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Abstract
The state of equilibrium of a slope is usually interpreted and expressed by safety factors based on calculations with limit

equilibrium methods. Different stress states, failure modes and hydraulic conditions in sections along a slip surface affect

the development of shear stresses during slope movement. Moreover, a post-peak softening of the shear strength can have a

pronounced impact. As a consequence of the latter effect, the mobilization of the shear resistance along the slip surface is

non-uniform and the safety of the slope can be overestimated or underestimated. In the presented paper, an algorithm is

proposed to capture the strain-dependent slope stability. The approach is illustrated by means of a calculation example for a

slope with a planar slip surface where a block sliding is assumed.
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1 Introduction

The prediction of slope stability is an essential task in the

geotechnical engineering and other disciplines dealing, for

example, with natural risk assessment. In the most cases,

variations of the widely spread limit equilibrium method

(LEM) are being used, calculating the total driving and

resisting actions from forces and/or moments due to soil

weight, surcharges, pore water pressures, anchor forces,

etc. Regarding the soil resistance, shear strength in terms of

friction angle u and cohesion c is usually assumed using

the Mohr–Coulomb criterion. The ratio of resisting to

driving actions yields a numerical value of the factor of

safety (FOS) which helps to interpret the state of a slope. A

common LEM is the method of slices developed in several

versions during the last century [2, 12, 23, 29, among

others]. One disadvantage of this method is a rough

approximation of the stress state along the selected slip

surface as only the soil own weight and surcharges but not

the stress history is considered. To overcome this aspect,

approaches combining the finite element method (FEM) for

calculating stresses in a soil mass with the LEM were

proposed [13, 18]. A further development linking the FEM

with slope stability analyses resulted in a so-called strength

reduction method (SRM) [6, 10, 11, 15, 19, 20, 22, 24,

32, 33, among others]. An important feature of the SRM is

a natural evolution of the critical slip surface in an arbitrary

slope during the shear strength reduction [35]. Herein, a

factor of safety can be determined directly from the FEM

analysis independently of the LEM. However, in spite of a

few attempts [27], the application of the SRM is practically

limited to the perfectly plastic soil behaviour represented

by friction angle and cohesion. The stress–strain behaviour

of soil is neglected, and more advanced constitutive models

cannot be considered in the SRM. Other advanced proce-

dures focus on special questions like modelling of fast

mass movements in partial saturated soils due to rainfalls

[3–5] or formulate new complex numerical frameworks

[7, 9].

Depending on the stress state and soil density, the

stress–strain behaviour during shearing varies for loose (or

soft) and dense (or stiff) soils. Whereas loose/soft soils

show a gradual increase in shear stress until the critical/

residual state is reached, a peak strength is observed for

dense/stiff soils which then decreases to a critical/residual

value in course of further shear deformation [28, among

others]. A potential shear zone passes through different

regions within the slope where stress and density
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conditions change. Consequently, the stress–strain

response of the soil elements along the shear zone is not

uniform.

Regarding the volumetric response, a loose/soft soil

tends to a contractive behaviour during shearing. For

undrained conditions, this effect is reflected in a generation

of positive excess pore water pressures. On the contrary, a

dense/stiff soil reveals a generation of negative excess pore

water pressures during shearing in undrained conditions as

the soil tends to dilate [34, among others]. Consequently,

the generation of negative or positive excess pore water

pressures, respectively, during shearing induces an increase

or decrease in the effective stresses at the shear zone and

therefore influences the soil resistance needed for the cal-

culation of the slope stability. Within the shear zone of a

slope, contractancy and dilatancy, respectively, can coexist

as a result of, for example, initial stress or loading history.

