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Abstract
Groningen is the largest onshore gas field under production in Europe. The pressure depletion of the gas field started in 
1963. In 1991, the first induced micro-earthquakes have been located at reservoir level with increasing rates in the following 
decades. Most of these events are of magnitude less than 2.0 and cannot be felt. However, maximum observed magnitudes 
continuously increased over the years until the largest, significant event with M

L
= 3.6 was recorded in 2014, which finally 

led to the decision to reduce the production. This causal sequence displays the crucial role of understanding and modeling 
the relation between production and induced seismicity for economic planing and hazard assessment. Here we test whether 
the induced seismicity related to gas exploration can be modeled by the statistical response of fault networks with rate-and-
state-dependent frictional behavior. We use the long and complete local seismic catalog and additionally detailed informa-
tion on production-induced changes at the reservoir level to test different seismicity models. Both the changes of the fluid 
pressure and of the reservoir compaction are tested as input to approximate the Coulomb stress changes. We find that the 
rate-and-state model with a constant tectonic background seismicity rate can reproduce the observed long delay of the seis-
micity onset. In contrast, so-called Coulomb failure models with instantaneous earthquake nucleation need to assume that 
all faults are initially far from a critical state of stress to explain the delay. Our rate-and-state model based on the fluid pore 
pressure fits the spatiotemporal pattern of the seismicity best, where the fit further improves by taking the fault density and 
orientation into account. Despite its simplicity with only three free parameters, the rate-and-state model can reproduce the 
main statistical features of the observed activity.
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Introduction

Induced seismicity has been observed as a consequence of 
various human underground activities for energy production 
and resource extraction, such as (1) fluid or gas removal in 
the subsurface, (2) mining or quarry sites, (3) fluid or gas 
injection and (4) water impoundment sites (Foulger et al. 
2018; Evans et al. 2012; Ge et al. 2009). However, the causal 
relationship between underground activity and seismicity is 
complex, as at several places induced seismicity is absent 
or only of small magnitude, while in other cases, independ-
ent of the activity type, large earthquakes have occurred, 
including examples like the 1976 M = 7.0 Gazli, Usbekistan 
(Simpson and Leith 1985), 1989 ML = 5.6 Völkershausen, 
Germany (Grünthal and Minkley 2005), 2011 MW = 5.7 
Prague earthquake in Oklahoma, USA (Yeck et al. 2016), 
2017 MW = 5.5 Pohang, South Korea (Grigoli et al. 2018), 
and 1962 ML = 6.3 Koyna, India (Davies et  al. 2013). 
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Such large earthquakes increased the awareness of induced 
seismicity worldwide, especially if the events occurred in 
regions of low tectonic seismicity (Keranen et al. 2014; van 
Thienen-Visser and Breunese 2015). As a consequence, 
ways of regulating this process are increasingly discussed 
(Langenbruch and Zoback 2016) or imposed (van Thienen-
Visser and Breunese 2015). Such regulations are often based 
on vague assumptions or empirical observations with poor 
statistics. Therefore, theoretical models should be employed 
to fill this knowledge gap. These must be developed and 
verified to reliably forecast induced seismicity as a function 
of a few input parameters.

According to the current physical models, induced earth-
quakes occur on pre-existing faults in response to strength 
and stress changes. In particular, changes of the Coulomb-
Failure stress (CFS), the difference between the shear stress 
and the product of the friction coefficient and compressive 
normal stress, are known to be a first-order quantification of 

the criticality of faults (Toda et al. 2005). Although the gen-
eral mechanism seems to be clear, the triggering of seismic-
ity depends on many parameters, such as the distribution and 
orientation of pre-existing faults, the state of effective stress 
resolved on the faults in relation to their frictional strength, 
as well as the acting stressing rate. All these parameters are 
difficult to measure. For instance, the existence of blind 
faults in a low-seismicity region is often only recognized 
after a major induced or triggered earthquake. As well, the 
state of stress on faults is often unknown. Differences in 
the critical stress threshold needed to trigger the first earth-
quakes indicate large variability for different regions, even 
if the production technique and intensity are similar (van 
Eijs et al. 2006).

While, e.g., pressure perturbations of ∼ 0.1 MPa triggered 
earthquakes in Oklahoma in Central USA, a reduction of the 
reservoir pore pressure by ∼ 10 MPa was necessary to trigger 
earthquakes in the Groningen gas field in The Netherlands 

Fig. 1   a Location map of 
Groningen and other gas fields 
in Northern Germany with 
observed seismicity. b Yearly 
changes in pressure (black) and 
compaction (blue) at the Gron-
ingen gas field and the seismic-
ity with M ≥ 1.5 recorded by 
KNMI



Environmental Earth Sciences (2020) 79:252	

1 3

Page 3 of 15  252

(Candela et al. 2018). In our study we use the Groningen gas 
field as test case. Figure 1 shows the temporal evolution of 
the induced seismicity over the production time.

The clearly delayed onset of the seismicity in Fig. 1b has 
been explained by a subcritical state of stress on the faults in 
the reservoir. Among others, Dempsey and Suckale (2017) 
assumed a linear relation between the pore pressure change 
and the seismicity rate on isolated faults in Groningen, con-
sidering the stress threshold as an additional free parameter 
to model the long delay of seismicity. Using this method, the 
estimation of the detailed distribution of the pre-stress levels 
within the fault network can be only done retrospectively and 
involves a number of free parameters.

