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Abstract
Extreme precipitation events (EPEs) are meteorological phenomena of major concern for
the densely populated regions of northern and central Italy. Although statistically rare,
they tend to be recurrent in autumn and share common characteristics in the large-scale
dynamical evolution responsible for their generation. Past studies on EPEs have reported,
as the main triggering factor, a meridionally elongated upper-level trough embedded in an
incoming Rossby wave packet. In this respect, we show how the meteorological condi-
tions leading to the devastating 1994 Piedmont flood represent a typical flow evolution
for this type of extreme events. Exploiting the systematic classification of EPEs recently
published by the authors and taking advantage of a new observational dataset, this article
revisits the role of the large-scale flow on this and similar cases of past EPEs.
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Downstream development

1 Introduction

The extreme precipitation that affected the Piedmont region, in Northern Italy, in November
1994 led to a destructive flood with significant socioeconomic impacts. Seventy people died,
and more than two thousand had to be evacuated. Damage to public and private property was
extensive, 150 bridges collapsed or were severely damaged, and more than 5000 head of
livestock were lost (Buzzi et al. 1998).

The heaviest precipitation occurred between 4 and 6 of November when several rain gauges
in mountainous regions recorded accumulated values above 300 mm/36 h (Buzzi and
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Tartaglione, 1995). Forty percent of the Piedmont territory received more than 200 mm of rain
during the event (Arpa Piemonte 1998). The large-scale circulation was characterized by a
Rossby wave with meridional extension from the British Isles to the Iberian Peninsula
featuring an elongated trough over Western Europe and a blocking anticyclone over Central
Europe. Extreme precipitation events (EPEs), like this one, are typically associated with a
strongly confluent flow ahead of a polar cold front concentrating water vapour into a narrow
plume, which then interacts with the orography (Krichak et al. 2015). Such a flow can be
triggered by a breaking Rossby wave over Western Europe that takes the form of a PV
streamer, an elongated filament of high potential vorticity (PV) air (Grazzini, 2007, Martius
et al. 2008). Since most of the intense orographic precipitation falls in the prefrontal sector, it is
essential to study the characteristics of the flow and the associated water vapour transport.

Based on the EPE categorization presented in Grazzini et al., 2020a; (hereafter, G2020), in
which the authors classify EPEs into three categories, in the present paper, we discuss the
large-scale circulation characteristics leading to the 1994 Piedmont flood and evaluate its
similarities with other cases. Following a statistical approach, Grazzini et al. (2020b) investi-
gated the upstream large-scale precursors which influence the frequency and intensity of EPEs.
Revisiting the dynamics of the 1994 event might be useful to reveal the processes leading to
such an extreme. Highlighting them is essential in the quest for better predictability and impact
assessment of future events.

In this article, we will retrace the evolution of the event starting from the description of the
regional precipitation pattern and the corresponding synoptic situation and then investigating
the spatiotemporal evolution of the associated wave packet at larger scales. The paper is
organized as follows. In Section 2, we describe the dataset and the key variables used to
analyse the event. In Section 3, we comment on the observed daily precipitation and classi-
fication of the event. In Section 4, we discuss the genesis and characteristics of the synoptic
pattern associated with the event, while in Section 5, we highlight the key role of the moisture
transport and we contrast this case with more recent analogues. Conclusions follow in
Section 6.

2 Data and methods

The atmospheric fields used in this study are retrieved from the ERA5 reanalysis (Hersbach
et al. 2020), while precipitation data, upon which the EPE definition is based, are retrieved
from the new observational dataset ARCIS (Archivio Climatologico per l’Italia Centro
Settentrionale). ARCIS is a recently assembled gridded precipitation dataset (with a resolution
of 5 km) derived from 1762 rain gauges from 11 regional networks in Northern-Central Italy
and several stations of adjacent Alpine regions (Pavan et al. 2019). The dataset has a daily
temporal resolution and covers the period 1961–2015. The input data are checked for quality,
time consistency, synchronicity, and statistical homogeneity and then spatially interpolated
using a modified Shepard’s scheme. The 24-h accumulation period corresponds to the best
practice of the Italian Hydrological Service, i.e. from 08 to 08 UTC of the following day.

