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Abstract In the field of mineral resources extraction, one main challenge is to meet
production targets in terms of geometallurgical properties. These properties influence
the processing of the ore and are often represented in resource modeling by coregion-
alized variables with a complex relationship between them. Valuable data are available
about geometalurgical properties and their interaction with the beneficiation process
given sensor technologies during production monitoring. The aim of this research is to
update resource models as new observations become available. A popular method for
updating is the ensemble Kalman filter. This method relies on Gaussian assumptions
and uses a set of realizations of the simulated models to derive sample covariances that
can propagate the uncertainty between real observations and simulated ones. Hence,
the relationship among variables has a compositional nature, such that updating these
models while keeping the compositional constraints is a practical requirement in order
to improve the accuracy of the updatedmodels. This paper presents an updating frame-
work for compositional data based on ensemble Kalman filter which allows us to work
with compositions that are transformed into a multivariate Gaussian space by log-ratio
transformation and flow anamorphosis. This flow anamorphosis, transforms the distri-
bution of the variables to joint normality while reasonably keeping the dependencies
between components. Furthermore, the positiveness of those variables, after updating
the simulated models, is satisfied. The method is implemented in a bauxite deposit,
demonstrating the performance of the proposed approach.
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1 Introduction

Predictive geometallurgy is a challenging topic in the mining industry. This discipline
aims at providing quantitative approaches to forecast and optimize all steps of the min-
eral value chain from exploration to different processing circuits (Tolosana-Delgado
and van den Boogaart 2018). In doing so, geometallurgy considers all ore properties
that will have an influence on the process to obtain a final metal product, not just a
grade. Thus, modeling geometallurgical variables involves the highly multivariate set-
tings of the problem with complex relationships between geometallurgical variables
(Boisvert et al. 2013). Understanding the spatial distribution of the geometallurgical
variables is key for the efficiency of mine planning production scheduling and oper-
ation control (Benndorf and Dimitrakopoulos 2018). During grade control, a large
number of samples are obtained. An opportunity to decrease the uncertainty related to
the resource model knowledge is to assimilate these monitoring data into the model. In
that regard, Benndorf (2015) has proposed to use a closed-loop reconciliation system
that nearly continuously generates updates of the model in real-time. This method
provides up-to-date information for decision-makers in mine planning and operation
control. Based on ensemble Kalman filter (EnKF), some univariate approaches of this
updating method have been documented and successfully implemented in an opera-
tional framework in recent years (Benndorf 2015; Yüksel et al. 2017; Wambeke and
Benndorf 2017).

Stewart (2016) generally distinguishes between primary and secondary proper-
ties of the ore, the former being uniquely related to the ore while the latter depends
on its processing. This contribution focuses on primary geometallurgical variables.
The most commonly used primary geometallurgical properties involve characteristics
of the elements (as proportions), minerals (as modal mineralogies), texture, hard-
ness, fragmentation, among others (Rossi et al. 2014; Tolosana-Delgado and van den
Boogaart 2018).Many of these variables, such as geochemical data, modalmineralogy
or mineral association, can be expressed in ppm, percentage, etc. This contribution
focuses on geometallurgical variables of a compositional nature such as geochem-
ical compositions. These variables are formed by vectors of positive components
(Pawlowsky-Glahn and Buccianti 2011) and are often mutually linked through com-
plexmultivariate relationships such as non-linearities and heteroscedasticities (Nathan
and Scobell 2012; Hosseini and Asghari 2019). This compromises the traditional geo-
statistical analysis, since a separate Normal Score transformation of each variable
would not yield a multivariate Gaussian distribution (Hosseini and Asghari 2019).
These variables are measured with sensor-based techniques that allow online moni-
toring, providing a large amount of data with low accuracy in the absolute abundances
of the measured components. EnKF methods combine the simulated model, as prior
information, and observation monitored by sensors to update the realizations of the
simulated model. Meanwhile, in classical application environments of EnKF observa-
tions are obtained repeatedly in the same position, in mining, every new observation
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is obtained at a different location. However, the application of this method to resource
model updating in amultivariate setting in particular, is a challenging issue. In this con-
tribution, several challenges are identified and addressed. First, the proposed method
has to provide a reasonable result when the support (the volume of reference) of the
simulated model and the observations differ. The support problem is well known in
mining (Wackernagel 2003). This consists of anticipating, before production, what
the proportion of the profitable SMUs will be based on initial exploration data, so
that a decision can be taken about wether to start extraction. Observations are usually
obtained by bulk sampling the volume of each SMU after the blasting operation are
used to update the grade-control model that might be represented at point support. This
issue has been extensively documented within the inverse problem literature (Hansen
et al. 2006) or in geostatistics (Wackernagel 2003). It is important to remark that the
deposit is not a dynamic system that changes over time, it is, instead, our knowledge
about it what evolves.