In the following, a numerical algorithm is proposed for

the calculation of the factor of safety taking into account a

genuine stress–strain soil behaviour. Using the FEM for the

slope area, realistic initial stresses within the slope can be

obtained. Considering a particular deformation mechanism

within the shear zone, a link between the shear strains in a

slip surface and the evolution of the slope stability can be

established. For the determination of such a strain-depen-

dent slope stability, a pre-defined shear surface is dis-

cretized into nodes. The nodes can be treated as

homogeneous soil elements which undergo shear defor-

mation during the slope movement. Taking into account

the soil properties, stress state, loading/deformation process

and drainage conditions, numerical element shear tests with

an arbitrary constitutive model can be performed. The

proposed approach is illustrated by two simple calculation

examples.

2 Calculation procedure

The numerical algorithm for the calculation of the strain-

dependent factor of safety (FOS) consists of four basic

steps:

1. Definition of a slip surface and its discretization

2. Determination of the initial stress states in the nodes

along the slip surface

3. Numerical element test calculations within the nodes

4. FOS from the ratio of overall initial shear stress to

mobilized shear stress as a function of shear strain

2.1 Slip surface and its discretization

Initially, a trial slip surface has to be prescribed. Since only

normal and tangential stresses within the slip surface are

needed for the calculation of the FOS, there are no specific

requirements on the shape of the slip surface. Nevertheless,

kinematic admissible displacements of the slope should be

considered, leading typically to (multi-)linear or circular

slip surfaces. The trial slip surface should be varied in

order to find the critical one. The search of a critical slip

surface is independent of the FOS calculation. Various

approaches regarding the prediction of the critical slip

surface have been discussed elsewhere [8, 15, 20, among

others]. Obviously, including such an approach would

require a further automation of the here described

procedure.

The pre-defined slip surface is discretized into a number

of nodes. These nodes represent homogeneous soil ele-

ments which undergo a uniform shear deformation. Their

size is immaterial as long as the applied constitutive model

does not include any internal length. A certain minimum

number of nodes are needed for a realistic calculation,

analogously to the methods of slices.

2.2 Initial stresses

In a first approximation, the initial stresses in the nodes

along the slip surface can be determined from vertical

slices attributed to the nodes. Nevertheless, it is much more

appropriate to generate the initial stress state within the

whole slope with help of the FEM. In this way, the rotation

of the principle stress axes and, eventually, a history of the

slope evolution can be taken into account.

From the initial stress state in the slope, the full stress

tensor is known in each node. The stress components

normal and tangential to the shear zone must be evaluated

from the initial stress distribution in the slope (Fig. 1). In

case of a curved slip surface, its inclination varies in each

node.

2.3 Numerical element tests

A deformation mechanism of the sliding soil body must be

assumed. In this paper, a rigid body displacement along a

Fig. 1 Step 2—determination of the normal and tangential stresses in

a node on a planar slip surface
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slip surface is considered. An example for the slope in

Fig. 1 is shown in Fig. 2a. The slip surface corresponds to

a shear zone undergoing a simple shear deformation.

Consequently, during the slope movement each element

(node) on the slip surface is subjected to the same

distortion.

The rotated stress states in the nodes are supplied to a

routine for numerical element test calculations (Fig. 2b).

Each node represents a numerical element test reproducing

the shearing in the slip surface. For the considered example

of the planar slip surface, a simple shear mode is assumed.

Nevertheless, other shear modes like triaxial compression

or extension can be easily applied, too; see Fig. 3.

From the numerical element tests, the shear stress evo-

lution with increasing shear strain is obtained in all nodes;

see also Fig. 2b. Depending on displacement rate, soil

permeability and ground water situation, the numerical

element tests can be conducted either under drained or

undrained conditions. There are no restrictions regarding

the applied constitutive model. The effects of excessive

volumetric deformations, which may violate the prescribed

kinematics of the sliding body, are being neglected.

2.4 Factor of safety

In the final step, the mobilized shear stresses as functions of

shear strains are evaluated (Fig. 4). From the assumption of

a rigid block displacement, in Fig. 2a, the evolution of the

shear strain with the displacement is the same in all nodes.

