜖𝜖

)

= 𝑇𝑇

[

𝜕𝜕2𝜕

𝜕𝜕𝜕𝜕2
+

1

𝜕𝜕

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

]

+
𝑘𝑘𝑙𝑙

𝐻𝐻𝑙𝑙

𝜕. (16)

In this work we use the terms aquifer and aquitard to reflect layers of higher and lower hydraulic conductivity, 
respectively, as is consistent with the terminology used in previous works. Equation 16 was used to derive analyt-
ical solutions that describe the groundwater response to Earth tides in a fully vertical and horizontal confined 
aquifers (Hsieh et al., 1987) and in aquifers with vertical leakage (Wang et al., 2018). A detailed derivation of 
the more versatile leaky solution is presented in Wang et al. (2018), but is also included in Appendix A of this 
work. The solution describes the water level in a well (hw) in terms of the hydraulic conductivity of the aquifer 
(ka), hydraulic conductivity of the aquitard (kl), the specific storage at constant strain of the aquifer (Sϵ) and the 
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geometry of the well (Equations A2, A3, and A4). In this formulation, any effects arising from well skin or stor-
age are neglected, but such effects have been investigated in the literature (Gao et al., 2020). Fluid level changes 
in the well are caused by forces generated at the far field (far away from the radius of influence of the observation 
well). Assuming undrained conditions (ξ = 0, in Equation 7) and α = 1 representing unconsolidated systems, 
(e.g., sands, gravels and clays) such changes can be quantified as

𝑝𝑝 = −𝑀𝑀𝑀𝑀𝐺𝐺, (17)

where ϵG is a external volumetric strain. The change of water level in a well due to an areal strain is graphically 
shown in Figures 2a and 2b for two given times from t0 = 0 to t = t with gravitational strains from ϵG = 0 to 
ϵG = ϵG(t).

The amplitude ratio and phase shift between the piezometric head at a distance from the well beyond its radius of 
influence and the water level in the well are expressed as (Hsieh et al., 1987),

𝐴𝐴 =

|

|

|

|

ℎ𝑤𝑤∕
𝐵𝐵𝐵𝐵𝑢𝑢𝜖𝜖0

𝜌𝜌𝜌𝜌

|

|

|

|

=

|

|

|

|

ℎ𝑤𝑤𝛼𝛼∕
𝑀𝑀𝜖𝜖0

𝜌𝜌𝜌𝜌

|

|

|

|

 (18)

and

Δ𝜙𝜙 = arg

(

ℎ𝑤𝑤∕
𝐵𝐵𝐵𝐵𝑢𝑢𝜖𝜖0

𝜌𝜌𝜌𝜌

)

= arg

(

ℎ𝑤𝑤𝛼𝛼∕
𝑀𝑀𝜖𝜖0

𝜌𝜌𝜌𝜌

)

. (19)

Figure 2. Overview of the conceptual models used in this work. (a) Analytical model of Wang et al. (2018) when no external 
force is applied (b) Analytical model of Wang et al. (2018) when the confined pore pressure generated at the far field is 
generated and fluid flow toward the well. (c) A 1D column of the subsurface representative of the aquitard to assess the type 
of response. At t = 0 the column is equilibrium, at t > 0 a harmonic strain is applied which results in fluid movement in and 
out of the column. (d) A 2D model of the aquifer bounded by a aquitard and connected to a well. Earth tide strain is applied 
which moves fluid toward a well that is numerically modeled.
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Here, ϵ0 is the amplitude of the volumetric strain signal, which can be obtained from software based on tidal cata-
logs, for example, PyGtide (Rau, 2018), ETERNA PREDICT (Wenzel, 1996), TSoft (Van Camp & Vauterin, 2005) 
and hw is the fluid level in the well obtained by the analytical solution (Equation A5). The analytical solution 
is subject to the assumptions under which it was derived: (a) undrained conditions, (b) the confining layer has 
negligible specific storage, (c) the flow is horizontal in the aquifer, (d) the well is represented by a line with length 
matching the aquifer extent, (e) the deformation is only vertical, (f) no external forces such as gravity.

Moreover, field measured amplitude ratio, A, and phase shift, Δϕ, can be obtained from applying HALS to 
the Earth tide strain and hydraulic head time series (Schweizer et  al.,  2021). The obtained phase shift varies 
between −π ≥ ϕ ≥ π, thus, only fluid capable to flow from the aquifer to the observation well within that time frame 
(half a day for M2) is going to contribute in a change of the amplitude and phase shift. The latter bounds the scale 
of the method as high conductivity aquifers can move fluid from higher distances than low conductivity aquifers.

Using the results obtained from HALS, Equations 18 and 19 can be inverted to estimate constant values of Equation 16 
using any approach suitable for non-linear algorithm estimation (gradient methods), for example, least-squares. In 
fact, this approach has been used to estimate aquifer hydraulic conductivity, specific storage and aquitard leakage 
from the amplitude and phase response of groundwater to Earth tides (Rau, et al., 2020a; Y. Zhang et al., 2021). 
However, the task of solving these non-linear equations is an ill-posed problem, because the solution might not be 
unique. The computation of meaningful approximate solutions of inversion of Equations 18 and 19, therefore, can be 
quite challenging and strongly dependent on the a suitable initial guess feed  to the non-linear algorithm. Moreover, 
it is not always a simple matter to decide which initial guess to choose. We note that the implications of initial guess 
nor the performance of iterative methods have been investigated for practical use of this solution.

Gradient methods such as the Levenburg-Marquardt often use in least-squares to numerically search for the nearest 
(local) minimum to the given initial condition and are readily implemented in SciPy (Virtanen et al., 2020). The 
function fitting model finds the local or global minimum, which depends on the feed initial guess. To investigate the 
performance of least-squares by the initial guess on the parameter estimation of Wang et al. (2018) (Equations 18 
and 19), we systematically explore the solution space of a fitting function. The fitting function was formulated as

𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐴𝐴 (𝑘𝑘𝑎𝑎, 𝑆𝑆𝜖𝜖, 𝑘𝑘𝐴𝐴) (20)

and

𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜙𝜙𝑜𝑜𝑜𝑜𝑃𝑃 − Δ𝜙𝜙 (𝑘𝑘𝑃𝑃, 𝑆𝑆𝜖𝜖, 𝑘𝑘𝑙𝑙) (21)

where A(ka, Sϵ, kl) and Δϕ(ka, Sϵ, kl) are Equations 18 and 19. The aquifer thickness and aquitard depth were 
arbitrarily defined to be 1 and 100 m, respectively; the radius of the well to 0.2 m, Aobs and ϕobs are objective 
amplitude ratio and phase shift values given by the user. The Earth tide frequency was set to 1.93 cpd, previous 
studies have suggested that by considering an extra tide frequency, for instance, 1 cpd might constrain better the 
minimization problem (Y. Zhang et al., 2021). But this is not explored in this study.