The second challenge is that the variables considered here are compositional.
Working with compositions within the EnKF framework breaks the linear analysis
assumptions in Gaussian settings: zero probabilities should be assigned to negative
values since physical observations of a non-negative variable will not be negative
(Amezcua and Van Leeuwen 2014). This positiveness is reflected in the support
(domain) of the distribution over zero since it is not able to take negative values.
However, after updating the variables, one might see negative values breaking the
consistency of the constrained data (as compositional data). For that reason, these
transformations are of crucial importance. This issue is discussed at length and refer-
enced in Amezcua and Van Leeuwen (2014).

EnKF is not applicable for the estimation of discontinuous functions or non-negative
states (Chen and Snyder 2007; Simon and Bertino 2009). The nature of the observation
error is seldom additive. Indeed, this error tends to be multiplicative according to
Amezcua and Van Leeuwen (2014). Some authors (Bertino et al. 2002; Simon and
Bertino 2009; Simon et al. 2012) have proposed to map the positive variables into a
Gaussian space by a non-linear change of variables named anamorphosis. Janjić et al.
(2014) have proposed to work with logarithms only to update the model in consistency
with Gaussian assumptions. In that study, a positive error is added to the state variable
to allow computing the logarithm transformation when these are zero. Simon et al.
(2012) have proposed to work in a hyperspherical coordinate system to ensure the
constant sum of components, arguing that the log-ratio transformation may produce
problems when one of the components is zero.

For large-scale settings, the compositions can significantly change from one region
to another. Here, it is assumed that all the components analysed are present in the
whole area of study. The first step (Aitchison 1984; Pawlowsky-Glahn et al. 2015) to
solve compositional data problems in geostatistics is to transform the data bymeans of
log-ratio transformations (alr, clr or ilr). This removes the sum constraint and avoids
spurious correlation problems (Pearson 1897; Pawlowsky-Glahn et al. 2015). Then one
can apply standard techniques to the scores, for example model variograms, in order
to perform a co-Kriging or co-simulation. After obtaining the spatially interpolated
model, a transformation to the original composition is needed to interpret the results
of this study. This contribution makes use of this general approach. However, EnKF is
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optimal for Gaussian assumptions, and the non-Gaussianity of the variables makes its
use suboptimal (Carrassi et al. 2018). Many methods for simulation and co-simulation
of random fields are derived from the framework of Gaussian processes. Nevertheless,
the assumption of Gaussianity is seldom acceptable in multivariate regionalized com-
positional data. Several techniques have been proposed for mapping variables into a
Gaussian space. Univariate Gaussian anamorphosis or Normal Score transformations
are commonly used (Verly 1984; Ziegel et al. 1998; Simon and Bertino 2009; Chiles
et al. 2000; Amezcua and Van Leeuwen 2014; Zhou et al. 2012). However, only the
marginal distributions of the variables are transformed to normality, independently
from each other. This does not guarantee that the joint distributions become multivari-
ate Gaussian normal (Zhou et al. 2011; Carrassi et al. 2018). Recently, two approaches
to transform data into a multivariate Gaussian space have been proposed: the Projec-
tion Pursuit Multivariate Transform (Barnett et al. 2014; Nathan and Scobell 2012)
and flow anamorphosis (van den Boogaart et al. 2017; Mueller et al. 2017). These
methods have never been combined with EnKF.

This contribution presents a new assimilation framework for compositional data.
This study accounts for the problems of positivity preservation and the sum to one
constraint after updating the model by working with log-ratios of the components and
flow anamorphosis (Tolosana-Delgado and van denBoogaart 2018). In this way,multi-
Gaussianity of observations and model variables are achieved. At the same time, the
framework allows one to naturally work with multiplicative error observation models
and capture the relative nature of many modern online sensors.

The framework introduced in this paper was applied to a real case study from a
bauxite deposit in the Caribbean. The bulk sampling process was simulated a selecting
defined SMUs and perturbing these with observation errors. The complex relationship
of the variables was co-simulated. Practical considerations of the transformations
and EnKF when working with real data are demonstrated in this way. This paper
is subdivided into several sections. Section 2 reviews the mathematical foundations
of the method. Section 3 explains the updating algorithm that has been developed.
Section 4 explores the application to a real test case study is described. Section 5
presents conclusions. For completeness, some theoretical developments associated
are reported in Appendix 1.

2 Mathematical Foundation

2.1 Fundamental Concepts of Compositional Data

Compositional data quantitatively describe the relative weight, importance or con-
tribution of some parts of a whole. The sample space of compositional data is the
simplex,

SD =
{
s ∈ R

D | si > 0,
D∑
i=1

si = k

}
, (1)
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where k is the closure constraint constant. The purpose of compositional data analysis
is to capture the relative information conveyed by data through a log-ratio transfor-
mation. Several transformations can be found in literature: additive log-ratio (alr)
(Aitchison 1984), centered log-ratio (Jones and Aitchison 1987), isometric log-ratio
(Egozcue et al. 2003), and others proposed by Jones and Aitchison (1987). The scores
of some of these transformations are related to each other through linear relations
(Aitchison 1984; Egozcue et al. 2003). In Appendix 1 it is proven that, under these cir-
cumstances, all invertible log-ratio transformations provide equivalent results. Hence,
in this paper, the alrwill be used. This transformation consists of applying the logarithm
to the relation between each component and a chosen component as denominator, for
instance the last one

alr : SD → R
D−1

s �→ x =
(
ln s1

sD
, ln s2

sD
, · · · , ln sD−1

sD

) , (2)

where the inverse transformation is

alr−1 : RD−1 → S
D

x �→ s = C[exp(x1), . . . , exp(xD−1), 1] , (3)

