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Abstract—Seismic events produced by block rotations about

vertical axis occur in many geodynamic contexts. In this study, we

show that these rotations can be accounted for using the proper

theory, namely micropolar theory, and a new asymmetric moment

tensor can be derived. We then apply this new theory to the Kai-

kōura earthquake (2016/11/14), Mw 7.8, one of the most complex

earthquakes ever recorded with modern instrumental techniques.

Using advanced numerical techniques, we compute synthetic

seismograms including a full asymmetric moment tensor and we

show that it induces measurable differences in the waveforms

proving that seismic data can record the effects of the block rota-

tions observed in the field. Therefore, the theory developed in this

work provides a full framework for future dynamic source inver-

sions of asymmetric moment tensors.

Keywords: Seismology, asymmetric moment tensor, microp-

olar theory, Kaikōura earthquake.

1. Introduction

The main deformation observed on continents is

generated by the contemporaneous motion of

numerous strike-slip faults (Schreurs, 1994). Strike-

slip faults are vertical or nearly vertical fractures

where the tectonic blocks have mostly moved hori-

zontally. Therefore, in many tectonically deformed

areas of the crust, distributed deformation is mani-

fested as a broad region of faulting (McKenzie &

Jackson, 1986). The motion of a system of strike slip

faults is a very efficient mechanism of large-scale

deformation (Twiss et al., 1993).

In continental regions, the rupture lengths of even

the largest earthquakes are often small compared with

the width of the deforming zone (Jackson and

McKenzie, 1988). Such zones of distributed conti-

nental deformation frequently contain fault-bounded

blocks that rotate rapidly with respect to the major

plates on either side (Kissel et al., 1985, 1986;

Luyendyk et al., 1980, 1985; Walcott 1984). The

study of general features of the deformation induced

by systems of sub-parallel strike-slip faults shows

that the governing constraints are kinematic: the fault

blocks must remain in contact with each other and the

deformed area must fit with its surroundings. As a

result, fault blocks that move laterally without sig-

nificant internal deformation also rotate about vertical

axis relative to boundaries of the fault domain by an

amount that is quantitatively related to the fault slip,

spacing and orientation (Freund, 1970; Garfunkel,

1974; Garfunkel & Ron, 1985).

Rotation of the blocks and their relative lateral

motion are two different but essential and contem-

poraneous expressions of a single deformation. Like

motions of large tectonic plates, the motion of smaller

blocks at the surface of the Earth can be described by

rotations about vertical axis (Euler poles) that inter-

sect the center of the Earth. To the eye, these

rotations produce gradients in the surface velocity

field that could be mistaken for shear rates because

both involve the components of the velocity gradient

tensor (McCaffrey et al., 2002). Many observed GPS

velocity fields can be explained by rotating blocks

that are strained near their edges due to interactions

with other blocks across the bounding faults. The

rotation of fault-bounded domains results in sig-

moidal antithetic faults that have a dip-slip

component and a dip direction that changes along the

strike (Schreurs, 1994).

Block rotation is also an important process in fault

gouges (fault in rocks formed by tectonic forces with

a very small grain size) (Alonso-Marroquin et al.,
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2006). Traditionally, fault movement is treated with

standard continuum mechanic formulations, where

faults are modeled as discontinuities within a velocity

field. This over simplification makes it difficult to

determine e.g., fault-weakening processes (Alonso-

Marroquin et al., 2006; Collins-Craft et al., 2020;

Rattez et al., 2018a, b; Veveakis et al., 2012).

Veveakis et al. (2012) used micropolar theory to

model fault gouge and they were able to show that

thermal effects foster the localization of deformation

with the formation of very thin shear bands. In more

recent works (Collins-Craft et al., 2020; Rattez et al.,

2018a, b), micropolar theory was used to investigate

the evolution of the localization zone thickness with

respect to the evolution of the grain size. Addessi

(2014) pointed out that the micropolar approach is

also suitable to model brittle-like materials that have

a strain softening constitutive behavior which can be

observed in mature fault zones (Addessi, 2014;

Brandes & Tanner, 2020, Sibson, 1984). The fact that

the micropolar theory allows rotational motions

makes it especially useful to describe fault creep,

where particle rotation is a possible explanation for

the gradual fault movement (Brandes & Tanner,

2020).