The linear Coulomb failure model combined with a 
stress threshold has a consistency problem. It implies a zero 
effective tectonic stressing and thus a completely aseismic 
environment before the critical stress is reached. How-
ever, we know from many examples that intraplate regions 
also experience continuous tectonic stressing, even if the 
absolute rates are small. Once the threshold is reached this 
model results in a non-constant earthquake rate, even with-
out human interference. An alternative model, commonly 
known as Coulomb rate-and-state (RS) model, was devel-
oped by Dieterich (1994), who derived a constitutive law 
for the evolution of the seismicity rate on a population of 
faults governed by rate-and-state-dependent friction, subject 
to a stress perturbation (see “Seismicity model and testing 
approach”). The RS model has already been widely applied 
to model seismic activity, e.g. associated with mainshocks 
(Hainzl et al. 2009; Cattania et al. 2015), magma intrusions 
(Toda et al. 2002), water dam loading (Hainzl et al. 2015), 
waste water disposals (Norbeck and Rubinstein 2018), and 
most recently for subregions of the Groningen gas field 
(Candela et al. 2019). The RS model assumes a constant 
tectonic loading leading to a constant low seismicity rate in 
the absence of any human interference and does not involve 
a threshold level for triggering. However, the RS model is 
able to explain the delayed onset of the seismicity, depend-
ing on the time function of the anthropogenic stress loading.

Another key question to be answered is what parameter 
controls the rate of induced seismicity. In a general analy-
sis, van Eijs et al. (2006) found three key parameters for 
hydrocarbon reservoirs in the Netherlands: a critical pressure 
drop, a stiffness contrast between seal and reservoir rock, 
and the fault density. For the Groningen gas field different 
suggestions have been made. Shapiro (2018) found a linear 
relationship between produced gas volume and seismicity 
after the onset of the seismicity and assumed the extracted 
fluid volume rates as the input in their modeling approach. 
Dempsey and Suckale (2017) took the pore pressure changes 
as input data to calculate the Coulomb failure stresses on 
fault segments based on poroelastic effects in a simplified 
fault system (see Fig. 3). Similarly, Candela et al. (2019) 

based their model on the pore pressure combined with 
detailed Coulomb failure stress calculations on the faults 
for selected regions in the reservoir and the non-linear rate-
and-state approach. In contrast, Bourne et al. (2014) based 
their model on the vertical compaction data to calculate the 
compaction strain as the driving mechanism for seismicity. 
This model was modified in their latest publication (Bourne 
et al. 2018), where the authors include the reservoir pore 
pressure and the strain as supposed by van Wees et al. (2018) 
and added the topographic gradient of the reservoir layer 
combined with an extreme threshold failure model to predict 
the seismicity. Buijze et al. (2017) indicated the fault offset 
as another controlling parameter.

In this paper, we explore the RS and the Coulomb failure 
threshold model for explaining the spatiotemporal evolu-
tion of the field seismicity observed in Groningen, since 
the start of production, i.e. including the delayed onset and 
the change of seismicity during recent years. We analyze 
and compare different input parameters in statistical tests 
to evaluate whether pore pressure reduction, reservoir layer 
compaction, layer thickness or fault distribution and orien-
tation have a sufficient sensitivity to justify their usage in 
seismicity models.

Seismicity model and testing approach

Coulomb rate‑and‑state (RS) seismicity model

The most common assumption is that static stress changes 
lead to earthquake nucleations. Seismicity is promoted 
when the Coulomb stress increases and inhibited when it 
decreases. The Coulomb stress is defined as

Here � is the shear stress in the direction of slip, f is the 
coefficient of friction, and �eff is the effective compres-
sive normal stress on the fault plane; the latter is given by 
�eff = �n − p , where �n is the Cauchy stress acting on the 
rock skeleton and p the change in pore pressure in the pore 
volume of a porous rock.

Based on constitutive friction laws derived in laboratory 
experiments, Dieterich (1994) derived a constitutive law for 
the evolution of seismicity on a population of faults gov-
erned by rate-and-state-dependent friction, subject to a stress 
perturbation. The seismicity rate R is given as a function of 
the stressing history

where r is the background rate of seismicity, 𝜏̇ is the back-
ground shear stressing rate and � is the state variable that 

(1)CFS = � − f�eff.

(2)R =
r

𝜏̇𝛾
,
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depends on the stress evolution. If normal stress changes 
are small compared to the absolute values, the evolution of 
� is given by

with S = � − f ��eff and f � = f − � . Here A and � are positive 
non-dimensional constitutive parameters (Linker and Diet-
erich 1992). Thus, the input parameter S in the RS model 
is simply the Coulomb stress with a reduced friction coeffi-
cient. However, the earthquake nucleation in a rate-and-state 
framework is based on physically different principles to the 
simple Coulomb failure criterion, which is employed in a 
linear Coulomb model (CM). The RS model employs a fric-
tional instability leading to rupture nucleation that considers 
the dependence of friction on slip and slip rate. While the 
CM assumes instantaneous triggering if a certain threshold 
of the Coulomb stress is exceeded, the nucleation process in 
the RS model leads to a delayed response in the seismicity. 
Nonetheless, the concepts underlying Coulomb stress trans-
fer can still be used to interpret the spatial distribution of 
seismicity over a longer period, because the total number of 
events triggered in the RS model by a transient stress change 
is known to be proportional to �CFS = CFS(t + �t) − CFS(t) 
(Dieterich 1994; Hainzl et al. 2010a).

In the Groningen gas field, the dominant rupture mecha-
nism is normal faulting (Willacy et al. 2018), indicating 
that the largest principle compressive stress ( �1 ) is vertical 
and the smallest ( �3 ) is horizontal. From previous works, 
it is known that most pre-existing faults dip at around 70◦ 
(van Wees et al. 2018). The gas extraction in Groningen 
resulted in pressure drops, average around 22 MPa, in the 
reservoir layer. As a consequence, the horizontal stress �h 
decreases according to poroelasticity with declining res-
ervoir pressure ( 𝛥p < 0 ) in a linear way, namely

with Biot–Willis coefficient � and the drained Poisson’s ratio 
� (Segall and Fitzgerald 1998; Dempsey and Suckale 2017). 
This leads to Coulomb stress changes which are proportional 
to the pore pressure changes

In an alternative approach, the reservoir is approximated as 
a thin sheet, meaning that its lateral extents are significantly 
larger than its vertical extent. In this approximation, the 
deformations induced by pore fluid pressure, as an internal 
body force, will be approximately uniaxial due to symmetry. 
That means that all strain components related to that change 
are approximately zero inside the reservoir with the excep-
tion of the vertical strain �zz which can be approximated by

(3)d� =
dt − �dS

A�n

(4)𝛥𝜎h = Ã𝛥p with Ã = 𝛼(1 − 2𝜈)∕(1 − 𝜈)

(5)�S = c1�p.

with h being the thickness of the layer (Bourne et al. 2014). 
This estimation leads to a simple proportionality between 
the stress changes and compaction

where c2 depends on the dip angle and the assumed seismic 
coupling coefficient and K is the bulk modulus.