The least-squares solver minimizes the difference between Aobs − A(ka, Sϵ, kl) and ϕobs − Δϕ(ka, Sϵ, kl) of Equa-
tions 20 and 21 by iterating through a combination of values of ka, Sϵ, and kl. An array consisting of discrete 
values within realistic ranges for amplitude ratio (0.001 ≤ A ≤ 1) and phase (−90° ≤ Δϕ ≤ 90°) where generated. 
For each pair of amplitude ratio and phase shift, the solution space was solved using least-squares of SciPy. The 
tolerance for termination by the change of the cost function was set to be 3 ⋅ 10 −6 and units for 20 and 21 where 
set to days so as to increase the numeric values and avoid errors. The sensitivity of the method was tested by 
generating 1,000 samples of ka, Sϵ and kl generated by a random log uniform distribution ranging from 1 ⋅ 10 −7 ≤ 
ka ≤ 1 ⋅ 10 −3 ms −1, 1 ⋅ 10 −7 ≤ Sϵ ≤ 1 ⋅ 10 −5 m −1 and 1 ⋅ 10 −8 ≤ kl ≤ 1 ⋅ 10 −4 ms −1. Each trio of samples was set as 
initial condition in Equations 20 and 21. Starting from different initial values allows the solver to find potentially 
different local minima. The outputs were stored and the maximal difference between each estimated property was 
used as a proxy for performance of the non-linear search. This approach allows identification of values within the 
solution space where several local minimum might be encounter.

2.3. Numerical Model

The generic equations presented in Section 2.2 can be solved analytically for specific boundary conditions (Equa-
tion 16), but analytical solutions do not accounts for the elastic deformation of the porous medium (Section 2.1, 
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Equations 6–8). The coupled physics between fluid movement and mechanical deformation can be solved numer-
ically. Here, we develop a novel numerical approach for simulating the groundwater response to Earth tides. This 
allows a more realistic physical representation compared to the limiting assumptions of the analytical solution 
presented in Section 2.2 and advances the previous study by Wang & Manga (2021). The aim is to investigate and 
establish robustness of the analytical solution when interpreting the groundwater response to Earth tides.

When modeling Earth tides, an external gravitational strain ϵG(x, y, z, t) is applied to deform the Earth's crust 
and the resulting fluid pressure pf(x, y, z, t), and the displacement vector uii(x, y, z, t) is calculated. Under the free 
surface condition, the normal stress along the radius is zero. Hence, gravitational strain can be decomposed into 
its vertical ϵh(x, y, t) and horizontal component ϵv(z, t) (Agnew, 2005),

𝜖𝜖𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜖𝜖ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) + 𝜖𝜖𝑣𝑣(𝑧𝑧𝑥 𝑥𝑥). (22)

Earth tides induce an eigenstrain, that is, a strain that does not result directly from an applied force. Qu and 
Cherkaoui (2006) describes the differences and relationships between total, elastic and eigenstrains. To simulate 
the effect in a realistic well-aquifer system, in which the hydraulic and geomechanical properties of the material 
may vary in space, we applied vertical and horizontal strain as displacement boundary conditions. This fixes the 
internal strain throughout the model as a function of the filling material elastic tensor as (Wang, 2017),

𝑟𝑟 = 𝑅𝑅 ∶ 𝑢𝑢𝑟𝑟𝑟𝑟 = 𝜖𝜖ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝑅𝑅𝑥 (23)

𝑟𝑟 = 0 ∶ 𝑢𝑢𝑟𝑟𝑟𝑟 = 0, (24)

and

𝑧𝑧 = 0 ∶ 𝑢𝑢𝑧𝑧𝑧𝑧 = 𝜖𝜖𝑣𝑣(𝑧𝑧𝑧 𝑧𝑧)𝐿𝐿𝑧 (25)

𝑧𝑧 = −𝐿𝐿 ∶ 𝑢𝑢𝑧𝑧𝑧𝑧 = 0, (26)

where R and L are the horizontal and vertical lengths of the model, respectively. A constant atmospheric pressure 
(i.e., drained condition) is assumed at the top of the modeling domain and at the top of the observation well. Note 
that we exclude consideration of barometric variations, such as could be caused by atmospheric tides, which is a 
valid assumption for the M2 frequency discussed here (Rau, Cuthbert, Acworth, & Blum, 2020b),

𝑧𝑧 = 0 ∶ 𝑝𝑝𝑓𝑓 = 0. (27)

The governing equations follow the traditional Biot (1941) theory of a linear elastic, saturated and deformable 
porous medium with water as the fluid (Cheng, 2016; Wang, 2017). The strong form of the general equations in 
Section 2.1 can be converted into the respective weak form and discretized before solving with the finite element 
(FE) method. In this study, we adopt the continuum representation of an elementary volume (REV) in a porous 
medium. To solve the numerical system the Real Heterogeneity App (RHEA), a FE application based on the 
Multiphysics Object Oriented Simulation Environment (MOOSE) was used (Permann et al., 2020). A detailed 
description of the system of equations to be solved as well as further information of the tight coupling and 
numerical description of the FE implementation utilized in this study can be found in (Bastías Espejo et al., 2021; 
Wilkins et al., 2020, 2021). For consistency, we keep the original notation used in Bastías Espejo et al. (2021), 
where the field variables are the fluid pressure pf and the displacement vector uii.

2.4. Assessing the Subsurface Response Conditions

Within the theory of linear poroelasticity (Equations 6–8), one can distinguish between two end-members that 
describe the type of pore pressure response to stresses and strains: undrained and drained. When a deformation in 
a porous medium occurs, under drained conditions, the rate of applied distortion is slow in relation to the ability 
of the porous medium to allow dissipation of the pressure gradient. This results in the flow of fluid caused by 
the buildup of pressure differences. Under undrained conditions, the rate of applied distortion is fast enough for 
an instantaneous pore pressure response to external deformations and fluid cannot flow in response generating a 
constant confined pore pressure throughout the porous medium. The type of response is of importance as  analyt-
ical solution often assume undrained systems, however most aquifers in nature are draining in at least one bound-
ary, further its relevance has not yet been studied.
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The type of subsurface response is represented by Equation 7, in which ξ describes an increment of change in 
fluid content. Under undrained conditions, ξ = 0 and Equation 7 reduces to Equation 17. While under drained 
conditions ξ ≠ 0. Hence, the confined pore pressure as a response to Earth tides can be obtained with Equation 7 
if the Earth tide strain (ϵG) is known.

For Earth tides, the applied strain depends on the frequency of the harmonic and the type of response is a function 
of the hydro-geomechanical subsurface properties as well as depth. To assess the type of response under realistic 
conditions, we numerically modeled an infinitely long 1D (5,000 m) section of the subsurface (Figure 2c) using 
a harmonic function as displacement boundary condition as follows

𝑧𝑧 = 0, 𝜖𝜖𝑀𝑀2 = 𝜖𝜖0 ⋅ sin
[

2𝜋𝜋𝜋𝜋𝑀𝑀2
𝑡𝑡
]

. (28)

Here, ϵ0 is the amplitude of the Earth strain, 𝐴𝐴 𝐴𝐴𝑀𝑀2
 is the frequency of the M2 component and t is the time in days. 