Based on this dataset, EPEs are defined and classified as follows. Precipitation is aggre-
gated over the official warning areas (WAs) provided by the Italian Department of Civil
Protection. This choice, preferable to regular boxes, allows averaging precipitation on subre-
gional hydrological basins which are considered climatologically homogenous. Northern-
Central Italy is subdivided into 94 WAs, shown in Fig. 1. EPEs are defined as days with
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daily precipitation greater than or equal to the 99th percentile across one or more WAs.
Subsequently, the meteorological variables listed in Table 1 are used as predictors for the EPE
classification as described in G2020. Among these variables, central in the following consid-
erations is the magnitude of the integrated water vapour transport (IVT), as well as its zonal
(IVTe) and meridional (IVTn) components. Their instantaneous fields in ERA5 are computed
as the integral (over model levels, from the surface to the top of the atmosphere) of the wind
component multiplied by the specific humidity at each level. Positive values of IVTe indicate
an eastward flux, and positive IVTn values indicate a northward flux.

3 Observed precipitation and event classification

Figure 1 shows the daily accumulated precipitation patterns that led to the Piedmont flood as
analysed with the ARCIS dataset which, compared with the raw data of the dense regional
networks, has the advantages of being gridded, spatially homogeneous, and not limited to
single administrative regions. The precipitation event is prolonged, with very high intensity,
especially during the 24-h period from 5 November 08 UTC to 6 November 08 UTC. In this
period, daily values above 300 mm were recorded on the northern and western borders of the
Piedmont region associated with persistent orographic uplift, while on the southern side of the
region, on the border with Liguria, hourly rates in excess of 30 mm/h were reported in a few
stations, due to strong convective activity (Arpa Piemonte, 1998).

Fig. 1 Gridded daily total precipitation from the ARCIS dataset of high-resolution regional observational
networks (mm/24 h). Note that the dates on the panels refer to the end of the 24 h accumulation period 08-08
UTC. The areas in the foregrounds are the Italian Civil Protection Warning Areas used for operational warnings
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Compared with the 887 EPEs found in G2020, we notice that the 1994 Piedmont event,
although not characterized by an extreme spatial extension (ranked only 32nd in this respect),
presents one of the highest area average precipitation intensities. In Table 2 we show
precipitation data and the values of atmospheric variables used for the classification of this
event. A very similar event, which caused the historical Po river flood in October 2000, is also
included in Table 2. The intensity on 5 November 1994 (see the column mmkm2 in Table 2) is
just slightly lower and comparable with the one on 14/10/2000, which is the maximum
precipitation average intensity recorded among all EPEs.

The next question to address is in which category this event is classified. Here we briefly
recall the definition of the three categories in which subdivide EPEs following G2020.
Category 1 (Cat1) events originate from intense frontal structures, including slantwise ascent
in the warm sector of the associated cyclones (warm conveyor belt). Mechanical (orographic)
uplift of low-level marine, statically stable air is the key factor to attain extreme precipitation
that is mostly confined over upwind steep topography. Category 2 (Cat2) events originate from

Table 1 Predictors used in the EPE classification algorithm of G2020

Variable Description Units

Taudmax Daily maximum convective adjustment time scale h
CAPEdmax Daily maximum convective available potential energy J kg−1

IVTe Daily mean zonal component of integrated water vapour
transport (from the surface up to the top of atmosphere)

kg m−1 s−1

IVTn Daly mean meridional component of integrated water
vapour transport (from the surface up to the top of the atmosphere)

kg m−1 s−1

θe850 Daily mean equivalent potential temperature at 850 hPa K
Δθe500-850_dmin Daily minimum θe difference between 500 and 850 hPa K
TCWV Daily mean total column water vapour kg m−2

BS500_925_dmax Daily maximum wind bulk shear between 500 and 925 hPa m s−1

For each EPE day, the instantaneous values of the variables are spatially averaged over Northern-Central Italy
and aggregated daily, as reported in the table. See G2020 for further details on variable definitions and averaging
methods

Table 2 Relevant data for two recent historical Po river floods, 4–6 November 1994 and 11–16 October 2000