In the following, we test both alternative models. In par-
ticular, we assume an induced stressing rate

where dots refer to time derivatives.

Input data

Groningen gas field is located in a region of very low tec-
tonic seismicity. No seismicity was recorded in Northern 
Netherlands until December 1986 when near Assen an earth-
quake of ML = 2.8 occurred. This event took place nearby to 
a gas field in production, with a shallow depth (about 1 km). 
Thus it was classified as an induced event (van Eck et al. 
2006). Since 1995 a seismic network of 19 permanent sta-
tions (11 borehole stations in the North of the Netherlands) 
and 17 additional accelerometers has been installed in the 
Netherlands and recorded several hundred induced events 
in the northern Netherlands (points in Figs. 1 and 2). The 
prominent characteristics of the observed seismicity at Gro-
ningen gas field are as follows: the first recorded earthquake 
was a ML = 2.4 event on December 5, 1991, at a depth of 
3 km. It happened nearly 30 years after pressure depletion 
started. The number of events increased in the following 
years almost exponentially. Similarly, the observed maxi-
mum magnitude of the earthquakes continuously increased, 
until the so-far largest earthquake with ML = 3.6 happened 
on August 16, 2012. In 2014, the production was drastically 
reduced and limited, immediately followed by a reduction in 
seismicity, visible as less dense points in Fig. 1 and shown 
by the yearly sum in Fig. 5.

We used the seismic catalog from KNMI (Koninklijk 
Nederlands Meteorologisch Instituut) as it is provided on the 
KNMI website (www.knmi.nl, events after June 2017, down-
loaded on January 9, 2019) and as it was used by Dempsey 
and Suckale (2017) (until June 2017). Since 1995, the mag-
nitude of completeness for the seismic network is 1.5 (Dost 
et al. 2012); therefore, we restrict the analysis on events with 
ML ≥ 1.5.

We determine the seismicity as a function of the 
pore pressure drop in the Groningen reservoir and the 

(6)��zz = �h∕h

(7)�S = c2K�h∕h,

(8)
model A Ṡ(�, t) = c1ṗ(�, t)

or model B Ṡ(�, t) = c2Kḣ(�, t)∕h(�),

http://www.knmi.nl
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reservoir-layer compaction, both provided by the NAM 
(Nederlandse Aardolie Maatschappij) for the Groningen 
gas field on a yearly basis with a spatial resolution of a 
500 m × 500 m grid at locations (xn, yn) with n = 1,… ,N 
and N = 5066 . Production in Groningen was planned to 
minimize spatial variations in reservoir overpressure. This 
was possible because the high permeability in the central 
field ensures the pressure reaches equilibrium within months 
(van Thienen-Visser and Breunese 2015). However, most 
production wells are located in the southern part of the res-
ervoir, which may lead to a temporary disequilibrium dur-
ing enhanced production phases and cause slightly higher 
pressure drops in the southern area. Nearly all over the gas 
field the total pressure drop by 2014 ranges from 20 to 28 
MPa (Fig. 2).

The reservoir layer compaction model by NAM is based 
on observed surface subsidence and strain measurements 
in boreholes. While the pressure drop is almost constant 
over the field’s dimension, the compaction is largest in the 
western central part of the field (Fig. 2). In this area, the 
density of faults cutting the reservoir layer is also increased. 
Also noteworthy is that the reservoir compaction smooths 
out at the boundaries of the gas reservoir, similar to the 
displacement solution of a crack model, while the pressure 
drop model has sharp boundaries including a narrow val-
ley-like structure (reservoir low) bounded by two distinct 
NW–SE striking faults systems in the western central field. 
As already recognized by Bourne et al. (2014) and Dempsey 
and Suckale (2017) most of the induced earthquakes occur 
in this central western part of the field. For the analysis, 
we linearly interpolate both pressure and compaction data 
and calculate their time derivatives in time steps �t at each 

of the spatial grid nodes, ṗ(tk, xn, yn) = 𝛥p(tk, xn, yn)∕𝛥t and 
ḣ(tk, xn, yn) = 𝛥h(tk, xn, yn)∕𝛥t . For the bulk modulus, we use 
a value of K = 10 GPa.

To determine the compaction-induced stress, which 
depends on vertical strain, both the absolute reservoir 
thickness h(xn, yn) and its change (compaction) are needed. 
While the compaction is provided directly from NAM, 
we estimate h(xn, yn) from the layer model provided by 
NAM. The thickness of the Rotliegend formation is taken 
as the reservoir thickness. The Rotliegend layer gradually 
thickens towards NW with a mean value of 225 m (Fig. 3). 
Additionally, the layer dips towards the NW. The reservoir 
thickness may also influence a depth-normalized seismic-
ity rate. However, due to its small relative changes, we use 
a constant thickness for both, the integration of seismic 
production and the stressing of the reservoir layer in model 
B, Ṡ(tk, xn, yn) = c2ḣ(tk, xn, yn)∕h(xn, yn) (compare Eq. 8).