Natural examples of fault and block rotations

about vertical axis occur in many areas of the planet

such as the San Andreas fault system in southern

California (Nicholson et al., 1986a, b; Schreurs,

1994), eastern Iran (Freund, 1970), New Zealand

(Roberts, 1995; Ron et al., 1984; Walcott, 1984;

Wang et al., 2020; ), the Dead Sea transform (Le

Pichon & Gaulie, 1988; Ron & Eyal, 1985; Ron

et al., 1990), the Mojave desert California (Gar-

funkel, 1974; Schermer et al., 1996), the Sierran

microplate, SE California (Lewis et al., 2007) and the

Sumatra along strike variation has been explained as

a plate locking and rigid rotation (McCaffrey et al.,

2002; Prawirodirdjo et al., 1997). Block rotation

seems to be related to lateral displacement of material

parallel to master faults and out of the bulk shear

zone (Schreurs, 1994).

The deformation produced by the rotation of

kilometer-scale blocks in zones of distributed brittle

deformation in the crust has been modeled combining

different types of fault blocks models with the seis-

mic moment tensor (Garfunkel, 1974; Jackson &

McKenzie, 1988; Kissel & Laj, 2012; Luyendyk

et al., 1980; McKenzie & Jackson, 1986; Ron et al.

1984; Wells & Heller, 1988; Wernicke & Burchfiel,

1982). However, no consensus has been found today

whether the correct seismic moment tensor to use

must be symmetric or asymmetric. Standard bibli-

ography supports the postulate that the seismic

moment tensor must be symmetric (Aki & Richards,

2002; Backus & Mulcahy, 1976a; Dahlen & Tromp,

1998; Jackson & McKenzie, 1988; Slawinski, 2010)

and several authors support that it must be asym-

metric (Abreu et al., 2018; Chapman & Leaney,

2019; Molnar, 1983; Molnar & Qidong, 1984; Twiss

et al., 1993), with both versions (symmetric and

asymmetric) completely supported by observations.

However, without any doubt, the most routinely used

version is the symmetric one.

Strictly speaking, the symmetric moment tensor

contains less information compared to the asymmet-

ric one. However, Jackson and McKenzie (1988)

claims that this extra information is not relevant and

cannot be observed from seismological observations.

On the contrary, Molnar (1983) and Twiss et al.

(1993) support that this extra information, contained

in the asymmetric part, establishes the link between

block rotations and focal mechanism solutions of

seismic events. In particular, Twiss et al. (1993)

establishes this connection using micropolar theory

(Nagahama & Teisseyre, 2000; Teisseyre,

1973, 2008, 2011; Teisseyre et al., 2006, 2008). This

allows to model the discontinuous nature of faulting

of distributed brittle deformation as a continuum,

provided that the dimensions of the deforming

material are large relative to the characteristic spac-

ing of the discontinuities. In return, one can

determine the characteristics of the regional defor-

mation from an analysis of local discontinuous

deformations characterized by faulting (block rota-

tions) and by seismic activity.

Four main different versions of the asymmetric

moment tensor have been proposed by Abreu et al.

(2018), Molnar (1983), Twiss et al. (1993) and

Chapman and Leaney (2019). These different ver-

sions seem to be different by definition and, in

principle, contain different information. Here we

show, however, that they are particular cases of a

general alternative definition that can be postulated
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using micropolar theory. Because this alternative

definition is based on micropolar theory, we propose

a methodology to compute the new required param-

eters. We then apply the new model to an example of

crustal block rotation produced by the Kaikōura

earthquake occurred on the 14th of November 2016

in northeastern South Island. We run numerical

simulations to compute seismograms using the open-

source package SPECFEM3D GLOBE (Komatitsch

& Tromp, 1999) for the Kaikōura asymmetric

moment tensor. We are able to predict observable

differences produced by the new model which can

serve as basis for future inversion studies. We finally

discuss the contributions and further perspectives of

this work.