Day #WA Area mmkm2 IVTe IVTn Taudmax CAPEdmax TCWV θe850 Dtmin Cat

04/11/1994 7 15.8 68.0 − 23.4 148.1 2.2 66.2 23.2 315.5 2.3 2
05/11/1994 20 33.3 97.7 − 66.7 234.5 4.7 97.2 21.6 314.2 3.7 2
06/11/1994 9 12.7 66.6 − 24.6 150.5 1.3 77.6 19.8 309.8 5.1 2
11/10/2000 8 11.3 77.1 198.4 208.7 1.3 63.2 19.5 311.3 8.8 2
12/10/2000 3 3.0 61.0 148.9 281.1 4.5 220.0 21.5 317.4 1.0 2
13/10/2000 7 9.3 94.8 − 20.0 306.3 6.7 319.5 23.0 320.3 − 1.9 2
14/10/2000 17 32.4 103.4 − 120.8 296.1 5.1 184.9 25.7 321.2 0.5 2
15/10/2000 12 23.9 69.9 − 153.8 254.2 2.5 114.6 23.3 316.8 3.2 2

#WA number of warning areas with spatial daily average precipitation exceeding the 99th percentile of the
respective climatological distribution, Area total area exceeding the 99th percentile of daily precipitation
[103 km2 ], mmkm2 mean area daily precipitation intensity [mm/24 h km2 ], IVTe mean zonal component of
IVT [kg s−1 m−1 ], IVTn mean meridional component of IVT [kg s−1 m−1 ], Taudmax, maximum daily value of
Tau [hours], CAPEdmax daily maximum value of CAPE [J/kg], TCWV daily mean of total column water vapour
[kg/m2 ], θe850 daily mean of equivalent potential temperature at 850 hPa [K] , Dtmin daily minimum of Δθe [K]
(Δθe = θe500–θe850), Cat the EPE category. Atmospheric variables are spatially averaged over Northern-Central
Italy (roughly corresponding to the area covered by ARCIS dataset) and aggregated daily. The maximum
intensity days of the two events are in italics
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a synergic combination of frontal uplift and embedded deep convection. They are character-
ized by a stronger southerly flow component and a reduced moist static stability (almost
neutral conditions). Category 3 (Cat3) events are associated with weakly forced convection
(non-equilibrium convective events) in a potentially unstable environment (i.e. with very high
CAPE). According to the classification method, which is based on the dynamic and thermo-
dynamic predictors listed in Table 1, all the days of the 1994 Piedmont flood episode, as well
as the days of the October 2000 event, qualify as Cat2 EPE days, as indicated in Table 2.

In order to provide further evidence for the classification of the event and describe in more
detail the relevant processes, Fig. 2 displays the patterns of the ERA5 reanalysis low-level
wind at 18 UTC on 5 November 1994 (panel b) and the 06–24 UTC accumulated precipitation
from the ERA5 forecast initiated at 06 UTC of the same day (panel a). The precipitation
pattern shows two main precipitation areas, on the northern side of the Piedmont region,
indicated by the grey arrow, and on the southern side, on the border with Liguria, indicated by
the yellow arrow (also evident in Fig. 1b). The partition of precipitation to convective and
large scale (or “stratiform”) is based on the corresponding definitions and numerical schemes
used in ECMWF forecasts and ERA5 (Owens and Hewson, 2018). The red-dashed contours,
which indicate the convective fraction, suggest that these two peaks are attributable to two
distinct processes. The precipitation peak indicated by the grey arrow is mainly due to
orographically enhanced stratiform precipitation which may have had some isolated convec-
tive element in it, while the other peak indicated by the yellow arrow lies just on the border of a
region where deep convection is predominant (up to 80% of the precipitation amount resulted
from the convection scheme of the model).

Figure 2 b provides further information on the observed differences in precipitation type.
The red isoline, representing the values of 2 potential vorticity units (PVU) at 330 K, marks the
position of the forward side of the upper-level trough (see also Fig. 3). Ahead of it, the cold