For the evaluation of the global mobilized shear resistance

ratio TðcÞ, the following expression

TðcÞ ¼
P

i smob;iðcÞP
i s0;i

ð1Þ

is used, where
P

i smob;iðcÞ is the sum of the mobilized

shear stresses of all nodes i at a certain shear strain value c.
P

i s0;i expresses the sum of the initial shear stresses in all

nodes, coming, for example, from a FE calculation. As

mentioned before, the orientation of the shear stresses

corresponds to the inclination of the slip surface at par-

ticular nodes.

Equation (1) yields a global mobilized shear resistance

TðcÞ in dependence of the shear strain. In the initial state,

TðcÞ ¼ 1 as
P

i smob;iðcÞ and
P

i s0;i are equal, whereas

with shearing TðcÞ increases, as shown in Fig. 5.

For a loose/soft soil, TðcÞ approaches its maximum

steady value when the maximum shear strength is reached

in all nodes (Fig. 5a). This value can be expressed by the

ratio
P

i smax;i=
P

i s0;i. In case of a dense/stiff soil, TðcÞ
initially increases and further decreases with ongoing

shearing (Fig. 5b). In the final state, the shear stress in all

nodes is equal to the residual (or critical) shear strength.

During shearing, the mobilized shear stresses smob;i do not

reach the maximum values smax;i simultaneously in all

nodes. Consequently, the maximum of TðcÞ is lower than

the value of the ratio
P

smax;i=
P

s0;i. In Fig. 5b, the peak

(a)

(b)

Fig. 2 Step 3—the stress state on the slip surface enters the numerical

routine for element test calculations (b). The static and/or kinematic

boundary conditions for the element tests are selected according to the

initial state and the strain state

Fig. 3 Possible deformation modes along a potential slip surface [36]

Fig. 4 Step 4—determination of the global mobilized shear resistance

ratio TðcÞ from the ratio of the overall mobilized
P

i smob;iðcÞ to initial

shear stresses
P

i s0;i along the slip surface as a function of the shear

strain
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of TðcÞ represents the maximum resistance ratio which can

be mobilized during the slope movement. This value is

equivalent to the factor of safety for the slope taking into

account the softening behaviour (Fig. 6).

The slope displacement, which corresponds to a partic-

ular value of the factor of safety, can be calculated from c
at TmaxðcÞ considering a width of the shear zone.

It should be taken into account that the values

TðcÞ\Tmax starting from the initial state do not have any

relationship to the factor of safety. However, TðcÞ values

beyond Tmax can be well interpreted as a reduction of the

factor of safety with further shearing (Fig. 6). Thus, a link

between the between the slope displacement and the factor

of safety may be established.

3 Calculation example

The proposed procedure is illustrated by two calculation

examples. In both cases a single sliding wedge on a planar

weak surface, e.g. pre-existing shear surface, is considered

(Fig. 7). In the first case, no softening takes place. In the

second case, soil softening is included. The soil wedge is

sliding as a rigid body; thus, in all nodes along the slip

surface, the same shear mode and the same amount of shear

strain occur.

Along the slip surface, 20 nodes with the same distance

between each other are defined (Fig. 7). For these nodes,

the numerical element tests are conducted and the evolu-

tion of the global mobilized shear resistance TðcÞ is eval-

uated during shearing; see Step 4 in Fig. 4. The number of

nodes represents the number of numerical shear tests being

carried out. As planar sliding of a rigid body is assumed, a

simple shear mode in plain strain is considered as a rep-

resentative deformation mechanism. For the calculation of

the stress–strain behaviour, the linear elastic–perfectly

plastic Mohr–Coulomb model is applied using the model

parameters summarized in Table 1. All calculations are

performed in drained conditions; thus, the effective stresses

and the total stresses are equal.

In case of the soil model without softening, after

reaching the plastic state characterized by the maximum

shear strength smax;i, the shear stress remains constant

during further shearing. If soil softening is taken into

account, the reduction rate of the friction angle from umax

to ures is controlled by the magnitude of the plastic strain

epxy. In the presented example, the residual value is reached

for Depxy ¼ 0:2, as shown in Fig. 8.