We computed the increment of fluid content, ξ, over depth 0 ≤ z ≤ 1,000 m and repeated the calculations by 
setting assumed, but realistic discrete values of specific storage at constant strain Sϵ, (1 ⋅ 10 −7 m −1, 1 ⋅ 10 −6 m −1, 
and 1 ⋅ 10 −5 m −1), and bulk modulus K, (1 ⋅ 10 9 Pa, 1 ⋅ 10 10 Pa, and 1 ⋅ 10 11 Pa). These values represent realistic 
conditions as reported in the geoscience literature (Cheng, 2016; Das & Das, 2008; Lade, 2001; Wang, 2017). We 
note that we use the term aquitard even though the assigned values of its hydraulic conductivity are relatively high 
(1 ⋅ 10 −7 ≤ kl ≤ 1 ⋅ 10 −4 ms −1). In our work the term aquitard reflects the fact that it is used as a layer with lower 
hydraulic conductivity values compared to the aquifer and its use is consistent with the terminology and values 
found in previous literature, for example, (Wang et al., 2018).

When analyzing the groundwater response to Earth tides, undrained conditions have to be given for the analytical 
solution to be valid (Appendix A). However, the type of response to Earth tides has not been assessed before and 
is therefore unknown. To assess whether the subsurface response is sufficiently undrained, we can use Equation 7 
assuming α = 1. Under undrained conditions ξ = 0, such condition can be assumed when ϵ ≫ ξ. Hence, the effect 
of ξ can be neglected in Equation 7.

2.5. Numerical Model of a Coupled Well-Aquifer System

To investigate the limitations of the analytical model presented in Section 2.2, a 2D axial-symmetric cylindrical 
model was developed. The model accounts for poro elastic aquifer (Section  2.1) bounded by a low permea-
ble aquitard on top and by a rigid aquiclude on the bottom. Gravity, vertical and horizontal flows are allowed 
(Figure 2d). Boundary conditions are set as described in Section 2.5. The applied Earth strain (ϵG) was calculate 
theoretically with PyGtide (Rau, 2018), a Python wrapper for ETERNA PREDICT 3.4. We chose the city of 
Berlin (Germany) and a signal frequency of 2 cpd for simplicity as it closely resembles M2 with a duration of 
30 days. While the location is arbitrary, it does not change the conclusions because the context of this study is 
generic.

The borehole-subsurface system is modeled as a 1D element outside the 2D system. To relate the porous medium 
and the borehole-subsurface, the boundary at r  =  0 is modeled as a free drainage boundary, that is, a sink 
boundary where the flux is computed in function of the pressure at r  =  0 (pr  =  0) and at the bottom of the 
borehole-subsurface (pw)

𝑟𝑟 = 0, −101 ≤ 𝑧𝑧 ≤ 100, �̇�𝑚𝑓𝑓 = 𝐶𝐶 (𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑟𝑟=0) , (29)

where 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 is the mass flux, C the conductance (i.e., how efficiently fluid is transported though a boundary) 
between the borehole-subsurface and the model. For this study C = 10 −3 m 2s −1 which is high enough to ensure 
that pf = pr = 0 at the end of each non-linear iteration.

As a result, the mass flux through the boundary between the model and the well is computed in every non-linear 
iteration, which fixes the pore pressure at the boundary for the next iteration. This way, the fluid level in the well 
is tightly coupled to the pressure at the well boundary of the model as the fluid level in the well is computed in 
the same Jacobian matrix with the numerical model as,

𝑑𝑑𝑑𝑓𝑓

𝑑𝑑𝑑𝑑
=

�̇�𝑚𝑓𝑓𝐴𝐴𝑐𝑐

𝜌𝜌𝑓𝑓𝐴𝐴𝑤𝑤

. (30)
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Here, hf represents the water level in the well 𝐴𝐴

(

ℎ𝑓𝑓 = 𝑝𝑝𝑓𝑓𝑔𝑔
−1𝜌𝜌−1

𝑓𝑓

)

 , Ac is the external area of a cylinder and Aw is 
the inner area of a cylinder. Since the model is linear elastic, typically, only two non-linear iterations are needed.

The model domain is R = 5,000 m long in the r direction and L = 101 m in depth in the z direction. The aquitard 
is 100 m thick, whereas the aquifer is 1 m thick, and we assume that the well is screened throughout this unit. 
The 101 m long well is located at the left boundary of the modeling domain and the well has rw = 0.2 m of radius 
(Figure 2d). The geometry complies with previous studies (Hsieh et al., 1987; Wang et al., 2018) and therefore 
enables a comparison. The finite elements were discretized using the built-in mesh generator of MOOSE and 
the element size increases logarithmically along the r-axis away from the well. The mesh is vertically and loga-
rithmically discretized 5 times across the aquifer, 20 times across the top layer and 100 times in the horizontal 
direction. The material properties of the model are summarized in Table 1. The values of Table 1 were assumed 
in previous studies (Wang et al., 2018) and extracted from literature (Cheng, 2016; Das & Das, 2008; Lade, 2001; 
Wang, 2017).

The initial pore pressure condition is set as 𝐴𝐴 𝐴𝐴0
𝑓𝑓
= −𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔 and the effective initial stress as 𝐴𝐴 𝐴𝐴′0

𝑧𝑧𝑧𝑧 = (𝜌𝜌𝑠𝑠 − 𝛼𝛼𝜌𝜌𝑓𝑓 ) 𝑔𝑔𝑧𝑧 , 
where 𝐴𝐴 𝐴𝐴′0

𝑧𝑧𝑧𝑧 is the vertical component of the effective stress at time zero. Again, we apply a harmonic displacement 
function with the M2 frequency computed with a tidal catalog, the amplitude of the strain is ϵ0 = 1.2 ⋅ 10 −8. The 
model runs until it reaches quasi steady-state, at which point the well physics as well as tidal forcing as bound-
ary conditions are activated. This approach minimizes potential numerical overshooting produced by the free 
drainage boundary between the porous medium and the well. We verify this numerical implementation using 
the analytical solution of Wang et al. (2018) (Subsection 2.2) with the aquitard permeability set to zero, that is, 
the  model represents only one layer.

3. Results and Discussion
3.1. Analytical Solutions

Previous research has used the analytical solutions by Hsieh et al. (1987) and H. F. Wang (2000), Wang et al. (2018) 
to estimate hydraulic properties for negative and positive phase shifts between groundwater and Earth tides, respec-
tively. We note that the Hsieh et al. (1987) and Wang et al. (2018) require undrained conditions, whereas H. F. 
Wang (2000) drained conditions. The robustness of these assumptions have not been investigated for Earth tide 
frequencies. For drained conditions the relationship between stress and strain is no longer linear, as pore pressure 
also plays a role bearing loads (see Equation 7). Furthermore, while H. F. Wang (2000) considers vertical flow in a 

Property Acronyms Value Unit References

Aquitard hydraulic conductivity kl 1 ⋅ 10 −7 ≤ kl ≤ 10 −4 m s −1 (Cheng, 2016; Wang, 2017)

Aquitard specific storage at constant strain Sϵ,l 1 ⋅ 10 −7, 1 ⋅ 10 −6, 1 ⋅ 10 −5 m −1 (Cheng, 2016; Wang, 2017)

Aquitard bulk modulus Kl 10 GPa (Das & Das, 2008)

Aquitard Poisson's ratio νl 0.25 - (Das & Das, 2008)

Aquitard Biot coefficient al 1 - (Cheng, 2016; Wang, 2017)

Aquifer hydraulic conductivity ka 1 ⋅ 10 −3, 1 ⋅ 10 −4, 1 ⋅ 10 −5 m s −1 (Cheng, 2016; Wang, 2017)

Aquifer specific storage at constant strain Sϵ,a 1 ⋅ 10 −7, 1 ⋅ 10 −6, 1 ⋅ 10 −5 m −1 (Cheng, 2016; Wang, 2017)

Aquifer bulk modulus Ka 10 GPa (Das & Das, 2008)

Aquifer Poisson's ratio νa 0.25 - (Das & Das, 2008)

Aquifer Biot coefficient aa 1 - (Das & Das, 2008)

Skeleton density ρs 2,000 kg m −3 (Cheng, 2016; Wang, 2017)

Bulk modulus of the water Kf 2.2 GPa (Cheng, 2016; Wang, 2017)

Water density ρf 1,000 kg m −3 (Cheng, 2016; Wang, 2017)

Note. The subscript l and a refer to aquitard and aquifer, respectively.