Fig. 2 a 18-h accumulated precipitation from 06 UTC to 24 UTC 5 November 1994 in the ERA5 short-term
forecast initialized at 06 UTC. The shaded field depicts the total precipitation (mm), while the red dashed
contours indicate the convective fraction estimated as the ratio of the convective over the total precipitation in
ERA5. Isolines are drawn every 20%, starting from 40%. b Synoptic situation derived from the ERA5 hourly
reanalysis and valid at 18 UTC of the same day, at about the time of maximum convergence of the southerly and
easterly branch of the low level jets. The shaded field is CAPE [J kg−1], the arrows indicate the wind vectors at
925 hPa, the green contours are θe at 850 hPa (every 2 K), and the red contours mark the 2PVU contour at 330 K
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front is evident and represented by the tight zonal gradient in θe at 850 hPa, indicated by the
green contours. A key feature is the very intense low-level flow (blue arrows) at 925 hPa,
which blows northward in the warm sector. This intensifies and splits in two low-level jet
(LLJ) branches during the day. The first one, flowing from the Tyrrhenian sea towards the
Ligurian coast, is channelling warm moist (high θe values around or above 320 K) maritime air
masses in a narrow band ahead of the cold front. This air mass is also relatively unstable with
values of CAPE in the order of 500 Jkg−1 and has relatively low-convective inhibition. In this
airstream, convection is triggered over the sea, by forced uplift over the Ligurian Apennines
and later by the approach of the cold front. A second low-level jet blowing from south-east
forms on the Po valley due to the blocking action of the orography on more stable air masses, a
typical example of barrier wind (Buzzi et al. 2020). The mass convergence of these two
branches in the western Po valley triggered high vertical velocities on the upwind side of the
orography, generating intense and persistent orographic precipitation. A comparison with the
radio sounding data from Ajaccio (Corsica) and San Pietro Capofiume (Emilia-Romagna
region, Po valley), Milano Linate (Lombardy region, Po valley) confirms the different
characteristics of the two airstreams with the Po valley LLJ being very shallow and stable
although very intense, in the order of 20 m s−1 (not shown).

The 1994 Piedmont event was also characterized by a strong IVT band at the eastern flank
of the upper-level trough (Fig. 3) with a magnitude constantly higher than the atmospheric
river (AR) definition threshold of 250 kg s−1 m−1. In addition, the total column water content

Fig. 3 Synoptic view of the 1994 Piedmont flood on 5 November 1994 00 UTC by the ERA5 reanalysis.
Contours show geopotential height at 500 hPa (every 6 dam), the colour shading refers to the IVT magnitude
[kg s−1 m−1], and the cyan arrows indicate IVT vectors, drawn where the IVT magnitude exceeds the AR
threshold of 250 kg s−1 m−1
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(TCWV) was greater than 20 kg m−2. This allows us to affirm that the strong southerly moist
flow ahead of the cold front can be classified as an AR, a circumstance also confirmed by
Krichak et al. 2015.

As we have seen through the examination of the reanalysis fields, this event presents the
key features that are typical of category 2 events, i.e., the abnormally strong flow from the
south and the presence of both large-scale and deep convection precipitation peaks. The
dynamic and thermodynamic characteristics of this event described herein agree with previous
studies obtained with limited area model simulations (Ferretti et al. 2000, Cassardo et al.
2002). In particular, Cassardo et al. (2002) reported that the persistence of deep convection
further contributed to the severity of the event over the Ligurian range.

4 Synoptic evolution and large-scale precursors

As stated above, the presence of a strong southerly airstream, classifiable as AR, is a crucial
feature which characterizes this event as well as many other EPEs in the Alpine region. In this
section, we discuss the origin and dynamical evolution responsible for its occurrence. For this
purpose, we present two figures. Figure 4 shows the synoptic wave and the associated IVT on
4 November at 12 UTC, at the initial phase of the event. Figure 5 displays, in a compact way,
the dynamical evolution of the upper-tropospheric flow and the associated Rossby wave
packets (RWPs) which set the stage for the smaller-scale processes that eventually lead to
the event. Figure 5 depicts the meridional wind component at 300 hPa, the corresponding
envelope E, as well as the 2 PVU contour at 330 K on selected days leading to the event. The
envelope field, diagnosed following Fragkoulidis et al. (2018), highlights the regions where
the RWP amplitude is strong, i.e. the upper-tropospheric jet exhibits pronounced undulations.

Fig. 4 Synoptic configuration on 4 November 1994 12UTC over the Atlantic basin. Contours show geopotential
height at 500 hPa, every 6 dam, the colour shading refers to the IVT magnitude [kg s−1 m−1] (see colour bar
above), and the cyan arrows are IVT vectors, drawn only when the IVT magnitude exceeds the AR threshold of
250 [kg s−1 m−1]
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This is also reflected in the large meridional wind anomaly (v’) values and the associated
succession of troughs and ridges that result in a wavy 2 PVU contour.