Prior to the numerical element tests, a FE calculation

was conducted to obtain the initial stress state in the slope

(b)

(a)

Fig. 5 Evaluation of the global mobilized shear resistance ratio TðcÞ
during a slope displacement for soil a without and b with soil

softening

Fig. 6 Evaluation of the FOS for soil without and with soil softening

Fig. 7 Deformation mechanism of the sliding wedge with several

selected nodes at the slip surface

Table 1 Mohr–Coulomb parameters

E m w c umax ures

(kPa) (–) ð�Þ (kPa) ð�Þ ð�Þ

5500 0.3 0 0 30.0 12.3

Fig. 8 Reduction of the friction angle in dependence on the plastic

strain epxy
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by increasing gradually the gravity. For all numerical cal-

culations, the FE software Tochnog [26] was used. The unit

weight of the soil was assumed c ¼ 20 kN/m3. For the

predefined slip surface, the stresses in the nodes along the

slip surface were extracted and rotated according to Step 2;

see Fig. 1.

3.1 Slope stability calculations without soil
softening

The first evaluation of the strain-dependent slope stability

is carried out without softening behaviour, in order to

validate the numerical procedure. Each numerical soil

element is distorted in shear by increasing the shear angle

c, as shown in Fig. 10a. The induced shear strain

c ¼ 2 � exy ¼ u=h0 ð2Þ

is linked to the thickness of the shear zone h0, the latter

being a function of grain size, grain size distribution and

mineralogical composition in a first approximation

[1, 14, 21, 31]. u is the horizontal displacement of the shear

zone boundary. In some cases, the location and thickness of

the shear zone can be obtained from, for example, incli-

nometer tests [17, 30].

In order to prevent torsion, the upper left and right

element nodes are kept at the same vertical level. A change

in the soil volume takes place by a vertical displacement

only.

In Fig. 9, the evolution of the normalized shear stress
P

smob;iðcÞ=
P

s0;i as a function of shear strain is shown

for the nodes highlighted in Fig. 7. Due to different initial

stresses along the slip surface and the rn-depended maxi-

mum shear stresses, the calculated curves differ for each

considered node.

As can be seen in Fig. 10a, in points close to the toe of

the slope, e.g. point 2, the ratio of horizontal to vertical

stress is greater 1 in the initial stress state

(K0 ¼ rh=rv ¼ rn2=rn1 [ 1) and the maximum shear

stress is reached for a very small magnitude of shear strain.

The shearing in plastic state is accompanied by a decrease

in horizontal stress until the horizontal and vertical stresses

are equal (K ¼ rh=rv ¼ rn2=rn1 ¼ 1); see Fig. 10a. It may

appear unusual that the stress–strain curves are nonlinear

although the soil behaviour is characterized by the linear

elastic–perfectly plastic constitutive model. This apparent

nonlinearity is a result of the rotation of principal stress

axes during the simple shear. The plotted components of

the stress keep their orientation, whereas the principal

stresses change their direction (see, for example, [25]).

The stress evolution in each node (element test) is

independent of the stress evolution in its neighbourhood.

This may lead to inconsistencies in the stress distribution in

the soil mass during the shearing. This effect is being

neglected in a first approximation.

During shearing, increasing shear stresses can be

observed until the stress path encounters the yield surface;

see Fig. 11a for principal stresses r1 and r3 and Fig. 11b

for s and rn. With further shearing, the stress path in the

principal stresses moves downwards or upwards along the

yield surface.

For nodes in the upper part of the slip surface, e.g. point

11, the initial ratio of horizontal to vertical stress is lower 1

(K0 ¼ rh=rv ¼ rn2=rn1\1) (Fig. 10b). In the elastic

range, the shear stress increases and the stress–strain curveFig. 9 Normalized shear stress–shear strain curves during drained

simple shear (for the node numbers, see Fig. 7)

(a)

(b)

Fig. 10 Evolution of rn1, rn2, rn3 and s with shear strain c during

drained simple shear in a point 02 and b point 11
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is linear until the stress path reaches the yield surface

(Fig. 11a). For further shearing, the stress path in principal

stresses moves upwards along the yield surface and the

horizontal stress increases, too. Finally, the horizontal and

vertical stresses become identical and K ¼ 1. Meanwhile,

the stress–strain curve in s and c components increases

nonlinearly until the maximum shear stress is reached

(Fig. 10b).