Table 1 
Overview of the Hydraulic and Mechanical Properties of the Numerical Model
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one dimensional poroelastic aquifer, it neglects the influence of an observation well. As shown in Figure 3, a well 
generates phase shifts between the confined far distance pore pressure and the water level in the well as the fluid 
requires time to move in and out of the well. Strictly speaking, this solution was derived for surface loads, such as 
exerted from atmospheric pressure, but not for Earth tide strains. These aspects illustrate that H. F. Wang (2000) 
has limited use when estimating hydraulic properties from the groundwater response to Earth tides.

Wang et al. (2018) provides an extended formulation to Hsieh et al. (1987) considering vertical aquitard leak-
age accounting for both negative and positive phase shifts. It is useful to illustrate the solution space of Wang 
et al. (2018) by providing an overview of amplitude ratios and phase shifts (Equations 18 and 19) as a function 
of realistic ranges of the aquifer hydraulic conductivity (ka) and specific storage at constant strain (Sϵ) as well 

Figure 3. Amplitude and phase shift response of the analytical solution presented in Wang et al. (2018) for a realistic range of hydraulic conductivity and specific 
storage at constant strain values. (a and b) are representative of zero leakage through the aquitard corresponding to Hsieh et al. (1987). (c–f) consider distinct and 
increasing aquitard hydraulic conductivity values. The harmonic signal frequency is 2 cpd, the well and screen radius are 0.2 m, the screen length is 1 m and the 
aquitard has 100 m thickness.
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as discrete values of leakage, see Figure 3. Note that this is based on the dominant harmonic signal frequency 
of 2 cpd, a well and screen radius of 0.2 m, a screen length of 1 m and an aquitard thickness of 100 m. The first 
row, Figures 3a and 3b, shows the case where there is no vertical leakage leading to negative phase shifts only. 
We confirm the reports by Wang et al. (2018) that the analytical solution matches the previous solution by Hsieh 
et al. (1987) when the aquitard hydraulic conductivity is set to zero.

The solution space shows that vertical leakage causes positive phase shifts at relatively high aquifer hydraulic 
conductivity, that is, ka > 1 ⋅ 10 −5 ms −1 in Figure 3d. This threshold is even more clear for vertical leakage larger 
than kl > 1 ⋅ 10 −6 ms −1 where the transition to positive phase shift is almost linear. Moreover, in Figures 3d and 3f, 
the phase shift behavior is very similar for the lower part of the specific storage at constant strain under study 
(Sϵ < 1 ⋅ 10 −5 m −1). A similar case is observed in Figures 3c and 3e where the amplitude response of the analytical 
solution shows very similar results.

The solution space illustrated in Figure  3 shows that the functions are non-linear and, therefore, to estimate 
subsurface parameters a gradient root finding method is necessary. This is based on an iterative method resulting 
in an approximate solution only. The search is based on an initial guess and the method may find different poten-
tial solutions depending on the function gradients. We investigate the effect of the initial guesses on the solution 
space by visualizing the difference in the found local minimum. Figure  4 shows the variability in estimated 
parameters due to providing different initial guesses for least-squares solving. Blue color means less variability 
whereas red color shows a larger difference in the solution space and therefore higher number of local minimum.

In general, higher sensitivity to the initial values is observed in the phase shifts compared to the amplitude ratios. 
The sensitivity for inverting the hydraulic conductivity of the aquifer ka is relatively low (Δka < 5 ⋅ 10 −4 ms −1) at 
negative phases and increases as the phase shift approaches 0°. For values higher than zero degrees the sensitivity 
decreases again until approximately 40° where it starts to increase again (Figure 4a). The highest sensitivity is 
found around amplitude ratio of one and positive phase shift. Situations where the amplitude ratio is one and the 
phase shift much higher than zero are not realistic and should be disregarded.

Specific storage at constant strain shows a high contrast in solution variability with values that are very close to 
ΔSϵ = 1 ⋅ 10 −5 m −1 for most of the solution space (Figure 4b). At low phase shifts (Δϕ < −70°) the variability 
significantly reduces to ΔSϵ = 1 ⋅ 10 −7 m −1. In practice, most of the realistic cases will fall within the high variabil-
ity zone. Vertical leakage shows relatively low sensitivity where the phase shift is negative (Δkl < 5 ⋅ 10 −5 ms −1, 
Figure 4c). However, at positive phase sifts the variability increases up to two orders of magnitude, demonstrating 
the effect of the phase shift on vertical leakage.

In the illustrated case, the sensitivity of the specific storage at constant strain is constant throughout the solution 
space and therefore its initial value does not play a significant role on finding different solutions. Therefore, is 
likely that for each specific storage at constant strain study a local minimum was found during the minimization. 
We, therefore, advise special attention when selecting the initial value of the specific storage in order to obtain 
a meaningful result. This value can be bound if knowledge of porosity is available (Section 3.2). Negative phase 

Figure 4. Color map exploring the solution space, that is, the variability of parameters as a function of the initial guess, of 
the under-determined problem by (Wang et al., 2018). Estimating three hydraulic properties out of two measured parameters: 
(a) aquifer hydraulic conductivity, (b) specific storage at constant strain, (c) aquitard hydraulic conductivity. Note that each 
color scale has a different range. Blue indicates less variability, whereas red means more variability of the results.
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shifts show a low sensitivity to the initial condition and will likely result in an accurate inversion of the hydrau-
lic properties without a priori knowledge of the subsurface properties as mentioned in Section 2.2. For positive 
phase shifts a handle on at least one of the properties is necessary as the vertical leakage significantly increases 
its variability. Further, the hydraulic conductivity increases its variability toward high amplitudes which is the 
range where Earth tide methods work best. Overall, this complies with the previous finding that positive phase 
shifts can robustly be interpreted as vertical leakage (Wang et al., 2018).