The closure operator is here denoted as C. It scales its argument to ensure that the
result satisfies the constant sum constraint (Pawlowsky-Glahn et al. 2015). Moreover,
S = [S1, S2, . . . , SD] denotes a random composition and the alr transformation X =
alr(S).

2.2 Flow Anamorphosis

Constructing the right flow anamorphosis transformation is of special importance in
mineral resource estimation since different data sets are treated during the run of the
mine (Mariz et al. 2019). These are obtained by different sampling methods and sen-
sor devices. Moreover, the measurement times and the key variables measured might
differ between data sets. These variations are reflected in the quality of each data
set and show differences in the statistics. Real data usually show bias, specially in
the production data with respect to the exploration data. This bias should be consid-
ered when the transformation is computed. Furthermore, Amezcua and Van Leeuwen
(2014) proposed different ways to apply the univariate Gaussian anamorphosis: inde-
pendent transformations for state variables and observations, or joint state variable
and observation transformations. Since this study is performed by a twin experiment
where the production data is simulated by mapping from a ground truth model, the
observations domain and the state vector are assumed to be the same. Therefore, two
transformations are taken into account in the current study: for a grid point support
φu and for a SMU support φv.

In order to implement the EnKF, the log-ratio transformed compositions are further
transformed into a Gaussian space. In the field of data assimilation it is common to
apply such a transformation to normality prior to the data analysis, often via a univariate
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anamorphosis (Simon and Bertino 2009). However, this approach is inappropriate for
compositional data because the resulting scores do not necessarily show joint multi-
Gaussianity, nor do they reproduce the original dependence relationships between
variables. The flow anamorphosis transforms data by means of a smooth deformation
of the underlying space transporting the probabilitymass fromakernel density estimate
of the original distribution to a multivariate standard Gaussian distribution (Mueller
et al. 2017). The flow anamorphosis is a truly multivariate Gaussian anamorphosis and
presents invariance under affine transformations, hence it provides a Normal Score
transformation that guarantees that the results do not depend on the choice of log
ratio transformation (Mueller et al. 2017). The transformation is non-linear and its
deformation is controlled by the original bandwidth of the kernel estimation (van den
Boogaart et al. 2017; Mueller et al. 2017). In this contribution, Z is used to denote
the Gaussian transformed data, Z = φ(X). Hence, if X is a random alr transformed
composition, then Z will be a Gaussian random vector.

2.3 Compositional Random Function

The initial model is assumed to be a regionalized vector-valued random function Z(u)

indexed by u ∈ R
3, a spatial location on a three-dimensional Euclidean space. At each

location, the random field has (D − 1)-components Z(u) = [Z1(u), . . . , ZD-1(u)].
Intrinsic stationarity of the random function Z(u) is assumed. This implies that the
expected increment of the vector random function between two different locations
(u1 and u2) is zero and its variance does not depend on the exact locations being
considered, but on their lag distance h = u1 − u2

E[Z(u1) − Z(u2)] = 0, (4)

Var[Z(u1) − Z(u2)] = �Z(h). (5)

�Z(h) represents a matrix valued variogram

�Z(h) = 1

2
E[(Z(u+h) − Z(u))(Z(u+h) − Z(u))T ], (6)

to be estimated as usual in geostatistics (Wackernagel 2003; Pawlowsky-Glahn et al.
2015). The empirical variogram values are modelled through a linear model of core-
gionalization (LMC) to ensure the conditional negative-definiteness of the system
(Wackernagel 2003) as

�Z(h) =
s∑

u=0

Buγ u(h), (7)

with γu a variogram model with unit sill and {Bu} ∈ R
D−1×D−1 symmetric positive

semi-definite matrices for each u, being B = ∑s
u=0 Bu . These matrices describe the

correlation structure of a multivariate spatial process at different spatial scales given
by the ranges of the variogrammodels γu attached to them (Rondon 2012). Unsampled
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locations are co-simulated with the proposed fitted model using any appropriate geo-
statistical simulation technique, such as sequential Gaussian simulation (Carr 2003).

2.4 The Support Effect in Compositions

In this contribution two different supports were considered for production: point and
SMU supports. The first one is a fine scale support matching the data support, for
example, chip samples, channel sampling, boreholes or sensor excitation volumes
over the mine face. The grade-control model is specified on this fine-scaled grid and
used to improve the estimation of relatively small volumes of the deposit. The second
support matches the SMU, which roughly coincides with the ore volume typically
blasted. The grade control model is updated based on the observations made over this
SMU volume.