2. The Symmetric Seismic Moment Tensor

We first recall basic concepts of the seismic

moment tensor needed to present our theoretical

developments. The seismic source is considered to be

a localized failure in Hooke’s law within a certain

region of the space. The difference between the stress

model that satisfies the constitutive Hooke’s law

sHooke and the real (observed or true) stress sobserved is

called ‘‘the stress glut’’ sglut or ‘‘stress excess’’

(Backus & Mulcahy, 1976a, b; Chapman, 2010;

Dahlen & Tromp, 1998). Hence we can write the

following

sglut ¼ sHooke � sobserved: ð1Þ

The stress glut sglut has nonzero values in an explo-

sion or in the fault zone of an earthquake (Chapman,

2010). For a small source, in terms of the wavelength

and propagation distance, it is convenient to consider

the volume average of the stress glut change in the

source, i.e., the volume and time integral of the rate

of change of stress glut over the support of the source

(Chapman, 2010)

M ¼
Z
t

Z
V

osglut

ot
dVdt ¼

Z
V

sglut
� �

dV ; ð2Þ

where sglut
� �

is the temporal jump of the stress glut

and M is known as the seismic moment tensor, with

units of force times distance. We may write

sglut
ij ¼ Cijkle

P
kl; ð3Þ

where Cijkl are the average elastic parameters within

the source region and ePkl is called the inelastic strain

tensor in the faulting region, also called transforma-

tional strain (Ben-Zion, 2003).

Using distribution theory, where the term distri-

bution refers to continuous linear functional on a

space of smooth test functions, we can replace the

observed or physical stress sobserved, which is in

general discontinuous across the fault, by an associ-

ated regular distribution ðDÞ given by the following

expression (Dahlen & Tromp, 1998)

D sobserved
� �

¼ CijklD eij
� �

¼ 1

2
CijklD oiuj þ ojui

� �
:

ð4Þ

The model (Hooke) stress sHooke is, on the other hand,

a singular distribution, given by the following

expression (Dahlen & Tromp, 1998)

sHooke ¼ 1

2
Cijkl oiDuj þ ojDui

� �
: ð5Þ

We therefore can write the stress glut sglut as follows

(see Dahlen and Tromp (1998) Chapter 5 for further

details)

sglut
ij ¼ 1

2
Cijkl oiDuj þ ojDui

� �
�D oiuj þ ojui

� �� �

¼ 1

2
CijklDuknl;

ð6Þ

where Du is a displacement discontinuity vector

across a surface S with a unit normal n. We may write

the seismic moment tensor Eq. (2) as follows

MijðtÞ ¼
Z
V

sglut
ij dV ¼ CijklPklðtÞ; ð7Þ

where P(t) is called the seismic potency tensor (Ben-

Zion, 2003) given by the following expression

PijðtÞ ¼
1

2

Z
S

DuinjdS: ð8Þ

For an isotropic material we can write the seismic

moment as follows (Ben-Zion, 2003)
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MijðtÞ ¼
Z
S

kdijDuknk þ l Duinj þ Dujni
� �� �

dS: ð9Þ

The first term on the right hand side of Eq. (9) is the

scalar product of Du and n, which is zero when the

two vectors are perpendicular to each other. This

situation arises when Du is on the fault surface (Pujol,

2003), or for shear sources ðDu ? nÞ (Vavryčuk,

2005), for which we can write the following

MijðtÞ ¼
Z
S

l Duinj þ Dujni
� �

dS: ð10Þ

The scalar seismic potency of shear faulting on a

planar surface is the integral of slip over the rupture

area or, equivalently, the product of the spatial

average of the final slip distribution and the failure

area A (Ben-Zion, 2003)

P0 ¼ DuA; ð11Þ

and the scalar seismic moment is (Chapman, 2010)

M0 ¼ lDuA; ð12Þ

where l is the effective shear modulus (rigidity) in

the source area.

The moment tensor defined in Eq. (7) is sym-

metric. This is a consequence of the conservation of

mass and the balance of linear momentum together

with the balance of angular momentum under the

assumption of only central forces acting within the

continuum, which requires that sHooke and the elastic

tensor Cijkl are symmetric (Slawinski, 2010). As a

consequence, the stress glut sglut is also symmetric.