3.2. Notes on the Specific Storage

An interesting implication of Section 2.1 arises when α = 1. The latter refers to systems where the compressibil-
ity of porous medium is small compared to the compressibility of grains, such as is the case for unconsolidated 
materials. Here, the specific storage at constant strain (the inverse of the Biot modulus, Equation 4) reduces to

𝑆𝑆𝜖𝜖 =
1

𝑀𝑀
=

𝑛𝑛

𝐾𝐾𝑓𝑓

. (31)

Since the bulk modulus of water is known (Kf = 2.2 ⋅ 10 9 Pa), the porosity of the material can also be estimated 
from the groundwater response to Earth tides. However, for consolidated materials the Biot coefficient may be 
smaller than one. This can help to constrain the expected values of the specific storage at constant strain. For 
instance, if the subsurface material is unconsolidated and has realistic porosity values, that is, 0.01 ≤ n ≤ 0.3, then 
the specific storage at constant strain is constrained to

4.5 ⋅ 10−8𝑚𝑚−1
≤ 𝑆𝑆𝜖𝜖 ≤ 1 ⋅ 10

−6𝑚𝑚−1. (32)

We note that previous studies which estimated the specific storage from the groundwater response to Earth tides 
have not considered the appropriate context for this property. The result is referred to as “specific storage at constant 
strain” (Sϵ) and it can vary significantly from the specific storage generally used in hydrogeology (Ss, see Equa-
tion 13) (Hantush, 1960). The difference between both coefficients originates from the underlying assumptions. The 
specific storage at constant strain is defined in conditions in which the volume of the porous frame is maintained 
constant but the fluid volume is not, which induces changes in the pore volume because fluid has to be accommo-
dated. In contrast, for the specific storage used in hydrogeology the porous frame is allowed to deform in the vertical 
direction. This is mathematically represented by the second term of Equation 13. Thus, when the subsurface material 
is much less compressible than the filling fluid and the pore space the second term of Equation 13 tends to zero 
because no deformation of the frame takes occurs, hence S ≈ Sϵ. Moreover, note that Sϵ ≤ S. Thus, as demonstrated 
in this study, attention must be paid to the conceptual difference between these two parameters.

Analytical models typically assume that the leaky layers have zero specific storage. Zhu and Wang (2020) numer-
ically investigated the effect of specific storage on Earth tide analysis in leaky layers. The authors concluded that 
the assumption of leaky layers with zero specific storage may lead to wrong estimations of subsurface properties 
as the specific storage changes the phase shift. As shown in this work, in unconsolidated systems the specific 
storage at constant strain depends on porosity only. Therefore, the porosity of the aquifer has to exceed that of the 
leaky layer based on the results of Zhu and Wang (2020).

3.3. Numerical Modeling of the Groundwater Response to Earth Tides

The fluid continuity equation (Equation 8) has been solved in previous studies assuming that the strain term ϵ(t) 
is known and solely time-dependent with adequate boundary conditions. This equation is an inhomogenous diffu-
sion equation for which the change of volumetric strain is mathematically equivalent to a sink/source in the aqui-
fer storage term. Therefore, changes of strain result in changes of pore pressure in the entire model domain. When 
mechanical coupling is included, the continuity equation needs to be coupled to the state of stress, hence the strain 
is tightly coupled to pore pressure. Thus, the strain term in Equation 8 is no longer uniform over the entire model 
and may vary depending on the amount of change of fluid. For instance, changes in pore pressure (for earth tides 
within the radius of influence of the well) induces changes in the volumetric strain, which generate  drained condi-
tions (Section 3.4). Therefore, assuming that the applied strain is constant within the model domain is inaccurate 
for our purposes since, as explained before, the strain is function of the pore pressure. Another common way to 
express the coupling between pore pressure and strain is by rearranging Equations 6 and 7 as
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𝜖𝜖 =
1

𝐾𝐾
𝜎𝜎 +

𝛼𝛼

𝐾𝐾
𝑝𝑝𝑓𝑓 . (33)

The relative movement of celestial bodies in relation to Earth induces variations in the gravitational force which 
results in small deformation of the Earth's crust. Such deformations are not caused by an applied stress. In 
continuum mechanics, this problem is known as eigenstrain, and it is very common in heat transport, for exam-
ple, dilatation caused by heating of materials. The relationship between deformation and eigenstrain can be 
obtained experimentally leading to a constitutive model (Qu & Cherkaoui, 2006). In this work we apply a simpler 
approach. As FE implementation typically requires displacement or load as boundary conditions, we set displace-
ment as boundary condition and directly applied the strain obtained from an Earth tide catalog multiplied with 
the length of the model, that is, uii = ϵiiL.

While this approach is convenient it has limitations. If the mechanical properties change over the modeling 
domain (composite material), the displacement will not be uniformly distributed across the domain and therefore 
the resulting strain will also be non-uniform. This would produce larger displacements in soft layers resulting 
in higher pore pressure. One way to solve this problem is to assume vertical heterogeneity and to apply the total 
volumetric strain only at the horizontal boundaries. This would result in a uniform displacement distribution 
in the horizontal axis and therefore result in an appropriate pore pressure response. We note that the effects of 
distributed mechanical heterogeneity are not further explored in this work.

Initialization of the numerical model is not trivial since the initial hydrostatic and mechanical states (initial pore 
pressure and stresses) has to be in equilibrium (Settari & Walters, 2001). This challenge applies in particular 
for heterogeneous distributions of material properties and transient boundary conditions. Achieving mechanical 
equilibrium at time t = 0 is difficult and may in most cases require a separate initialization step during the simu-
lation (Chen et al., 2009). We recommend to first simulate steady-state conditions which generates the stress and 
pore pressure distribution within the modeling domain.

From a numerical point of view, the simulator is setting the force balance as an approximation, that is, ∇σ = 0. 
In practice, a non-linear step is finished when the force balance falls below a threshold close to zero but residual 
errors always remain. Earth tides generate only small changes in pore pressure which are close to the residual 
error. For example, if the acceptable error is e = 1 Pam −2, then in our case the area is 50,50,000 m 2 leading to 
total residuals up to R ≈ 5,050 kPa at the bottom of the model. Since Earth tides generate pore pressure change 
in smaller magnitude, minimizing the error is an important consideration when modeling. Numerical modeling 
of Earth tides therefore requires attention to decreasing the tolerance of the numerical solver (e.g., by increasing 
the number of linear steps), increasing space discretization (e.g., by increasing the size of the Jacobian matrix) or 
decreasing time discretization (e.g., by increasing the number of time steps).

3.4. Are Conditions for the M2 Earth Tide Drained or Undrained?

When a stress is applied to an undrained subsurface system, the load is shared by the bulk material, the grains and 
the pore fluid. The balance between these three responses results in instantaneous deformation of the pore space 
and a change in fluid pressure. If the rate of the applied deformation is slow enough then fluid can flow out of the 
system which result in a change of the pore pressure. The balance between the rate of Earth tide stress and realistic 
hydro-geomechanical subsurface properties is rarely known. Moreover, fluid movement (i.e., drained conditions) 
may be given leading to ξ ≠ 0. Under such conditions the assumptions of the analytical solutions are violated 
potentially leading to errors when interpreting the groundwater level response to Earth tides.

To assess the conditions under which an undrained response occurs for the M2 frequency, we numerically simulate 
a 1D vertical column with depth 0 ≤ z ≤ 5,000 m (Figure 2b) and with a range of realistic hydraulic and geome-
chanical properties. Equation 7 can be solved for fluid quantity (ξ) assuming the worst scenario (ϵG = 1 ⋅ 10 −8 
corresponding to a low tide amplitude) and α = 1,

𝜉𝜉 =
𝑝𝑝𝑓𝑓

𝑀𝑀
− 𝜖𝜖𝐺𝐺 = 𝑆𝑆𝜖𝜖𝑝𝑝𝑓𝑓 − 𝜖𝜖𝐺𝐺, (34)

Figure 5 shows the results of our numerical model which calculates ξ up to 1,000 m depth and for a range of 
realistic hydraulic properties as well as discrete values of the bulk modulus. As typical Earth tide amplitudes vary 
between 1 ⋅ 10 −7 ≤ ϵG ≤ 1 ⋅ 10 −8 (Rojstaczer & Agnew, 1989), we define



Journal of Geophysical Research: Solid Earth

BASTIAS ESPEJO ET AL.