The moist airstream that was crucial for the extreme precipitation event grew ahead and in
response to a developing trough over the eastern Atlantic on 2 November (Fig. 5b). The
narrow band of strong IVT associated with the trough can be identified in Fig. 3, where values
exceeding the AR thresholds become evident already from 4 November (Fig. 4). Overall, the

Fig. 5 Evolution of the upper-tropospheric flow leading to the November 1994 Piedmont flood. The panels
depict mean daily values of meridional wind at 300 hPa (colour fill), the corresponding E at 300 hPa (black
contours every 10 m/s starting from 25 m/s) and the 2 PVU isoline at 330 K (orange contour) at a 31 October
1994 (D-5), b 02 November 1994 (D-3), c 04 November 1994 (D-1), d 05 November 1994 (D0), and e 06
November 1994 (D+1). All maps show instantaneous values at 12 UTC
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AR stretches from the Azores to the North Sea. In Fig. 4, the presence of hurricane Florence in
the central Atlantic is also evident. A closer inspection of a sequence of snapshots around 4
November reveals that the circulation and moisture fluxes induced by Florence have interacted
with the trough to the north and the associated upper-level jet. This may have indirectly
influenced the evolution of the N. Atlantic wave packet propagating towards the Mediterra-
nean. As can be seen from Fig. 4, there seems to be a connection in the IVT fluxes from the
tropical cyclone to the trough in the central Atlantic, later visible in the wind field at 250 hPa
(not shown). In this respect, as documented in several other occasions (Grams and
Archambault 2016, Pohorsky et al. 2019), the low-PV air injection into the mid-latitude jet
can cause a jet acceleration and a ridge building, thus strengthening the development of the
trough downstream (in our case over the Mediterranean). A strong downstream development,
possibly connected with anomalous water vapour fluxes in the upstream trough, is frequently
observed in Cat2 events and this evolution is extensively investigated in Grazzini et al.
(2020b).

In the following hours, the slow eastward movement and amplification of the synoptic
wave pattern over Western Europe modulated a strong moisture transport and convergence
towards the western Alpine region. This situation further intensified on 5 November, when the
trough axis advanced slightly eastward, while the downstream ridge centred over the Adriatic
Sea almost kept its position and amplified (Figs. 3, 5). Also note that at that time, a channelling
of the AR between the largest Mediterranean islands (Sardinia and Corsica) and the continent
is evident. This channelling may be responsible for the prefrontal precipitation during the night
between 4 and 5 November. In Fig. 5 we note the northward expansion of the ridge in the
orange PV contour on the Mediterranean, from 4 (panel c) to 5 November (panel d),
presumably also affected by the low-PV outflow associated with the deep convection over
northern Italy.

The synergic interaction between convection and the large-scale environment described
above is typical of Cat2 events as discussed in G2020. It may arise from temporary positive
feedback from the synoptic flow that, through mass convergence, favours local convection to
grow into mesoscale systems, which in turn enhance low-PV air export into the upper levels,
contributing to ridge amplification and further strengthening of mass convergence. However,
the interaction of the large-scale flow and local mesoscale deep convective systems is not yet
fully understood and deserves further investigation.

Finally, we briefly discuss the dynamical evolution of the RWP associated with the trough
over the Mediterranean. The time reference (day 0, D0) is set on the day of maximum
intensity, i.e. on 5 November at 12 UTC. On D-5, a RWP of large amplitude is located over
the central Pacific, highlighted by the black contours (E) in Fig. 5a centred on a narrow PV
streamer east of the dateline. On D-3 (2 November, panel b), the disturbance is growing and
propagating rapidly over North America, inducing a new couplet (ridge-trough) development
over the western North Atlantic, with the latter subsequently approaching western Europe. On
D-1, the amplified trough remains over Western Europe and constitutes the stronger part of the
RWP and the dominant flow feature associated with the EPE synoptic pattern. An apparent
overturning and wave breaking between D0 and D+1 over eastern North Atlantic are well
depicted by the 2 PVU contour. At the same time, v’ and E get fragmented and imply an
incoherent RWP at its decay stage.

This short analysis points to the remote origin of the RWP associated with the trough,
which could be traced back to western-central Pacific 6 to 5 days before. The long lifetime and
coherence of the wave packet may have played a role in determining the good predictability of
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the large-scale flow in the medium-range forecasts, experienced even in the not so advanced
operational systems of that time (Ferrero and Balsamo 2020). The statistical relation between
long spatial and temporal coherence of RWPs and increased forecast skill was already reported
by Grazzini and Vitart (2015).