In this study, the grade control model is simulated in two different grids. The
fine scale model is given in a domain with locations that are indexed by u =
{u1,u2, . . . ,un}. The model simulated at SMU support is obtained by re-blocking
through averaging the cell grids contained in each unit. The model is indexed by the
SMU locations v = {v1, v2, . . . , vm}.

The function that re-blocks the cell grids contained by each block is

ψv(v) = S(v) =
∫
v
S(u′)du′ ≈ 1

#u(v)

∑
u′
i∈u(v)

S(u′
i ), (8)

where u′ represents each u point that discretizes the analyzed SMU v and #u(v) is the
total number of grid cells within the block v.

This re-blocking function shows a non-linear behaviour when applied as part of the
composite functions Eqs. (12) and (13). This will be discussed later.

It is important to remark that Eq. (8) follows the assumption that both mass and
volume of the block have a linear relationship, avoiding to compute the integral with
the density (Tolosana-Delgado et al. 2014). This has been assumed due to the lack of
data (e.g., permeability) available for the experiment.

3 Model Updating

3.1 Ensemble Filter Update

The updating method proposed here for a static system is the EnKF (Evensen 1994;
Burgers et al. 1998; Kalman 1960). This method sequentially estimates the space time
system state and its uncertainty by means of a collection of realizations of the state
variables or ensemble. The average of the ensemble is taken as the estimate of the true
state, while the variance of the ensembles represents the uncertainty related to that
estimate.

A system that does not evolve on time but is regularly sampled at different times (or
locations) is represented by a set of ensembles reproducing the desired Gaussian ran-
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dom function Z(u, t). The sample location relates to time and space, as each point can
only be sampled once. The observations are on SMU support and these are reconciled
into a grade control model defined by a point support. The simulated random field of
the system is represented by Zt ∈ R

n·(D−1)×r , where r is the number of realizations
and n the number of cell grids in the simulated model. This matrix is updated based
on information gathered up to a time t . Columns zit of Zt are r ensemble members
represented as

zit = [zit,1, zit,2, . . . , zit,D−1], i = 1, . . . , r , where (9)

zit, j = [zit, j (u1), . . . , zit, j (un)], j = 1, . . . , D − 1,. (10)

Here the state vector zit ∈ R
n·(D−1) represents the i th realization of the D−1 variables

gridded into n cell grids located by u.
Thus, the updating step (also known as analysis step) that conditions the state

variable to the observed data gives

Zt+1 = Zt + Wt+1(Yt+1 − At+1,v(Zt )), (11)

with At+1,v(Zt ) the observation operator that approximates the forward simulator
and Yt+1 ∈ R

D−1×r the matrix of observations. The matrixWt+1 ∈ R
n·(D−1)×(D−1)

denotes the Kalman gain operator that is applied to each ensemblemember. The updat-
ing step for a time invariant system is optimal under conditions of (i) Gaussianity in
the non-updated model (prior ensemble), (ii) linearity of the observation operator and
observations and (iii) Gaussianity in the additive observation error. When these condi-
tions are not satisfied, the application of the EnKF in the analysis step is sub-optimal,
but can still be satisfactory in a non-linear, non-Gaussian and high dimensional setting
(Wikle and Berliner 2007; Amezcua and Van Leeuwen 2014; Carrassi et al. 2018).
In the current study, the observation operator is non-linear since it is a combination
of additive up-scaling, log-ratio calculations and flow anamorphosis. Moreover, the
updating operation has to satisfy the Gaussianity of the prior ensemble. Thus, the
application of the EnKF in the present study operates on sub-optimal conditions.

3.2 Implementation Strategy

Figure 1 shows a flow-chart of the approach followed in this study. The initial infor-
mation is given by vector s0(uα). This vector is indexed by the set of locations uα

on a point support. The alr transformation is applied to transform the data into the
log-ratio space as x0(uα). This set of vectors used to compute a flow anamorphosis
transformation φu for data indexed in the point support u giving as a result the new
Gaussian vector z0(uα). This is coregionalized as explained in Sect. 2.3. The Gaussian
vector is used as conditional information to simulate a model at point-support u.

The φu and the alr transformations are used to back-transform the point-support
Gaussian data into the compositional scale. Then, a re-blocking of the multiple grids
is performed in order to obtain a SMU model S0(v) for each realization. The SMUs
obtained from this simulation are used to compute the transformation φv at SMU
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Fig. 1 Flow-chart describing the strategy followed for the data assimilation process control simulated
model updating

support that transforms each SMU value into a Gaussian space of the model Z0(v).
Amezcua and Van Leeuwen (2014) propose different ways to apply the Gaussian
anarmophosis: independent transformations for state variables and observations, or
joint state variable and observation transformations. In this study, the sample space
of the observations and the state variable at SMU (volume) support are the same.
Therefore, the same transformation φv is applied to them.