10.1029/2022JB024771

15 of 22

𝜉𝜉 𝜉 5 ⋅ 10
−11 (35)

as a condition for an undrained response for which the analytical solution is valid, that is, no pore pressure 
changes occur under this value. This is highlighted in Figure 5 and allows an assessment of the conditions for 
which the analytical solution should be valid.

Figure  5 shows that undrained conditions are more likely the deeper a system. Further, when the hydraulic 
conductivity of the leaky layer (kl) increases, the system behaves more drained. This is expected as the system 
becomes more permeable and therefore allows flow in response to pressure gradients. This results in fluid move-
ment which causes increased drainage. Similarly, as the specific storage at constant strain increases (rows of plots 
in Figure 5) the level of drainage decreases. This is because as Sϵ increases the volume of fluid that the system 
contains due to deformation increases leading to less fluid moving out of the system. This can also be explained 
using Equation 8 when dividing by Sϵ

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐵𝐵𝐵𝐵𝑢𝑢

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

=
𝑘𝑘𝜕𝜕𝑝𝑝𝑝𝑝𝑝

𝜇𝜇𝜇𝜇𝜕𝜕

∇
2𝜕𝜕𝑓𝑓 +

𝑄𝑄

𝜇𝜇𝜕𝜕

 (36)

Equation 36 illustrates that the hydraulic diffusivity of a system 𝐴𝐴
(

𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜇𝜇
−1𝑆𝑆−1

𝜖𝜖

)

 decreases with the increase of Sϵ.

Figure 5. Change of fluid content ξ over depth and aquitard hydraulic conductivity for a 1D column (Figure 2b) and Earth tide forcing with M2 frequency. Rows 
correspond to different values of specific storage whereas columns are representative for different bulk moduli, for example, clay (a, d, g), sand (b, e, h) and hard rock 
(c, f, i). Values of ξ can be used to infer the depth at which the system response is undrained, that is, where application of the analytical solution (Equations 18 and 19) 
is valid. Value ranges of validity are delineated by the dashed line.
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As the bulk modulus (K) increases, see columns in Figure  5, the system 
becomes more drained. An explanation for this is that as the filling mate-
rial becomes stiffer, the mechanical coupling becomes less relevant and the 
system approaches an incompressible porous skeleton. Under such conditions, 
only a drained response is allowed and an instantaneous pneumatic response 
of the system is no longer possible. This can also be explained by revisiting the 
definition of the Skempton coefficient (B). Assuming α = 1, then

𝐵𝐵 =
𝐾𝐾𝑓𝑓

𝐾𝐾𝑓𝑓 + 𝜙𝜙𝐾𝐾
 (37)

which illustrates that when the bulk modulus increases B decreases. This 
results in a reduction of the overall storativity of the system and consequently 
also drainage. Another way to understand this result is by considering the 
coupling of equations. For this simulation we assumed mechanical stress 
balance as follows

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

𝜕𝜕𝑧𝑧
= 0. (38)

Here, Equation 6 must remain constant when the total stress increases (first 
two terms of Equation 6) thus the amount of fluid leaving the system must 
increase (third term of Equation 6).

In general, a larger porosity will increase the value of the specific storage at constant strain, which will decrease 
the level of drainage. Our assessment shows that when the hydraulic conductivity of the leaky layer exceeds 
kl > 10 −5 ms −1, this leads to drained conditions and could result in errors when the analytical solution is used to 
estimate the properties of the aquifer. However, it is worth noting that the level of drainage depends on the geome-
chanical properties of the system, as well as depth and frequency of the signal. The amplitude of the signal, ϵ0, 
for field measurements, as higher amplitudes will generate higher confined pore pressure and facilitate detection 
of fluid level changes inside the observation well.

As shown in Figure 5, the level of confinement depends on the hydraulic and geomechanical properties of the 
subsurface under consideration. Consequently, defining conditions under which an undrained response exists 
depends on the particular field conditions, for example, depth of the borehole and some knowledge of the subsur-
face properties. Figure 5 can be used as a preliminary guide for assessing whether or not it is appropriate to apply 
the analytical solution for interpreting the groundwater level response to Earth tides.

We note that Figure 5 represents the subsurface response to the M2 frequency. Whether or not a porous medium is 
drained or undrained depends, among other things, on the frequency of the applied strain. In general, the slower 
the frequency the deeper the transition between drained and undrained. Consequently, if two Earth tide compo-
nents were used to estimate properties (Equations 20 and 21) then the observation must be deep enough to ensure 
undrained conditions for both components.

3.5. Robustness and Limits of Analytical Earth Tide Interpretations

Determining subsurface properties from Earth tide responses requires system confinement as a basic condition. To 
study the effects of a realistic well-aquifer system and the effect of (un)drained conditions, the level of confinement 
is gradually relaxed in a layered 2D model in this section. The red dots in Figure 6 shows the results from our 
numerical model (Section 2.5) compared to the analytical solution without vertical leakage (kl = 0 ms −1) for a tidal 
signal with 2 cpd frequency (Section 2.2). The good agreement of amplitude ratios and phase differences verifies 
our coupled numerical modeling approach. This allows a rigorous hydraulic and geomechanical assessment of how 
realistic conditions (e.g., subsurface layered heterogeneity) affects the groundwater response to Earth tides.

The effect of the Biot modulus is also shown in Figure 5. Discrete values of α = 0.75, α = 0.5, and α = 0.25 
were considered and show the effect over the confined pore pressure generated by a Earth tide deformation. In an 
undrained system, the Biot modulus represents the ratio of deformation between the porous space and the porous 
material. Thus it becomes relevant in situations where porous material rearrangement is not possible, such as in 

Figure 6. Verification of the 2D numerical model against Hsieh et al. (1987) 
for a harmonic forcing signal with 2 cpd frequency. Here, the simulation of the 
hydraulic conductivity of the leaky layer was set to zero. The figure also shows 
the effect of the Biot modulus on the confined pore pressure.
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consolidated systems, and it usually varies between n ≤ α ≤ 1 (Wang, 2017). As expressed in Equation 2, the Biot 
modulus attenuates the confined pore pressure generated by a given strain. Therefore, a priori knowledge of its 
value is fundamental when dealing with consolidated systems.

Numerical simulations consider discrete values of the hydraulic conductivity of the aquifer (10 −3, 10 −4  , and 
10 −5 ms −1) and varying values of the aquitard, 10 −7 ≤ kl ≤ 10 −4 (in ms −1) which is the range of values studied by 
(Wang et al., 2018). In addition, discrete values of specific storage at constant strain (10 −5, 10 −6, and 10 −7 m −1) were 
investigated. For detailed information of all the material parameters used in the simulation please refer to Table 1.