Considering the observed stress sobserved as the

stress that satisfies the equation of motion, we can

write the linear conventional elastic equation of

motion as follows

qo2
t ui ¼ sHooke

ji;j � sglut
ji;j ; ð13Þ

thus it becomes evident that the term sglut
ji;j behaves as

a source of elastic motion. As noted by Chapman and

Leaney (2019), it also becomes evident that the term

sglut must be symmetric only due to the symmetries of

the elastic tensor Cijkl but it is not strictly required to

be.

Inelastic deformation within a volume, where

many earthquakes occur, can be described using

seismic moment tensors: consider a volume DV ,

during a time interval Dt, in which a large number N

of earthquakes occur with fracture areas Rx and

seismic moments M
ðxÞ
ij . Kostrov (1974) has shown

that the deformation can be written as follows

ojui ¼
1

DV

XN
x¼1

Z
Rx
DuðxÞi n

ðxÞ
j dSðxÞ; ð14Þ

where DuðxÞ is the slip for the earthquake number x, n

is the unit normal to the fault and Rx is the surface

area of the fault.

The increment of the mean deformation e and

mean vorticity w in the volume DV during the time

Dt is given by the following expressions

eij ¼
1

2
oiuj þ ojui
� �

; wij ¼
1

2
oiuj � ojui
� �

:

ð15Þ

In virtue of Eq. (14), we can write the inelastic

deformation as follows (Kostrov, 1974)

eKostrov
ij ¼ 1

2DV

XN
x¼1

Z
Rx

DuðxÞi n
ðxÞ
j þ DuðxÞj n

ðxÞ
i

� �
dSðxÞ;

ð16Þ

which can be written in terms of the seismic moment

tensor as follows

eKostrov
ij ¼ 1

2lDV

XN
x¼1

Mij

� �ðxÞ
: ð17Þ

Equation (17) has been first found by Kostrov (1974)

and subsequently used in several studies of inelastic

deformation (Jackson & McKenzie, 1988; Lewis

et al., 2007; Matsumoto et al. 2016; Molnar &

Qidong, 1984; Twiss & Unruh, 2007; Unruh et al.,

1996). Equation (17) assumes that the distribution of

inelastic strain in the volume is homogeneous after

the occurrence of earthquakes for the target period.

The homogeneous distribution of inelastic strain is

equivalent to the homogeneous moment density in

the volume. Thus, the assumption of homogeneous

strain in the volume is only appropriate if many

earthquakes occur in the volume. Therefore, the

spatial distribution of the moment tensor needs to be

considered when evaluating the applicability of this

method (Matsumoto et al., 2016).
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3. What Can an Asymmetric Moment Tensor Explain

that a Symmetric One Cannot?

The symmetric moment tensor given by Eq. (10)

is routinely used nowadays to describe seismic

sources. It has, however, some limitations: Molnar

(1983) introduced an asymmetric moment tensor

motivated by observations in the Haiyuan fault in the

Ningxia-Hui Shilong region of China and the

observed surface deformation of several large earth-

quakes in eastern China. He showed a case of simple

shear where the expected moment tensor happens to

be asymmetric.

A symmetric seismic moment tensor as described

by Eq. (10) has been the pillar for the fundamental

physical description of the earthquake rupture in the

last decades. However, Molnar (1983) has shown

simple cases where the symmetric moment tensor

fails to describe the rotation that occurs during simple

shear. Figure 1 shows a simple example where the

faults intersect the edge of the region under consid-

eration. Slip occurs on parallel faults so that the

region under consideration undergoes simple finite

shear ðexx ¼ eyy ¼ eyx ¼ 0; exy 6¼ 0Þ. If a symmetric

strain tensor is used to describe the moment tensor

(Eq. 9), then each event is assumed to contribute

equally to eyx and exy, so that pure shear develops

instead of simple shear (Molnar, 1983). The sym-

metric moment tensor predicts the correct amount of

average strain in the region but it neglects the rotation

(¼ 1=2 oux=oy in this case) that occurs during simple

shear. The observed strain deformation tensor eij can

be easily computed and related to a seismic moment

tensor using Eq. (17). The average strain is given by

the following expression (see Allmendinger et al.