In our analysis, we additionally use fault density. The 
fault information provided by NAM are summarized 
by Dempsey and Suckale (2017). The largest 325 faults 
are given as vector lines (see Fig. 3). For the fault den-
sity map, we set the point spacing describing the faults 
to 100 m. These points are smoothed using a Gaussian 
function with a standard deviation of 1 km and the final 
distribution, �(xn, yn) is normalized. Besides the model 
with spatially constant background rate r(xn, yn) = r0 , we 
test a model where the background rate is proportional to 
the fault density, r(xn, yn) = �(xn, yn)r0 . Note that in both 
cases, the total background rate for the whole reservoir 
is the same, namely rtot = Nr0 . Furthermore, we test the 
influence of the fault orientation � . For that purpose, we 
assume a normal faulting regime with unknown fault dip 

Fig. 2   Map of compaction (left) 
and pressure change (right) at 
Groningen for the depletion 
time until 2014. The location is 
marked in Fig. 1a. Squares show 
production wells. Turquoise 
circles give magnitude scaled 
earthquakes recorded by KNMI 
with M ≥ 1.5 in the time period 
until 2014
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values and modify the fault density map by weighting each 
fault sample with |cos(��)| . Here �� is the angle between 
the normal vector on the fault trace and the orientation of 
the minimum horizontal stress, �3 = Sh with 50◦ as angle 
between �3 and north (Mulders 2003). For a normal fault-
ing regime without considering the fault dip, � = 0 gives 
the maximum Coulomb stress.

Model implementation

Based on the input fields ṗ(tk, xn, yn), ḣ(tk, xn, yn), h(xn, yn) 
and r(xn, yn) , we first calculate Ṡ(tk, xn, yn) for models A 
and B and then iterate the state variable in each grid point 
(xn, yn) according to the algorithm provided by Hainzl et al. 
(2010b). Due to the absence of historic earthquake data 
and the large uncertainties in stress estimations, we use the 
corresponding parameters as fitting parameters. In particu-
lar, we use as free model parameter r0,A� and ta = A𝜎∕𝜏̇ . 
Note that we use for convenience ta instead of 𝜏̇ . Further-
more, the factor of proportionality c1 , respectively c2 , can 
be simply absorbed by associating A� with A�∕c1,2 and 
𝜏̇ with 𝜏̇∕c1,2 in the equations and is not an independent 
free parameter. Assuming that the model parameters are 
constant in space, our model consists, therefore, of three 
free parameters which have to be estimated from the data: 
ta , A� , and r0.

Starting from constant background rate ( 𝛾 = 1∕𝜏̇ , the 
state parameter � is iterated in time steps of fifty days, 
�t = 50 d, in each grid point. This leads to an estimated 
seismicity rate R(tk, xn, yn, z̄) on the average depth level of 
the reservoir. Our input data have no depth resolution. To 
account for the total rate in each map location, the rate 
has to be integrated over the seismogenic width which is 

here assumed to be equal to the reservoir height, yielding 
R(tk, xn, yn) = h(xn, yn)R(tk, xn, yn, z̄).

To estimate the free model parameters, we use the 
maximum likelihood method (Daley and Vere-Jones 2003; 
Hainzl et al. 2010b). For Z earthquakes occurred at times 
ti and locations �i within a given time interval [T0, T1] and 
spatial volume [X0,X1] x [Y0, Y1] , the logarithmic likelihood 
value can be determined by

where k(i) and n(i) refer to the index of the time bin and spa-
tial volume in which the ith event fall. However, it is impor-
tant to consider location uncertainties. For that purpose, we 
estimate the probability that an earthquake is associated with 
different spatial grid points according to a Gaussian location 
error with standard deviation � . Note that we normalize all 
resulting weights wn,i , thus the sum over all grid points is 
one. Then the spatially averaged rate at the occurrence time 
is calculated by R(tk(i)) =

∑N

n=1
wn,iR(tk(i), xn, yn) . In the case 

of � = 0 , the weight for the spatial volume in which the 
ith event fall is one, while all other grid points are given a 
weight of zero. In this case, Eq. (9) is directly used. In all 
other cases, Eq. (9) is used after replacing R(tk(i), xn(i), yn(i)) 
by R(tk(i)) . In particular, in the case of � = ∞ , all spatial 
grid points get the same weight which is equivalent to only 
considering the timing of the events, but ignoring the exact 
location of the events within the reservoir.

(9)

lnL =

Z∑

i=1

lnR(ti, xi, yi) −

T1

∫

T0

X1

∫

X0

Y1

∫

Y0

R(t, x, y) dt dx dy

≈

Z∑

i=1

lnR(tk(i), xn(i), yn(i)) −

K∑

k=1

N∑

n=1

R(tk, xn, yn)�t,

Fig. 3   Left: the rose diagram 
represents the distribution of 
fault strike directions and the 
color-coded map gives the fault 
density for Groningen. Right: 
reservoir thickness of the Rotli-
egend formation. The grey lines 
indicate known faults and in 
black the field outline is given. 
The turquoise circles show loca-
tions of observed earthquakes 
with M ≥ 1.5
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The r0 value optimizing lnL can be found analytically 
for given A� and ta (Hainzl et al. 2010b). To find the global 
optimum, we perform a two-dimensional grid search 
related to the parameters A� and ta . The time interval is 
set to T0 = 1959 when the production started until the end 
of our input data T1 = 2017 , assuming that no M ≥ 1.5 
occurred before 1991.

Alternative models

For comparison, we also test three models with three or 
fewer free parameters. The first one is the stationary Pois-
son model, R(tk, xn, yn) = r0 , with one free parameter r0 . This 
model is the basis of time-independent seismic hazard cal-
culations and represents the random and memoryless occur-
rence of activity with constant rate. The maximum likeli-
hood method yields for the Poisson model the optimized 
parameter r0 = Z∕[(T1 − T0)N].