The effect of the amplitude ratio and the phase shift due to leakage of the aquitard are shown in Figure 7. The 
columns represent values of aquifer hydraulic conductivity (ka). The first row shows the effect on the amplitude 
ratio (A) and the second column the effect of the phase shift (ϕ) over different levels of aquitard confinement (kl). 
Each line in Figure 7 correspond to the three discrete simulated values of the specific storage at constant strain 
(Sϵ). Simulations are shown with marked lines while the analytical solution of Wang et al. (2018) is shown with 
dashed lines.

The level of drained conditions can be assessed in conjunction with Figure 5 for the three specific storage at 
constant strain simulated here (Figures 5b, 5e and 5h). For example, at 100 m depth (which is the thickness of the 
aquitard in the simulations) and Sϵ = 10 −7 m −1 (Figure 5b), the system shows drained conditions within the entire 
range of confinement (10 −7 ≤ kl ≤ 10 −4 ms −1, see the blue triangle markers in Figure 7). Therefore, the simulated 
amplitude under these conditions is somewhat lower and the phase shift higher compared to the analytical solu-
tion. This results in an underestimation of the hydraulic properties of the aquifer (ka and Sϵ) or overestimation of 
leakage from the aquitard (kl) when the analytical solution is used.

When the specific storage at constant strain of the aquifer is Sϵ = 10 −6 m −1, at 100 m depth, the system is in a 
transition zone between positive and negative change of fluid content when kl = 10 −7 ms −1 (Figure 5e). Since 
the simulated amplitude ratio and phase shift match the analytical solution, the system can still be assumed as 
undrained within this transition zone. However, for higher levels of leakage (kl > 10 −7 ms −1), the system is outside 
this transition zone and completely drained conditions prevail. The latter leads to significant differences between 
numerical and analytical results.

Figure 7. Comparison of the amplitude ratios and phase shifts obtained from numerical modeling and the analytical solution by Wang et al. (2018).
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Similar results are observed when the specific storage at constant strain of the aquifer is Sϵ = 10 −5 m −1. When the 
level of leakage is kl ≤ 5 ⋅ 10 −5 ms −1 the system is undrained or in the transition zone and the numerical results 
comply with the analytical solution. For lower levels of confinement (i.e., kl > 5 ⋅ 10 −5 ms −1), the system becomes 
drained and the simulation results, once again, differ compared to the analytical solution.

In the particular case when the hydraulic conductivity of the aquifer is ka = 10 −5 ms −1, the numerical result do not 
comply with the ones obtained with the analytical solution even under undrained conditions (Figures 7c and 7f). 
As the hydraulic conductivity of the aquifer decreases, the finite time to move fluid in or out of the well increases. 
Hence, it is likely that the fluid velocity is much more influenced by high gradients generated by the drained top 
boundary rather than by the gradients produce inside the open well under such conditions.

In all three columns of Figure 5, as the level of confinement provided by the aquitard decreases, the simulated 
results of phase shift tend toward the same value (90° for the simulated system). This means that, as the drainage 
from the aquitard increases, the effect of the top drained boundary over the pore pressure in the aquifer increases. 
The same effect is observable on the amplitude ratio, where the final value of the amplitude ratio is the same in 
every specific storage at constant strain under study. This effect indicates that the hydraulic conductivity of the 
aquifer loses relevance as the drainage from the aquitard increases. And, therefore, if the system is draining, at 
low levels of confinements (kl > 5 ⋅ 10 −5 ms −1), the groundwater level measured in the field can potentially result 
in very similar values regardless of the aquifer hydraulic conductivity.

The effect of drained conditions on the amplitude ratio and phase shift can be better understood when streamlines 
(i.e., the Darcy velocity field) of the system are plotted. Figure 8 shows streamlines in an area close to the open well 
when the amplitude of the Earth tide strain is at maximum. This provides understanding of how flow paths change 
as the level of confinement decreases at fixed aquifer specific storage at constant strain (Sϵ = 10 −6 m −1) and hydraulic 
conductivity (ka = 10 −4 ms −1). At the high confinement (kl = 10 −7 ms −1) the flow within the aquifer is horizontal and 
pore pressure gradients are directed toward the well. This complies with the assumption of horizontal flow inherent 
to the analytical solution. As confinement decreases (i.e., increasing leakage of the aquitard), the velocity field 
shows increasing flow in the vertical direction through layers which reduces the radius of influence of the well. With 
the smallest confinement investigated (Figure 6c), vertical flow dominates in the aquifer and almost no horizontal 
flow is observable. This shows that the pressure wave produced by the open top boundary has strong effects on the 
amplitude ratio and phase shift at low confinement and dampens the pore pressure signal generated by Earth tides.

Figure 3 can be used in conjunction with the results shown in Figure 7 to assess the potential error due to requiring 
undrained conditions when the analytical solution is utilized. For example, assuming a typical specific storage at 

Figure 8. Streamlines show the velocity field toward the observation well during maximum Earth tide strain for three different aquitards with varying hydraulic 
conductivities: (a) low, (b) medium, (c) high. This illustrates that the flow direction changes from horizontal to vertical as the leakage increases.
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constant strain of Sϵ = 10 −6 m −1, leakage of kl = 10 −6 ms −1 and hydraulic conductivity of the aquifer ka = 10 −3 ms −1, 
the simulated amplitude ratio is 0.61 and the phase shift is 55.0° (Figures 6a and 6d). Since the phase shift is 
positive there is leakage from and to the aquifer to the aquifer is occurring (i.e., kl ≠ 0 ms −1 Figures 2c–2h). When 
the hydraulic conductivity of the aquitard is between 0 ≤ kl ≤ 10 −8 ms −1 (Figures 2c and 2d) the positive phase 
shifts occur only at low amplitude 0 ≤ A ≤ 0.1. When kl is 10 −4 ms −1 (Figures 2g and 2h) the amplitude is smaller 
than 0.1 in the studied range. Thus, kl should range between 10 −8 < kl < 10 −4 ms −1, 10 −4 ≤ ka ≤ 10 −2 ms −1 and 
the specific storage at constant strain between 10 −5 ≤ Sϵ ≤ 10 −4 m −1 (Figures 2e and 2f).

Our results show that a high specific storage at constant strain (Sϵ  ≥  10 −6  m −1) in combination with a high 
confinement (kl ≤ 5 ⋅ 10 −5 ms −1) and hydraulic conductivity of the aquifer (ka ≥ 10 −4 ms −1) allow application 
of the analytical solution. Application to real world system further requires a high contrast in hydraulic conduc-
tivity between the layers 𝐴𝐴

(

𝑘𝑘𝑎𝑎𝑘𝑘
−1

𝑙𝑙
≥ 10

3
)

 with specific storage values that are typical (≈10 −6 m −1). In reality, the 
confined pore pressure is damped by the movement of fluid and fully undrained conditions may be rare. Any a 
priori knowledge of the formation (e.g., thicknesses and hydraulic properties) is key in the assessment of Earth 
tidal analysis, not only to have a good approximation when inverting equations, but also to approximate the level 
of drainage and therefore assess potential errors when the analytical solutions are utilized.