For all the defined nodes (Fig. 7), the evolution of the

global mobilized shear resistance
P

smob;iðcÞ=
P

s0;i is

shown in Fig. 12. The maximum shear resistance TðcÞ ¼
P

smax;i=
P

s0;i � 2:35 is almost reached at the shear

strain magnitude of c� 0:6. Thus, a maximum global shear

stress 2.35 times higher than the initial global shear stress
P

s0;i can be mobilized during the slope movement. This

shear stress ratio corresponds to the factor of safety.

Checking the force equilibrium of a rigid body for the

given slope geometry and friction angle umax ¼ 30�, a

safety factor FOS = tanumax= tan# ¼ 2:72 is obtained. A

difference in both results can be easily explained if the

Mohr–Coulomb failure criterion for simple shear is taken

into account. This can be written as

s
ryy

� �

max

¼ s
rn1

� �

max

¼ sinu � cosw
1 � sinu � sinw

ð3Þ

which corresponds to ðs=rn1Þmax ¼ sinumax ¼ 0:5 for

w ¼ 0�, see, for example, [25]. Hence, the limit stress

condition in the s�rn1-plane has a slope m ¼ 0:5

(Fig. 11b). The corresponding safety factor from the ana-

lytical solution is FOS¼ sinumax= tan# ¼ 2:35, i.e. iden-

tical with the numerical procedure. If associated flow rule

is considered, i.e. w ¼ umax ¼ 30�, the limit stress condi-

tion after Eq. (3) corresponds to ðs=rn1Þmax ¼ tan 30� ¼
0:577 and thus FOS is 2.72.

In Fig. 12, the shear strain is indicated at the red curve

when the maximum shear strength is mobilized in the

selected nodes. It can be seen that the mobilization pro-

ceeds progressively from the toe and the top of the slope.

3.2 Slope stability calculations with soil
softening

For the stability calculations considering soil softening, a

maximum friction angle umax ¼ 30� and a residual friction

angle ures ¼ 12:3� were assumed. As already mentioned,

umax is reduced in dependence on the plastic strain mag-

nitude epxy (Fig. 8). Thus, considering a non-associated flow

rule (w ¼ 0), the limit stress condition in the s�rn1-plane

can be characterized by a slope m ¼ sinures ¼ 0:213 after

Eq. (3), see also Fig. 14b, which corresponds to the safety

factor FOS ¼ sinures= tan# ¼ 1:0:

Figure 13 shows the stress evolution of s, rn1, rn2 and

rn3 in point 11 during shearing. When the stress reaches the

yield surface, in Fig. 14a, the constitutive model switches

from elastic to plastic soil behaviour and the friction angle

is decreased.

With further shearing, s increases only slightly and it

starts to decrease soon. In the principal stress plane, the

softening produces an increase in r3 but a gradual decrease

in r1 (Fig. 14a). Thus, a bending of the stress path can be

observed while approaching the yield surface with an

inclination of f ¼ ð1 þ sinuresÞ=ð1 þ sinuresÞ ¼ 1:54. No

further stress changes occur when rn2 ¼ rn1, cf. Fig. 13. In

the residual state s ¼ rn1 � sinures with m ¼ 0:213 holds

(Fig. 14b).