First, the vectors of observations d ∈ R
d are transformed into the Gaussian space

by applying the composite function (ψv ◦ alr). This is replicated r times to produce
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the perturbed observations matrix Yt+1 ∈ R
(D−1)×r

Yt+1 = (φv ◦ alr)(dt+1)1D−1×r + Et+1; Et+1 ∼ N (0, Ct+1,vv) . (12)

Here the matrix Et+1 ∈ R
(D−1)×r shows the observation error as an additive random

error term and Ct+1,vv the error covariance of the observations at time t + 1. This
represents the time independent instrumental error of the observing devices. These
observations are transformed before adding the error and each realization is back
transformed at each time before the next propagation step (Carrassi et al. 2018). The
change of support function ψv is implemented over the cell grids in point support
contained in the SMU at the original components and back transformed as

At+1,v(Zt ) = (φv ◦ alr ◦ψv ◦ alr−1 ◦φ−1
u )(Zt (u(v))), (13)

where At+1,v : R
(D−1)×n′ → R

D−1. Thus, the observation operator happens to
be a function of state variables at the nodes of the grid that fall within the SMU v
being observed in a time t . It depends essentially on the mine scheduling. As indi-
cated by the observations, this observation operator is also a non-linear function. This
study is simplified to the observation of one SMU at a time. Nevertheless, this can
be easily extended to multiple SMUs observed simultaneously. In this case, assump-
tions about the sensor precision, measurement volumes, update intervals and blending
ratios should be made following Wambeke and Benndorf (2017, 2018). The classical
Kalman filter implements the Kalman gain matrixWt+1 as

Wt+1 = Ct,zzAT
t+1(At+1Ct,zzAT

t+1 + Ct+1,vv)
−1 , (14)

where At+1 ∈ R
n·(D−1)×D−1 is a linear operator. The superscript T refers to the

transpose matrix andCt+1,zz ∈ R
n·(D−1)×n·(D−1) is the error covariance matrix of the

state variables. Formulating Kalman gain matrix for a general observation operator
requires the linearisation of the At+1 term into the already defined At+1,v. However,
the main idea behind EnKF is to use the information of multiple realizations to derive
the covariance of the Kalman gain. Equation (14) is computed replacing the ensemble
covariances by moment estimates of these quantities

Ct,zzAT
t+1 ≡ 1

r − 1

(
Zt − Zt

)(At+1,v(Zt ) − Mt
)T

, (15a)

At+1Ct,zzAT
t+1 + Ct+1,vv ≡ 1

r − 1

(
Lt − Lt

)(
Lt − Lt

)T
, (15b)

where bars denote ensemble averages

Zt =
(1
r

r∑
i=1

zit
)
1Tn·(D−1), (16a)

Lt =
(1
r

r∑
i=1

At+1,v(zit ) + eit+1

)
1Tn·(D−1), (16b)
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Mt =
(1
r

r∑
i=1

At+1,v(zit )
)
1Tn·(D−1) . (16c)

Note that Eqs. (16a)–(16c) involve outer products, resulting in matrices and not scalar
products. Here, ei is the i th column vector of matrix Et+1 and

Lt = At+1,v(Zt ) + Et+1 . (17)

This Monte-Carlo approach of the EnKF updates all the members of the ensemble
in the analysis step. In order to provide appropriate sample estimators, the number
of realizations (r ) should be larger than the number of observations (Carrassi et al.
2018). Moreover, the initial realizations of the grade control model at a time t = 0
should provide an appropriate representation of the deposit studied since the sample
estimators will depend on this initial set of realizations. It is important to notice that
EnKF approximates the non-linearities existing between the background model and
the observations. In this way, Eq. (15a) estimates the covariance between point and
SMU support through the realizations of the grade-control model at point support and
the knowledge of the observations at a time step t for a SMU support. Moreover, Eq.
(15b) considers the error in the measurements of the devices employed to perform
the observation measurement. When this error is not considered, the Kalman gain can
be identified by the co-Kriging weights (Vargas-Guzmán and Yeh 1999; Chiles et al.
2000; Dubrule 2018; Kumar and Srinivasan 2019).

3.3 Validation Strategy

In this section, the methodology proposed has been validated producing an individ-
ual realization s∗(v), not included in the EnKF ensemble calculations, to represent
the ground truth. Following a log-ratio analysis to assess the accuracy of the assimi-
lated compositions, the squared Aitchison’s distance between each realization and the
ground truth vector with the real compositions are used as measures of the lack of fit

d2a (S(v), s∗(v)) = 1

r

r∑
i=1

D∑
d=1

(
log

sid(v)

g(si (v))
− log

s∗d(v)
g(s∗(v))

)2
, i = 1, . . . , r, (18)

where s∗(u) is the true value of the modelled deposit. Then, g(si (v)) and g(s*(v)) are
the geometric mean of each original composition for each realization and each SMU.
Egozcue et al. (2018) related the squared Aitchison distance with the sample variance
matrix of simple log-ratios between parts of a certain composition.