The second model is the Coulomb model (CM), where the 
seismicity rate is proportional to the induced stressing rate (if 
positive), i.e. R(tk, xn, yn) = r0 + aṠ(tk, xn, yn) ⋅ H(Ṡ(tk, xn, yn)) 
with H(x) = 1 for x ≥ 0 and 0 else. A background rate r0 is 
usually not considered within a linear CM. However, we 
introduced r0 to avoid the immediate model falsification by 
outliers occurring in grid cells with zero or negative stress 
changes. In particular, we set r0 = 1∕(N ⋅ K ⋅ �t) , which 
means that we assume that one earthquake is associated 

with the background activity in the total time period and 
the reservoir volume. The Coulomb model is equivalent to 
the model of Dempsey and Suckale (2017) in the case that 
all faults are critically loaded. We call this model CMcr . To 
account for subcritical stress values in the beginning, we 
introduce the new parameter �S0 , which defines the initial 
stress deficit. Only after the stress increase exceeds �S0 in 
a given location, then faults are assumed to be critically 
stressed and the local seismicity rate starts to be proportional 
to the stress change, while it was zero before. This model is 
called CMsubcr.

In all cases, we also test a modified version of the model 
which accounts for the fault density. In particular, we con-
sider that the predicted rate is proportional to the normalized 
fault density factor, Rw(tk, xn, yn) = �(xn, yn)R(tk, xn, yn).

For comparison of the model fits, we use the Akaike 
Information Criterion, AIC = 2(Mf − ln L) , to account for 
the different number of free parameters Mf  . The model with 
the smallest AIC value performs best.

Results

We calculated the results for different location errors 
� = 0, 1, 3, 5, 7, 10 km and ∞ . In each case, we optimized 
the parameters of the seismicity models and compared the 

Fig. 4   Fit quality (AIC value) 
as function of the location error 
for the analyzed models with 
and without fault density and 
orientation. Upper plot shows 
the results for stress calculated 
based on pressure data, while 
the same results are shown for 
the models based on compac-
tion data on the bottom. The 
two legends apply for both 
plots. The minimum AIC value 
(best result) is marked by the 
dashed horizontal line in both 
plots
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resulting AIC values. The resulting AIC values are shown 
in Fig. 4 as a function of the location uncertainties for the 
different models with and without considering for fault 
density and orientation. The model parameters related to 
the minimum AIC value for each model are provided in 
Table 1. While the individual model parameters are dis-
cussed in “Discussion”, we first compare the fits of the dif-
ferent models.

Best solutions are obtained, if location errors of 1 km 
for Poisson/CMcr and 3 km for CMsubcr/RS are considered. 
Overall, the CM is found to describe the seismicity bet-
ter than the Poisson model, but only performs well, if a 
stress deficit �S0 is considered ( CMsubcr ). This is in agree-
ment with the findings of Dempsey and Suckale (2017). If 
criticality is assumed from the beginning, the CM ( CMcr ) 
predicts the largest seismicity rates in the time span from 
1975 to 1982, when no seismicity was observed but pro-
duction was largest. The fit of the CMsubcr is similarly good 
for both types of input data; performing slightly better 
for the pressure input. However, the RS model explains 
the observed seismicity best. The improvement of the RS 
model with respect to CMsubcr is small for the compaction 
data, but significant for the pressure data. The best RS 
model based on pressure data yields a fit with a difference 
of �AIC = 36 to the second best model.

In all cases, besides model CMsubcr based on compaction, 
the fits improve by considering fault density. They further 
improve when additionally the fault orientations are taken 
into account which yield the best results for the model 
classes. For the Poisson model for instance, considering the 
fault density improves the model by �AIC = 32 . Taking the 
fault orientation into account improves the model further by 
�AIC = 43 and considering a location error of 1 km gains 
�AIC = 56 . Larger location error does not further improve 
the model.

In the following, we analyze the model fits in the time and 
space domain. Figure 5 shows the time series of the summed 

seismicity rates in the reservoir predicted by the models in 
comparison to the observed seismicity. Here the results for 
the models based on pressure changes (model A) are shown 
by solid lines, while the corresponding results for the com-
paction strain data are marked by dashed lines. For both sets 
of input data, the seismicity rates predicted by RS shows a 
delayed and smooth onset of seismicity with increasing rates 
over time, as well as the decrease of seismicity rate after 
reduction in production in 2014; capturing the main features 
of the observed seismicity.

Similarly, the CMsubcr based on compaction data fits 
equally well. However, the seismicity rates predicted by 
CMsubcr based on pressure changes predict a rather abrupt 
onset of activity and cannot fully reproduce the strong 
increase observed until 2014.

Figure 6 shows spatial maps of the temporally integrated 
seismicity rates until 2014 for the CMsubcr and the RS model 
based on pressure data. To illustrate the effect of the fault 

Table 1   Fit results of seismicity 
models for the complete field 
using Eq. (9) for the time period 
1960–2017

All time and stress units are in years and MPa, respectively. The best fitting result is highlighted in bold
a A: input data are pressure changes
b B: input data are compaction strain
cf+o: fault density and orientation are used
dnf: no fault density used