5 Comparison with other similar EPEs

In this section, we compare this event to others that have recently affected the southern part of the
Alpine area to identify analogies and threshold values for key features of the large-scale flow. As
mentioned in several works (Ralph and Dettinger, 2011, Lavers and Villarini 2013, Krichak et al.
2015, Froidevaux and Martius, 2016), IVT represents an optimal integral variable to account for
the large-scale contribution to the severity of a precipitation event. EPEs require extreme water
vapour convergence to sustain high intensities for an extended period of time, which is why the
association between precipitation and water vapour transport is particularly strong (Lavers et al.
2014). A first comparison of IVTe and IVTn in Table 2 shows that although moisture transport
was significant in the 1994 event, it was inferior to the one registered during the Po flood of 11–15
October 2000. Precipitation in the 2000 event was, in fact, more intense, also due to the presence
of higher convective instability (higher CAPE, lower DTmin, and higher column-integrated water
vapour) associated with a warm air mass (see θe at 850 hPa in Table 2).

Aiming at comparing the contribution of the large-scale circulation, we display the distri-
bution of IVTn as a tracer of the intensity of the upper-level wave and the availability of
moisture. The distribution of IVTn, averaged over the target domain of northern-central Italy
defined in G2020, is shown in Fig. 6 for the different EPE categories. Non-EPE days are
shown in black, while Cat1, Cat2, and Cat3 events are coloured according to the legend. In
addition, recent significant events are marked by the red bars on the x-axis. We notice that the

Fig. 6 Distribution of daily IVTn [kg m−1 s−1] averaged over the target domain of Northern-Central Italy for non
EPEs days (black curve), Cat1 days (blue curve), Cat2 days (orange curve), and Cat3 days (green curve).
Numbers refer to analogue cases of the 1994 Piedmont event in chronological order. Recent cases are also
considered not included in the former classification. (1) 5 November 1994, (2) 13 October 2000, (3) 14 October
2014, (4) 21 November 2016, (5) 20 October 2018 storm “Vaia”, and (6) 21 October 2019
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IVTn values associated with all the marked events lie around and mostly to the right of the
Cat2 distribution mode, which is just slightly below 200 kg m−1 s−1. All these events produced
extensive and damaging floods over the western Po valley and the Piedmont region (see Arpa
Piemonte 2019, for an intercomparison and description of these cases). Standing out from the
Cat2 IVTn distribution is storm Vaia, one of the strongest ever recorded over Central and
Northern Italy (Cavaleri et al. 2019). The Cat2 distribution is clearly separated from the non-
EPE days distribution (black curve), so we can empirically assume that IVTn daily mean
values beyond 200 kg m−1 s−1 are very likely for Cat2 events.

6 Discussion and conclusions

In this study, we have revisited the dynamical evolution of the 1994 Piedmont flood event with
new reanalysis and high-resolution precipitation datasets and in the light of a recent EPE
classification approach. We have shown that this event may be considered an archetype for
southern Alpine Cat2 EPEs which are able to produce very high river discharges and
widespread flooding on small and large river basins due to the combined presence of stratiform
precipitation and deep convection. The main triggering factor was a meridionally elongated
upper-level trough, embedded in an incoming Rossby wave packet that originated in the
Pacific. The wave packet propagation modulated the transport of a large moisture quantity
from the central Atlantic towards the Mediterranean, with a formation of an AR over the
central Mediterranean Sea. We also documented the presence of hurricane Florence in the
central Atlantic in the days before the events, which interacted with the upstream trough and
arguably contributed to strengthen the downstream development of the synoptic wave respon-
sible for the precipitation. Finally, we have highlighted the value of the integrated water vapour
transport as a key variable for detecting large-scale conditions favourable to the realization of
these events, proposing a threshold based on the meridional component IVTn.

There is a growing interest by forecasters to complement direct model precipitation output
(including probability) with other variables/methods which could give a physical insight into
the type of precipitation event to be expected. Lavers et al. (2016) pointed out that IVT is very
useful to detect extreme events in the medium range or even later, while for the shorter forecast
ranges, considering only water vapour fluxes may lead to higher false alarm rate than using
precipitation. Therefore, we conclude that the increased predictability of water vapour trans-
port could be used as the basis for a classification method, including other variables, e.g.
related to RWP properties, to be applied to real-time forecast fields. This could provide a more
robust approach to increase preparedness regarding EPEs, especially at longer forecast ranges.
This is becoming even more substantial in view of the increasing likelihood of extreme
precipitation events in a warming climate.
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