(1989) for more details)

eij ¼
M0

lV

� sin/ cos/ sin2 / 0

� cos2 / sin/ cos/ 0

0 0 1

2
64

3
75

¼ M0Duinj ¼
MMolnar

ij

2lV
:

ð18Þ

Clearly the strain induced deformation is asymmetric.

In virtue of Eq. (18), the moment tensor MMolnar
ij is

also asymmetric.

Therefore, Molnar (1983) makes the assumption

that it is generally possible to distinguish the fault and

the auxiliary planes in deforming zones (Jackson &

McKenzie, 1988), which allows him to define an

asymmetric moment tensor as follows

MMolnar
ij ¼ M0Duinj; ð19Þ

where Dui is a unit vector parallel to the direction of

the slip and nj is the unit normal parallel to the fault

plane. A moment tensor like Eq. (19) is much more

useful compared to Eq. (9) since it defines nine

independent components to describe the physics of

the earthquake rupture instead of six. However,

Molnar’s definition has been criticized because it

does not agree with the conservation of angular

momentum which requires that rHooke and the elastic

tensor Cijkl are symmetric (Jackson & McKenzie,

1988; Slawinski, 2010).

Using simple analytical examples, Jackson and

McKenzie (1988) have shown that the antisymmetric

part of the seismic moment tensor defined by Molnar

(1983) (Eq. 19), measures only the local rotation of

the medium and therefore it cannot be recorded in

seismic data. Arriving at the same conclusion, Twiss

et al. (1993) and Twiss (2009) have shown that the

anti-symmetric part of Molnar’s moment tensor

Eq. (19) is a non-objective variable and thus it cannot

be measured by seismic data. The objective variables

that appear in constitutive equations define the

intrinsic characteristics of the deformation, whereas

non-objective variables do not. For instance, the

macroscopic deformation rate defined as follows

wki ¼
1

2
okvi � oivkð Þ; vi ¼ otui; ð20Þ

is a non-objective variable because the magnitude

depends on the coordinate system in which it is

measured (Eringen, 1980; Twiss et al., 1993).

A problem arises because using seismic data and

geological constrains, Molnar and Qidong (1984)

have calculated components of a global asymmetric

seismic moment tensor for sets of earthquakes in

different tectonic provinces in central eastern Asia.

Thus, in contrast to the arguments of Jackson and

McKenzie (1988), the results obtained by Molnar and

Qidong (1984) suggest that seismic moment tensors

can be asymmetric and observed in seismic data.
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These results motivated Twiss et al. (1993) to state

that classical continuum theory cannot account for all

observable characteristic of the deformation and a

more general expression of the seismic moment ten-

sor is needed.

Trying to be consistent with the arguments of

Jackson and McKenzie (1988), Eringen (1980) and

still keeping an asymmetric moment tensor in order

to include the field observations of Molnar and

Qidong (1984) and Twiss et al. (1993) stated that

Molnar’s moment tensor (Eq. 19) can be kept with a

slight modification: the slip direction Dui defined in

Molnar’s moment tensor must be changed. Twiss

et al. (1993) defines a local micropolar seismic

moment tensor for an earthquake MTwiss
ij and a global

micropolar seismic moment tensor M
Twiss

ij as follows

MTwiss
ij ¼ M0Du

Twiss
i nj; M

Twiss

ij ¼
XN
a¼1

MTwiss
ij ;

ð21Þ

where M0 is the scalar seismic moment and the

summation is over N earthquakes occurring in a given

volume and DuTwiss
i is the slip vector given by

micropolar theory instead of classical continuum

theory. Note that MTwiss
ij is similar to MMolnar

ij asym-

metric moment tensor with the difference in the

definition of the slip direction only.