Model Parameters AIC

Poisson r
0
= 4.9 f + oc , � = 1.0 4423

CM
cr

A
a

r
0
= 0.017 ; a = 0.9 ⋅ 10−4 f+o, � = 1.0 4380

B
b

r
0
= 0.017 ; a = 2.2 ⋅ 10−4 f+o, � = 1.0 4342

CM
subcr

A r
0
= 0.017 ; a = 0.3 ⋅ 10−3 ; �S

0
= 17.2 f+o, � = 3.0 3805

B r
0
= 0.017 ; a = 1.3 ⋅ 10−3 ; �S

0
= 8.5 nf

d , � = 5.0 3809
RS A r

0
= 1.4 ⋅ 10−4 ; A� = 1.7 ; t

a
= 1.0 ⋅ 106 f+o, � = 3.0 3769

B r
0
= 1.2 ⋅ 10−4 ; A� = 0.7 ; t

a
= 1.0 ⋅ 106 f+o, � = 3.0 3808

Fig. 5   Comparison of the observed seismicity rate (turquoise curve) 
with the predicted rates of the four colour-coded models integrated 
over the whole field for both input data sets: pressure changes (model 
A) and compaction strain (model B)
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density, the model results are shown without (a, b) and with 
(c, d) fault density. The maps of the CMsubcr and the RS 
model are nearly identical which is in accordance with the 
similar AIC values. In the case where the fault density is 
ignored (a, b), the layer thickness is visible in the seismic-
ity map with a smooth gradient towards the northern area, 
where most events are predicted. Additionally, the effect of 
some major faults is already indirectly visible, because they 
act as barriers in the pressure field leading to rapid changes 
of predicted seismicity. But the influence of the layer thick-
ness is weaker for the RS model in Fig. 6b, here the contrasts 
in pressure changes are stronger preserved, causing a slight 
damping of the predicted seismic density in the northern part 
of the field. For example at grid point ( X = 250 , Y = 610 ) 
0.32 events per km2 are predicted by CMsubcr and RS predicts 
0.27 events per km2.

The lower two panels (c) and (d) of Fig. 6 show cor-
responding maps for the models with fault density (see 

“Seismicity model and testing approach” and Fig. 3a). 
The influence of the fault density is dominant for both 
models. The seismicity is focused to regions of high fault 
density resulting in a remarkable agreement to the loca-
tions of observed seismicity, which is found when the fault 
density weight is applied to the Poisson model. The seis-
micity map for the CMsubcr model, however, overestimates 
the seismicity rates in the northwestern area ( X < 240 , 
Y > 600 ) with values over 0.25 events per km2 , whereas 
the values of the RS model reach only 0.2 events per km2 
north of the reservoir outlines. In the RS model two main 
regions of seismicity are predicted, one in the centre of the 
reservoir and one in the SW (see Fig. 6d). In these regions 
most seismicity occurred. In detail, there are some misfits, 
e.g. for the SW region the seismicity is overestimated by 
the model. These could indicate heterogeneities in the field 
as suggested by Candela et al. (2019).

Fig. 6   Maps of predicted seis-
micity until 2014 for the CM

subcr
 

(a, c) and RS (b, d) model 
based on pressure changes. In 
(c, d) the predicted seismic-
ity rates are weighted with 
the normalized fault density. 
The observed earthquakes of 
M ≥ 1.5 until 2014 are plotted 
as magnitude scaled turquoise 
circles. The accordant result for 
the compaction data are shown 
in Supplement Figure S1
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Comparing the two input data sets (model A—pressure 
changes and B—compaction strain) the spatial pattern of 
pressure changes in the raw data do not match to the earth-
quake locations whereas the compaction data fit signifi-
cantly better, although the maximum is offset relative to 
the region with highest seismicity (see Fig. 2). In general, 
the compaction data are more focused than the pressure 
changes. The compaction strain is high in the central area 
where the most seismicity occurs and in three areas in the 
southern part of the reservoir where only little seismicity 
is observed. These areas in the south are enhanced relative 
to the central area with the largest compaction because 
the reservoir layer is only between 50 m to 150 m thick 
compared to over 220 m resulting in higher strain values 
(see Figure S1). Additionally, here are high fault densities. 
The low seismicity may be related to thick salt layer above 
the reservoir in these regions. Furthermore, in the northern 
central area ( X < 245 , Y > 597 ) the predicted seismicity 

underestimates the observed seismicity despite there being 
some compaction and a high fault density. Because of 
these places of overestimated and underestimated seismic-
ity, the compaction strain input yields worse results than 
the pressure data and the fault density weighting does not 
improve the results for compaction strain. Regarding the 
two models, the results of the RS model and the CMsubcr 
model cannot be distinguished, as shown by the same AIC 
results (see Figure S1 and Table 1).

Figure 7 shows four maps of successive time slices with 
predicted and observed seismicity to evaluate the spatial and 
temporal performance of the RS based on pressure data.

The four time slices represent distinct changes in the 
observed seismicity. The first time period is the longest from 
1960–1991 and represents the period, when production was 
high but no seismicity was recorded (Fig. 7a). In this period, 
the predicted seismicity is very low ( < 0.02 events per km2 ) 
although a period of 31 years is summed. The other three 

Fig. 7   Maps of predicted 
seismicity in four time slices. 
Period: a 1960–1991, b 
1991–2000, c 2000–2010, d 
2010–2017. The color-coded 
result refers to the RS model 
based on pressure changes and 
parameter given in Table 1. The 
M ≥ 1.5 earthquakes occur-
ring in the corresponding time 
period are plotted as magnitude 
scaled turquoise circles. The 
corresponding results for the 
compaction data are shown in 
the Supplementary material (see 
Figure S3)
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time slices cover each approximately ten years for better 
comparison. In the course of the next 9 years from 1991 to 
2000 (Fig. 7b), some widely distributed events with M ≤ 2.7 
happened. The predicted seismicity shows zones of slightly 
elevated seismic density (up to 0.1 events per km2) in several 
areas of the field matching with the locations of the recorded 
events. In the following time period from 2000 to 2010 
(Fig. 7c), the modeled seismicity is more focused in some 
areas (up to 0.3 events per km2) likewise the observed events 
are more spatially clustered. These areas are nearby but do 
not always perfectly match. In this time period five events 
with M ≥ 3.0 and one of these with M = 3.5 occurred which 
could have triggered some of the subsequent events with 
magnitudes M ≥ 1.5 , i.e. partly responsible for the observed 
offset. Elsewhere the modeled seismicity increases, around 
0.1 events per km2 in most parts of the reservoir. The time 
period from 2010 to 2017 includes the production change in 
2014. The maximum predicted seismicity increases to a den-
sity of nearly 0.5 events per km2, expected in a slightly wider 
area extending more to the south. These areas are in general 
agreement with the locations of the observed events. The 
widening happens in the time period 2010 to 2014 for the 
predicted seismicity as well as for the observed seismicity, 
when more events occur in the southern region. After 2014 
an overall decrease in predicted and observed seismicity is 
visible with slightly pronounced seismicity in the southwest-
ern region of the field. The decease is partially caused by the 
shorter observation period of three years. In one region in 
the northern central area some earthquakes occurred, where 
the model predicts very low seismicity ( << 0.01 events per 
km2). But if larger earthquake location uncertainties are con-
sidered, these events could fall in nearby areas, where large 
seismicity rates are predicted. Overall the predicted seis-
micity matches well to the temporal and spatial occurrence 
of the observed seismicity, despite the involved uncertain-
ties (earthquake location error, model errors) and assumed 
homogeneity of seismicity parameters.