(b)

(a)

Fig. 11 Stress paths during drained simple shear for selected nodes

along the slip surface (f ¼ r1

r3
). a r1�r3-diagram, b s�rn1-diagram

Fig. 12 Evolution of the ratio of mobilized to initial shear stresses

along the slip surface in dependence on shear strain

3116 Acta Geotechnica (2020) 15:3111–3119

123



The evolution of the global shear resistance TðcÞ is

shown in Fig. 15a. Again for some selected nodes, the

shear strain is indicated when the friction angle starts to

decrease due to softening. In the middle of the slip surface

soil softening starts at the latest; see also Fig. 16.

A peak value of the global shear resistance TðcÞ � 1:7,

i.e. FOS = 1.7, is observed at c � 0:06. Consequently,

only 1.7 times the initial shear stress can be mobilized

during the slope displacement. The global shear resistance

TðcÞ ¼ 2:35 from the case without softening is not reached

by far. Therefore, a standard calculation of the slope sta-

bility using the maximum friction angle umax would

strongly overestimate the safety factor. At the shear strain

magnitude c � 0:2, the residual shear strength is already

reached in all nodes, as shown in Fig. 16, and the safety

factor approaches FOS = 1.0.

It should be mentioned that the soil stiffness controls the

evolution of the shear stress in the elastic range and

therefore strongly influences the dependence between the

global shear resistance (FOS) and the shear strain. The

knowledge of this dependence can help in the monitoring

of slopes endangered by sliding. The rate of softening

Fig. 13 Evolution of rn1, rn2, rn3 and s with shear strain c during

drained shearing with soil softening in point 11. The thin lines

represent the behaviour without soil softening

(a)

(b)

Fig. 14 Stress paths during drained simple shear when soil softening

is taken into account. a r1�r3-diagram, b s�rn1-diagram

(b)

(a)

Fig. 15 Evolution of a the ratio of the mobilized to initial shear

stresses in dependence on shear strain and b the corresponding strain-

dependent FOS for the calculation examples

Fig. 16 Normalized shear stress–shear strain curves during drained

simple shear taking into account soil softening. The thin lines

represent the behaviour without soil softening
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together with a relationship between the shear strain and

soil displacement along the shear zone can be roughly

determined, for example, in direct shear tests. Thus, using

the outlined numerical procedure, a state of the slope

approaching its maximum resistance can be linked to the

observed slope displacements.

4 Conclusions

Safety factors in slope stability calculations are mostly

determined with help of the limit equilibrium methods. In

reality, however, the maximum shear strength along a slip

surface is not mobilized simultaneously along the entire

shear zone. This makes the selection of the appropriate

shear strength parameters difficult and can lead to an

overestimation but also underestimation of the slope

stability.

A novel procedure for the determination of the slope

stability was proposed in this paper. It takes into account

the stress–strain behaviour of soils, including soil soften-

ing. Along the shear zone of an arbitrary shape, a number

of nodes are defined. The initial stress state in these nodes

is determined, for example, from a FEM analysis of the

considered slope. An essential component of the new

method is element test calculations for an assumed defor-

mation mode in the nodes. For example, numerical simple

shear tests can be performed to get the stress–strain beha-

viour corresponding to the displacements within the shear

zone. The sum of the calculated mobilized shear stresses in

all nodes can be used for the definition of the global

mobilized shear resistance in dependence of shear strain.

The ratio between the global resistance and the global

initial shear stress corresponds to the factor of safety for the

analysed slope.

The outlined procedure was demonstrated by a calcu-

lation example of a slope with a rigid body failure mech-

anism along a planar slip surface in drained conditions.

Due to the block sliding, all nodes along the slip surface

experience the same displacement. The Mohr–Coulomb

model with and without soil softening, respectively, was

assumed for the constitutive soil behaviour. When soil

softening is considered, the maximum global shear resis-

tance is mobilized before the maximum shear stress is

reached in all nodes.

The proposed procedure can utilize any (incremental)

constitutive model. Soil variations and different drainage

conditions along the shear zone can be taken into account.

The shape of the slip surface (shear zone) is not restricted.

Its critical position must be found by changing its location

and geometry.

This new approach may help to interpret the slope sta-

bility when monitoring displacements at the slip surface,

see also [16].
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