Since this study aims to assimilate constrained data as a vector of compositions,
it is important to provide a measure between the updated and non-updated models.
The Aitchison distance average over ensembles provides an appropriate measure of
the updated model’s accuracy since this distance is doubly relative, it considers the
relations amongnot anyvariables, but also amongobservations. TheAitchisondistance
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Fig. 2 Map of the bore-holes used as initial information from the bauxite deposit

can be interpreted as a measurement of both central tendency and dispersion with
respect to the ground truth.

4 Application

4.1 Case Study Description

The deposit used in this study is a bauxite formation located in the Caribbean. The
study location is one particular panel selected from 50 kt of ore. The components of
interest are oxide minerals, such as g.Al2O3 (gibbsite), b.Al2O3 (bohemite), SiO2,
P2O5, Fe2O3 and the rest.

A total of 306 boreholes are drilled by an average sampling mesh of 15 by 15 m2

spacing. Figure 2 shows a three-dimensional spatial representation of the boreholes
used in this study. These are sampled at 1,501 intervals providing information of the six
components of interest. This information corresponds to variable s0(uα) in Fig. 1. The
variable is transformed to Gaussian space by alr and the flow anamorphosis (z0(uα)).
Figure 3 shows the histograms of the data in their original state and after applying the
flow anamorphosis transformation (φu). The number of components is reduced one
when the log-ratio is applied. After applying flow anamorphosis, the variables do not
physically represent the initial components anymore, as they are non-linear mixtures
of the original variables.

Table 1 summarizes the descriptive values of the original data. All variables are
positive and their sum is 100%. The right side of Table 1 shows the covariance between
variables. On the other hand, Table 2 provides descriptive statistics of the Gaussian
transformeddata. These showa standard deviation close to 0.9. This parameter depends
on the value of the kernels for the flow anamorphosis transformation.

Figure 4 illustrates the bivariate scatter plots of some variables and their associated
distributions through the Gaussian kernel density estimated. The three panels in the
upper part of Fig. 4 are scatter plots of the original data. These show that the variables do
not follow a bivariateGaussianmarginal distribution. The three panels in the lower part
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Fig. 3 Histograms of the initial compositions (blue) and the Gaussian transformed data (green)

of Fig. 4 are scatter plots of the variables after being transformedbyflowanamorphosis.
In contrast, to the upper scatter plots, these represent a multivariate Gaussian marginal
distribution.
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Table 1 Descriptive analysis given by the mean, minimumn, maximum and standard deviation values and
(co)variances of the initial data

Variable Mean Min Max SD g.Al2O3 SiO2 P2O5 b.Al2O3 Fe203 Rest

g.Al2O3 41.87 32.00 53.70 3.80 14.78 −3.14 0.58 −0.49 2.00 −13.72

SiO2 2.85 0.11 11.47 1.87 −3.14 3.47 −0.09 −0.06 0.13 −0.31

P2O5 0.98 0.37 3.75 0.34 0.58 −0.09 0.12 −0.00 0.00 −0.60

b.Al2O3 1.84 0.10 4.20 0.72 −0.49 −0.06 −0.00 0.53 0.09 −0.06

Fe203 19.09 14.90 23.90 1.14 2.00 0.13 0.00 0.08 1.41 −3.64

Rest 33.42 23.12 54.04 4.44 −13.72 −0.30 −0.60 −0.06 −3.64 18.32

Table 2 Descriptive analysis given by the mean, standard deviation and (co)variances of the transformed
data

Variable Mean SD V1 V2 V3 V4 V5

V1 0.01 0.89 0.79 −0.06 −0.06 −0.04 −0.04

V2 −0.03 0.86 −0.06 0.73 −0.06 −0.10 −0.04

V3 0.01 0.88 −0.06 −0.06 0.78 −0.05 −0.03

V4 −0.02 0.82 −0.04 −0.10 −0.05 0.66 −0.02

V5 0.00 0.90 −0.04 −0.04 −0.03 −0.02 0.80
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Fig. 4 Scatterplots of the initial data and after applying flow anamorphosis

4.2 Updating Process

After transforming the data into a Gaussian multivariate space, a three-dimensional
model of the area of 120 m × 45 m × 33 m is simulated. This is conditionally simu-

123



Math Geosci (2021) 53:945–968 959

lated to the initial information producing 201 realizations. A panel of 60 m × 30 m ×
3 m is selected to show the results of the experiment. One of these realizations is taken
as ground truth in order to test the methodology in a fully known environment. In this
way, the realization is known to be in the same support (domain) as the simulated
model and a join transformation (φv) for the observations and the simulated model
are performed (Amezcua and Van Leeuwen 2014). However, taken as a ground truth
one realizations simulated has the major drawback that this does not fully represent
the reality. Therefore, this can be inappropriately narrow under model misspecifica-
tion. This decision is made to simplify the problem and compute a transformation
based on a compositional random field of the same grid support as the observations
made.