The significant difference between the AIC values of the 
CMsubcr and RS model result from their different spatiotem-
poral predictions. The accordant four time slices for the 
CMsubcr display these differences (see Supplement Figure 
S2). Whereas the first time slice of the CMsubcr captures the 
very low seismicity, the seismic density patterns for the time 
periods 1991–2000, 2000–2010 and 2010–2017 all resemble 
Fig. 7c and do not account for the observed changes of the 
seismicity pattern in the three time periods.

The results differ systematically for the RS model based 
on compaction strain (see Supplement Figure S3). Here lit-
tle seismicity is expected for the time period until 1991, but 
some patches of elevated seismicity are already visible (up 
to 0.2 events per km2), which grow in the following time 
periods to a larger size and a seismic density over 0.3 events 
per km2 (2000: 0.3 events per km2; 2010: 0.35 events per 

km2; 2017: 0.32 events per km2). For the time period 1991 to 
2000, the regions do not correspond to the locations where 
the earthquakes occurred (Figure S3b). In the following time 
slices (Figure S3c and d), the model predicts high seismic-
ity only for parts of the central region with most events and 
increasing seismicity in the southern region where only after 
2010 some seismicity occurs (Figure S3d). This is the reason 
why the model based on pore pressure changes has better fit-
ting results. It appears the compaction strain model fails to 
capture the underlying mechanism of the induced seismicity.

Discussion

The modeling of the reservoir related seismicity at the Gron-
ingen gas field provides a unique opportunity to test different 
theoretical approaches and models and to identify which key 
parameters control the induced seismicity. However, it is 
important to check the model consistency and uncertainty. 
The parameter estimations might be inconsistent for differ-
ent fitting periods and the parameter uncertainties can be 
large due to the rather small number of earthquake data. 
To address these points, we estimated the parameters for 
four fitting periods (1960–2000, 1960–2005, 1960–2010, 
1960–2017), each time sampling all parameter sets leading 
to results comparable to the best fit in the same period. In 
particular, we chose those results with |�AIC| ≤ 5 relative 
to the optimal parameters. Figure 8 shows the time series 
of the corresponding parameter sets for the different fitting 
periods in comparison to the observed evolution of the seis-
micity until 2019. To account for the aleatoric variability, the 
90 % confidence interval is shown in gray for the case of the 
optimal parameter set. The confidence interval is calculated 
assuming a Poisson process with the mean value predicted 
by the RS model. The lower and upper boundary of the 90% 
confidence intervals of all curves with |�AIC| ≤ 5 is addi-
tionally marked by the black lines. For the shortest fitting 
period until 2000 with 35 events (a) the confidence interval 
of the best result does not predict the observed seismicity 
rate, but the models with similar good fits span a wide range 
of rates, with larger rates that almost cover the observed 
trend until 2018. For the next fitting time period until 2005 
with 67 events (b) the best results shift to larger seismic-
ity rates and the parameter range is slightly larger than for 
the previous time period, but with later observed seismicity 
rates still underestimated. When the fitting time is extended 
to 2010 with 134 events the result changes (c). The uncer-
tainties increase and the high seismicity rates of 2011 and 
2013 are inside the spread of the curves with comparable 
fits until 2010. This evolution shows that in the time period 
between 2000 and 2010 the seismicity pattern changed sig-
nificantly. One reason could be that some of the observed 



	 Environmental Earth Sciences (2020) 79:252

1 3

252  Page 12 of 15

M ≥ 1.5 events are aftershocks, e.g. triggered by the main-
shocks with M > 3 , which are not included in the model 
predictions. Bourne et al. (2018), e.g. found 10–20% after-
shocks for the time span 2012–2017. Another reason could 
be that our assumption of uniform parameters in space is an 
oversimplification and the spatial migration of the seismic 
activity leads to other effective model parameter estimations.

For the fitting period until 2017, the parameters are 
rather well constrained and the discrimination between 
the alternative models is not easy. The observed seismic-
ity is inside the 90 % confidence interval of the best result 
except for the four years 1994, 2006, 2011 and 2013. 
Such outliers are statistically expected because one out 
of ten data points should fall on average outside a 90% 
confidence interval. The results highlight the involved 
uncertainties and that for a limited data set, i.e. with 35 
events until 2000, the full solution space needs to be con-
sidered and other solutions could be found. The parameter 
ranges are rather large for the full data set and are given 
by the following intervals, determined by the minimum 
and maximum values of all |�AIC| ≤ 5-solutions of the 
spatiotemporal fit of the whole time period: A� ∈ [ 1.0;2.0] 
in units of MPa/c1 , ta ∈ [ 2.4 ⋅ 105; 2.0 ⋅ 109] years and 
r0 ∈ [ 3 ⋅ 10−8; 8 ⋅ 10−4] events per year. The background 
rate is calculated for the whole volume of the reservoir, 
thus an average vertical extent of 225 m. Assuming a total 
seismogenic width of 10 km and a b value of 1.0, the tec-
tonic background rate would be approximately 0.2 M ≥ 0