For unconsolidated systems the soil matrix is more compressible than the grains (i.e., an unconsolidated subsur-
face) which leads to α = 1. Moreover, hydraulic conductivity and porosity for what can be considered an aqui-
fer varies between 10 −2 ms −1 ≤ ka ≤ 10 −4 ms −1 and 0.2 ≤ n ≤ 0.3, respectively. This means that the specific 
storage at constant strain varies between 9.1 ⋅ 10 −7 m −1 ≤ Sϵ ≤ 1.4 ⋅ 10 −6 m −1 (with the bulk modulus of water, 
Kf = 2.2 ⋅ 10 −9 Pa). Considering these ranges and given sufficiently high confinement between layers, application 
of the analytical solution to well fluid levels is valid. For example, this would be the case for hydraulic properties 
of sands and gravels overlain by clays or silts.

For consolidated systems, Earth tidal analysis poses a challenge as the Biot coefficient generally is α < 1. In order 
to use the groundwater response to Earth tides, the Biot coefficient has to be known as it directly attenuates the pore 
pressure response to strain (Equation 7). Although some values of the Biot coefficient have been reported for differ-
ent rock types varying from 0.1 to 1 (Cheng, 2016), real world measurements are difficult to find in the literature 
(Cosenza et al., 2002; C. Wang & Zeng, 2011). Our work shows that the Biot coefficient requires estimation when 
the groundwater response to Earth tides is quantitatively evaluated for wells screened in consolidated systems. Hence, 
for real systems, this leads to the following trade-off: As deeper wells are more likely to contain Earth tide influences 
because undrained conditions exists, but they are also more likely consolidated, in which case an estimate of the Biot 
modulus is required. Overall, our results show that a presence of Earth tide components in wells that are screened in 
deep and unconsolidated systems are likely to have undrained conditions and are therefore suitable for interpretation.

4. Conclusions
The amplitude and phase of the groundwater response to harmonic Earth tide components can be used to estimate 
hydraulic conductivity and specific storage values of aquifer systems. However, this approach is based on simpli-
fied analytical solutions to the groundwater flow equation, which has various assumptions that have not been tested 
yet. To assess the effect of such assumptions, we present a numerical method to simulate the groundwater response 
to Earth tides by coupling compressible flow to geomechanics. We demonstrated that this can be solved numeri-
cally using the Multi Object Oriented Simulation Environment (MOOSE) and verify this using a simplified analyt-
ical solution of the groundwater flow equation. We further use simulations to assess the conditions of validity for 
simplified analytical solutions when estimating hydraulic properties from the groundwater response to Earth tides.

By first focusing on the aquitard layer, we assess the subsurface response type, that is, drained or undrained 
conditions, to the dominant harmonic Earth tide component at M2 with frequency of 1.93227 cpd for depths up to 
5 km and a range of hydraulic conductivities. Based on typical Earth tide strains, we define that undrained condi-
tions exist when the incremental of fluid content is smaller than 5 ⋅ 10 −11 for which the groundwater equation and 
associated analytical solution should be valid. Our results show that this is the case for specific storage at constant 
strain larger than 1 ⋅ 10 −6 m −1 and depths higher than 50 m for low conductivity systems (ka < 10 −7 ms −1) and 
depths up to 1 km for high conductivity systems (ka ≥ 10 −3 ms −1).

We revisited previously interpretations based on analytical solutions and showed that the specific storage has 
been often misinterpreted. Moreover, only an approximation of the exact solution of the non-linear analytical 
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models can be obtained. Obtaining physically plausible results for (a) aquifer hydraulic conductivity, (b) specific 
storage at constant strain and (c) aquitard hydraulic conductivity requires constraints, for example, through addi-
tional information. A comparison between the analytical solution and a 2d two-layered aquitard-aquifer system 
coupled to a well shows that amplitudes and phases diverge when the hydraulic conductivity contrast between 
aquifer and aquitard reduces. This is caused by decreasing confinement leading to flow paths that change from 
horizontal to vertical as the vertical leakage increases. Applicability of the analytical solution to real-world prob-
lems requires a hydraulic conductivity contrast of at least three orders of magnitude.

Overall, the confined pore pressure generated by Earth tide strains can be significantly attenuated by the move-
ment of fluid through boundaries (i.e., drained conditions). Furthermore, any additional a priori knowledge about 
the hydraulic or geomechanical properties of the subsurface formation is crucial, if the groundwater response 
to Earth tides is evaluated using analytical solutions. Our numerical approach developed and documented can 
be extended to investigate the influence of other variables on results from analytical solutions. Finally, results 
obtained from the groundwater response to Earth tides should be validated with established hydraulic and 
geophysical methods.

Appendix A: Response of Well Water Levels to Harmonic Forcing
Hsieh et al. (1987) assumed unidirectional radial flow to a well which changes the water level in a well located at 
a boundary of the aquifer. The head gradient in the aquifer is given by the volumetric strain of an Earth tide which 
is assumed to be known. Later on, Wang et al. (2018) complemented Hsieh et al. (1987) work by considering a 
two layered system by adding a leaking term to Equation 16 expressed by

𝑄𝑄 = −
𝑘𝑘𝑙𝑙

𝐻𝐻𝑙𝑙

ℎ, (A1)

with boundary conditions given by

𝑡𝑡 𝑡 0, 𝑟𝑟 = 𝑟𝑟∞ ∶ ℎ(𝑟𝑟, 𝑡𝑡) = ℎ∞ (A2)

𝑡𝑡 𝑡 0, 𝑟𝑟 = 𝑟𝑟𝑤𝑤 ∶ ℎ(𝑟𝑟, 𝑡𝑡) = ℎ𝑤𝑤(𝑡𝑡) (A3)

𝑡𝑡 𝑡 0, 𝑟𝑟 = 𝑟𝑟𝑤𝑤 ∶ 2𝜋𝜋𝑟𝑟𝑤𝑤𝑇𝑇 (𝜕𝜕𝜕∕𝜕𝜕𝑟𝑟) = 𝜋𝜋𝑟𝑟2𝑐𝑐 (𝜕𝜕𝜕𝑤𝑤∕𝜕𝜕𝑡𝑡) (A4)

where kl is the hydraulic conductivity of the leaky layer and Hl the thickness of the leaky layer. Wang et al. (2018) 
presented a solution for changes in well water levels are given by

ℎ𝑤𝑤 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

(𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑘𝑘𝑙𝑙∕𝐻𝐻𝑙𝑙) 𝛾𝛾

(

𝐵𝐵𝐵𝐵𝑢𝑢𝜖𝜖0

𝜌𝜌𝜌𝜌

)

, (A5)

where ω is the angular frequency, hw,e is the change in water level in the well caused by Earth tides, ϵ0 the ampli-
tude of the Earth strain

� = 1 +
(

��
��

)2 ����
2� �

�0(���)
�1(���)

, (A6)

where rw is the well radius, rc is the radius of the well case, K0 and K1 are the modified Bessel functions of the 
first and second kind respectively and

𝛽𝛽 =

(

𝑘𝑘𝑙𝑙

𝑇𝑇𝑇𝑇𝑙𝑙

+
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

𝑇𝑇

)0.5

. (A7)

Data Availability Statement
Finite element simulation files and results, python files to read and visualize data as well as key figures gener-
ated for this study, are available at a Zenodo repository: https://doi.org/10.5281/zenodo.6950492 with MIT 
license.
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