Each SMU is set with a dimension of 3 m × 3 m × 3 m. A total of 40 SMUs are
assimilated in the whole panel. Figure 5 is a representation of the grid support map
of the six original non-updated compositions. The first two pannels correspond to the
values of g.Al2O3 and SiO2, the next two to P2O5 and b.Al2O3 and the last two to
Fe2O3 and the rest. The rectangle in the middle of each map is the area where the
40 assimilated SMU are located. The extraction strategy is defined from west to east
along each drift and from south to north through drifts. The update is implemented
by observing the ground truth of the compositions. These are represented in Fig.
6 a SMU support. Figure 7 illustrates a SMU support map that is obtained after
assimilating 10 SMUs (time t = 10) of the first drift. This last SMU assimilated is
represented by a black bold square within the assimilation rectangle. A localization
function is implemented to exponentially decrease the correlations with distance in
this spatial system (Carrassi et al. 2018). This function has a value one in 15 m a
radio range from the center of the SMU that is being updated. Further than this range,
the grids are weighted by a sigmoid function that happens to be the complement
of the Gaussian cumulative distribution function with 0.6 standard deviation and 0
mean.

This function is calculated by the cumulative distribution function (cd f ) as 1−cd f
of a normal distribution with 15 m as mean and standard deviation 0.6. This works as
a re-weighting function with domain [0, 1]. The standard deviation is related to the
abrupt change of the slope in the transition area between updated and non-updated cell
grid, where areas further than this 15 m range are assumed to get negligible updating.

The sensor error chosen in this study has zero mean and 0.1 standard deviation.
The reported parameter defines the measurement error on a scale of a single SMU.
The influence of this parameter on the overall performance of the algorithm has been
addressed by Wambeke and Benndorf (2018). In this paper, only this error has been
considered to test the proposed framework. After updating, the ensembles decrease
the spread of the distribution, representing the uncertainty of the model. Moreover,
the set of realizations move closer to the real value of the considered SMU. This
effect is shown in Fig. 8, representing the histograms at different updating times. Each
column represents a different variable (V1, V3 and V4) in the Gaussian space. The
blue dashed line represents the ground truth value, also in the Gaussian space. His-
tograms in blue colour illustrate the realizations at updating time t = 0 for the SMU
that will be assimilated at t = 14. For the pink histograms, the first three panels at
the top of Fig. 8 represent the realizations for the SMU that will be observed at time
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Fig. 5 Maps of the mean of the realizations of the original composition in the point support. g.Al2O3
(upper right), b.Al2O3 (upper left), SiO2 (mid right), P2O5 (mid left), Fe2O3 (lower right) and rest (lower
left). The black square correspond to the area of extraction
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Fig. 6 Maps of the ground truth compositions at SMU support

t = 14 after being updated at time t = 11. The three pink histograms at the second
row report the values at t = 12 the SMU planned to be extracted at time t = 14.
In the third row, the ensembles are represented at time t = 13 and the three bot-
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Fig. 7 Maps of the mean of the realizations of the original composition in the SMU-support. The simulated
model is updated after observing ten SMUs (black small square)

tom panels represent it at time t = 14 (after assimilating). Accordingly, as the SMU
is updated by closer neighbouring observations, the uncertainty about its values is
reduced. Thus, when the model is updated at time t = 11 and the SMU evaluated is
the one that will be updated at time t = 14 it means that the update is made upon
information that is 9 m away (from the each SMU center). Following this argument,
the rest of the ensembles represent information from 6 m, 3 m and 0 m respectively.
It is interesting to observe how the variance decrements are reflected in the original
compositions. The variance of the distribution of the ensembles updates decreases
when the updated SMU is closer to the observation. As well, the mean value of the
distribution is closer to the observed value. While this is observed for each component
independently at Figs. 8, 9 shows ternary diagrams of the ensemble of the compo-
sitions when these are updated from SMU located at same distances. The point in
beige represents the observation. The points in blue are the ensemble representation
of the initial data. The points in pink represent the updated ensemble at different dis-
tances. The first row of ternary represents again 9 m distance updated ensembles. The
second row represents 6 m distance, the third row 3 m distance, and the last row the
updated ensemble at distance 0. The colour of the points represent the kernel den-
sity estimation for the set of points (realizations). These plots are interpreted as the
joint behaviour of the updated ensemble of components with respect to the original
ensemble. Coinciding with the results in Fig. 8, the variance of the distribution repre-
sented in each ternary diagram by the ensembles also decreases in a joint behaviour
while keeping the sum constraint property. Figure 10 shows kernel density estimates
for the SMU that are assimilated at time t = 14 while this is updated at different
times. The mode tends to move to the observed value while keeping the sum con-
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Fig. 8 Histograms of the realizations of the 14th SMUs assimilated in the Gaussian transformed space.
The blue histogram represents the non-updated model. The pink histograms represents the updated model
at different times

straint of the components constant and the positivity of all the variables. Equation (18)
is implemented for all the assimilated SMUs in order to provide a quantification of
the reduced variance of the compositions. Table 3 shows the results obtained as an
average of all the squared Aitchison distances for all the SMUs (of the panel). The
uncertainty, in terms of squared Aitchison distance, is reduced by 42.7 % on aver-
age for all the assimilated panels between the non-assimilated model and evaluating
neighbouring updated SMUs (i.e., evaluate SMUs at 9 m distance represents three
SMUs apart).