-events per year in the whole area, thus approximately only 
one M ≥ 0-event in 5 years. Therefore, the region would 

by typically be identified as aseismic, as often assumed. 
On the other hand, the effective normal stress at reservoir 
level can be roughly estimated by means of the difference 
between lithostatic and hydrostatic stress, which yields a 
value of approximately �eff = 45 MPa at reservoir level. 
From lab experiments, the A value is known to be about 
0.01 (Dieterich 1994). Thus, A� = A�eff∕c1 = 1.5 ± 0.5 
leads to c1 = Ã(𝛥S∕𝛥𝜎h) ∈ [ 0.2;0.5] according to Eq. (4). 
Assuming a Biot–Willis coefficient � = 0.8 and a Pois-
son’s ratio � = 0.2 yields Ã = 0.6 (Lele et  al. 2015) 
and thus �S∕��h ∈ [ 0.4;0.8] , which is in a reasonable 
range. The tectonic stressing rate can be estimated as 
A�eff∕ta ≤ 1.9Pa∕yr . This low tectonic stressing rate in 
combination with the low background rate explains the 
very slow reaction of the fault system to stress changes. 
These results give us some confidence that the RS model 
captures the major physics and can be used to estimate 
future seismicity levels for hazard estimation. The 
improvement of the spatial fit by implementation of the 
fault density supports the model that the induced stresses 
accumulate at pre-existing faults. The additional improve-
ment by implementation of the fault orientation relative to 
the tectonic stress regime supports that most of the events 
are normal faulting events in the reservoir layer.

In contrast, the modeled seismicity rates for the com-
paction data set clearly underestimate the observed seis-
micity for all fitting time periods before 2017 (see Fig-
ure (S3) with slowly increasing seismicity rates for the 
longer data sets. At the same time, the model parameter 
range is similarly narrow for all data subsets. Here the 

Fig. 8   Seismicity rates as a 
function of time. The predic-
tions of the RS model based on 
pressure changes are shown for 
the best parameters and param-
eters with similar good results 
( |�AIC| ≤ 5 ). The time limit for 
the parameter fits is marked by 
the vertical line: a 1960–2000, 
b 1960–2005, c 1960–2010 
and d 1960–2017. The 90% 
confidence interval related to 
the optimal fit is shown and 
additionally for the similarly 
good solutions displaying the 
uncertainties of the model 
results. The observed rate of 
M ≥ 1.5 earthquakes is shown 
as turquoise curve. The accord-
ant results for the compaction 
data are shown in Supplement 
Figure S4
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uncertainties of the model do not give a hint of the later 
evolution of the observations. This again implies that the 
underlying mechanism is not captured by the compaction 
data. Therefore, we do not discuss the resulting model 
parameters for the compaction model in detail. However, 
the values of ta and r0 are comparable to model A and 
the differences in A� are due to c2 (see Eq. (6)) which 
depends on the dip angle of the faults and the seismic 
coupling coefficient. Information on fault dip and throw 
could improve the model with compaction strain but this 
goes beyond the scope of this work.

To give an impression of the future seismicity, Fig. 9 
shows the prediction and the confidence interval of future 
seismicity based on the production scenarios of pressure 
changes provided by NAM. For comparison, the predicted 
seismicity rates for the compaction strain data are given in 
Figure S5 which show smaller rates than the predictions 
from a pressure change model.

The forecasts with pressure data predict an annual rate 
of M ≥ 1.5 earthquakes slowly decreasing to average values 
around 20 in 2024 but with a wide confidence range between 
7 and 32. Depending on the production scenarios, the range 
shifts to smaller or higher rates. The realized production is 
close to the smallest scenario thus the low observed seismic-
ity is reasonable.

Conclusion

No earthquakes were recorded in the Groningen gas field 
before gas production started. After a long delay relative 
to the start of production earthquakes started to occur, 

where earthquake frequencies roughly follow the tempo-
ral evolution of gas production rates. The M3.6 Huizinge 
earthquake in 2012 gave cause for serious concern and led 
eventually to the reduction of the gas production in 2014. 
For the estimation of the seismic hazard at the Groningen 
gas field, it is, therefore, crucial to have powerful data-
driven models that allow to quantify the relation to the 
gas production.

In the past, the concept of rate-and-state (RS)-depend-
ent friction has been used successfully in many case stud-
ies to model seismicity with a low number of parameters. 
For this reason, we designed a probabilistic model for the 
Groningen gas field, in which seismicity occurs as a sta-
tistical response on stress changes in a fault network with 
RS frictional behavior. As a main result, we find that all 
statistical features of observed seismicity in Groningen can 
be explained with our model that is governed by only three 
free parameters. This includes particularly the delayed and 
smooth occurrence of seismicity with increasing rates fol-
lowing the gas production rates. In this model, the delayed 
onset of observed seismicity is due to the very low back-
ground seismicity rate combined with the low tectonic 
stressing rate, corresponding to a long lasting frictional 
response to the fault system on stress disturbances. Using 
additional information on the fault density and orientation 
leads to an improvement of the fit. We also compare this 
model to the popular linear Coulomb failure model where 
the reservoir is initially subcritically loaded, i.e. the stress 
must first exceed a critical level. This model can explain 
the delayed occurrence of seismicity, but fails to describe 
the smooth increase of seismicity. Additionally, the model 
would impose that any tectonic stressing taking place 
would not be associated with a constant seismicity rate, 
whereas the RS results in a very low tectonic stressing rate 
which is in agreement with historical observations.

To summarize, the results suggest that the RS model is 
suitable to perform reasonable forecasts of future earthquake 
rates in Groningen in a simple and computationally inex-
pensive way.

We emphasize that our current model, only provides 
the frequencies of earthquakes. In future work, it would be 
interesting to extend the model towards the simulation of 
magnitudes. In a simple approach, random numbers from a 
given distribution, e.g. the Gutenberg–Richter distribution, 
can be drawn for each earthquake. This would allow for re-
evaluation of maximum expected earthquakes, as calculated 
in Zöller and Holschneider (2016) based on the RS model 
instead of the simple Poissonian process for earthquake 
occurrence.
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