5 Conclusions

The proposed methodology is an efficient method to update variables jointly with
the presence of complex dependencies between themselves as non-linearities, het-
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Fig. 9 Ternary diagrams of the ensembles for the 14th SMU non-updated (blue), updated (pink) and the
observation (beige) at times 11, 12, 13 and 14 (from first to last row)

eroscedasticities and compositional constrains. The method combines the ease of
modeling by compositional functions as chain transformations (additive log-ratios
and flow anamorphosis) with different supports between the underlying models that
represent reality and the observations obtained. The positiveness constrain of the vari-
ables is satisfied during the updating process by transforming these with log-ratio
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Fig. 10 Kernels densities of the ensembles. Non updated (left), updated by a 9 m further SMU (mid),
updated by a 6 m further SMU (right). Beige point is again the observation

Table 3 Average of the squared
Aitchison distances between
ensembles and the ground truth

d2a (S(v), s∗(v))

Non-Updated 0.194

Updated 9 m 0.107

Updated 6 m 0.104

Updated 3 m 0.083

Updated SMU 0.007

transformations and flow anamorphosis. The uncertainty of the assimilated variables
is reduced while the relationship between variables are satisfied to the compositional
constrains. The proposedmethodology is applied to a bauxite deposit in the Caribbean.
A ground truth model and a set of realizations as simulation of the compositional ran-
dom field is simulated based on information obtained in a drill hole campaign.

The question still remains whether a proper transformation is achieved when the
domain and the support of the real observations and the data that compute the trans-
formation are not the same. Further research should address this problem and look at
the influence of the spatial decorrelation of the variables by the Flow Anamorphosis
and other methods such as Maximum-minimum Autocorrelation Factors (MAF) in
the assimilation process.

Acknowledgements Open Access funding provided by Projekt DEAL. This research is a collaboration
between TU Bergakademie Freiberg and Helmholtz Zentrum Dresden Rossendorf - Helmholtz Institute
Freiberg for resource technology. Funding is acknowledged from Real-Time Mining Project EU Horizon
2020 Research and Innovation Program under the Grant Agreement No. 641989. Thanks are expressed to
Peter Menzel for Fig. 2.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Math Geosci (2021) 53:945–968 965

Appendix: Invariance to the Choice of Log-ratio Representation.

In case one doeswant to use the framework proposedwithout usingflowanamorphosis,
it is important to show that the system is invariant to the different transformations
available. Jones and Aitchison (1987) showed the relationship between alr and clr and
Egozcue et al. (2003) showed the relation between ilr and clr. These are related by
linear transformations. For the case of the alr there are D different transformations.
These reduce the multivariate random vector into D − 1 dimension. To simplify the
case, the model represented by Eq. (11) is assumed to be one realization in its vector
form as

zit+1 = zit + Wt+1(yit+1 − At+1,v(zit )) ∀ i = 1, . . . , r. (19)

Two different alr representations are considered

Representation 1: alr1(s) = z1 =
(
ln

z2
z1

, ln
z3
z1

, · · · , ln
zD−1

z1

)
, (20a)

Representation 2: alr2(s) = z2 =
(
ln

z1
z2

, ln
z3
z2

, · · · , ln
zD−1

z2

)
, (20b)

related with

M12 alr1 = alr2, (21)

wherematrixM12 is an invertiblematrix that defines the changebetween representation
1 and 2. The transformation of the covariance is

M12alr1(s(x)) = M12z1(x) = alr2(s(x)) = z2(x), (22a)

Ct,zz,1 = M12Ct,zz,2M
t
12, (22b)

extending this to the Kalman gain matrix as

Wt+1, 2 = M12Ct,zd,1M
t
12(M12Ct,dd,1M

t
12)

−1 (23a)

= M12Ct,zd,1M
t
12(M

t
12)

−1C−1
t,dd,1M

−1
12 (23b)

= M12Ct,zd,1C
−1
t,dd,1M

−1
12 . (23c)

The Kalman filter is expressed as

M12zt+1,1 = M12(zt,1 + Wt+1,1(dt+1,1 − At+1,v(zt,1))), (24a)

M12zt+1,1 = M12zt,1 + M12Wt+1,1(dt+1,1 − At+1,v(zt,1)), (24b)

M12zt+1,1 = M12zt,1 + M12Ct,zd,2C
−1
t,dd,2M

−1
12 M12(dt+1,1 − At+1,v(zt,1)), (24c)

zt+1,2 = zt,2 + Ct,zd,2C
−1
t,dd,2(dt+1,2 − At+1,v(zt,2)). (24d)

zt+1,2 = zt,2 + Wt+1,2(dt+1,2 − At+1,v(zt,2)). (24e)
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Therefore, Eq. (19) is invariant to any full-rank linear transformation such as those
in Eqs. (24a) and (24b). As a consequence, the method is invariant under the choice
of log-ratio transformation. This is extended to the set of realizations defined by Eq.
(11).
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