Twiss et al. (1991, 1993) found that the slip

direction, or the direction of maximum macro-

shearing on a micro-material plane (observed direc-

tion of the shearing), in micropolar media is given by

the following expression

(a) (b)

(c) (d)

Figure 1
a rectangular parallelepiped cut by a vertical fault with strike /. The dimensions of the body are l, w and thickness h. Slip displacement Du
occurs on a fault of length L ¼ l= sin/. The slip displacement Du is small compared with l, w and L. The width w is cut into segments of

length w1 and w2 on the left and w3 and w4 on the right. b–d illustration of a case where the assumption of a symmetric moment tensor does

not predict the correct strain field. b Series of faults parallel to the x axis, slip by right-lateral shear. c As a result, the average finite strain is

simple shear with exy ¼ oux=oy finite and exx ¼ eyy ¼ eyx ¼ 0. d If a symmetric stress tensor is used, then the irrotational strains exy and eyx
must be equal so that the resulting strain field must be pure shear. Note that this assumption neglects the rotation that occurs in simple shear.

After Molnar (1983)
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DuTwiss
i ¼ 1

L
dki þ

1

2
�kijWj

� 	
gk � dklgkglgi


 �
; ð22Þ

where L is the magnitude of the vector between

brackets, W the net vorticity and

dki ¼
1

2
okui þ oiukð Þ; ð23Þ

where gk is the unit normal to a micro-material plane

that is part of the boundary of a block. The instan-

taneous direction of displacement on a shear plane is

necessarily the direction of maximum rate of shear on

that plane.

Twiss et al. (1991, 1993) argue that the microp-

olar theory resolves the symmetry problem of the

asymmetric moment tensor defined by Molnar (1983)

and, at the same time, obeys the law of conservation

of angular momentum, allowing to be used with

seismic data. Although the theory is formulated in

terms of rates of deformation (Eq. 23), in practice,

Twiss et al. (1991, 1993) interpret these rates to be

represented by small increments of deformation that

accumulate over a finite but geologically very short

time interval Dt. Elimination of time from the rate

terms by multiplying each term by Dt does not affect

the results. Thus, the rates are represented by the

instantaneous deformation, and the time interval over

which these increments accumulate is not a factor in

the analysis (Twiss and Unruh 2007).

There are however, some remaining inconve-

nients with the moment tensor defined by Twiss et al.

(1991, 1993) in Eq. (21). One inconvenient is related

to the elastic material parameters defined in the stress

glut Eq. (3). In micropolar elasticity, the tensor of

elastic parameters Cijkl is non-symmetric, thus at least

one new elastic constant is introduced, the Cosserat

couple modulus lc in isotropic media, but it is not

taken into account in the definition of Eq. (21).

Second, for finding the asymmetric moment tensor

one needs to be able to invert for the slip direction

Eq. (22), which is related to the deformation strain

rate Eq. (23), which is usually measured using several

seismic events.

Woodhouse (1981) pointed out that if a fault

crossed a material discontinuity, determining the

moment tensor was ambiguous and the fraction of the

fault on each side of the discontinuity must be

specified a priori. The word ambiguous, as explained

by Chapman and Leaney (2019), refers to the fact that

the value of the moment tensor depends on the exact

location of the source. As such, it does not provide a

useful parameterization for a source near a disconti-

nuity. For the ambiguous parameters, the source

location must be specified exactly and not just as

being ‘‘at’’ the discontinuity. Because the moment

tensor is discontinuous across the interface for slip

parallel to the discontinuity, it is ambiguous even

though it has a well-defined intermediate value for

slip on the discontinuity (Chapman & Leaney, 2019).

In order to include torque in the seismic moment

tensor and to be consistent with Molnar’s asymmetric

moment tensor, Chapman and Leaney (2019) have

explicitly included the antisymmetric part in the

definition of the moment tensor Eq. (7) as follows

MChapman
ij ¼ CijklPkl þMA

ij ; ð24Þ

where MA
ij is the antisymmetric part of Mij and Pkl the

potency density tensor defined in Eq. (8). This allows

Chapman and Leaney (2019) to show that for a

general source and any location ‘‘at’’ an interface,

certain components of its moment tensor and certain

components of its potency tensor can be determined

unambiguously. However, the definition proposed by

Chapman and Leaney (2019) is ad hoc and does not

have any physical origin.

In the next section we reconcile Molnar (1983),

Jackson and McKenzie (1988), Twiss et al. (1993)

and Chapman and Leaney (2019) points of view by

introducing an alternative asymmetric moment

tensor.

4. The Micropolar Moment Tensor: An Application

to the Kaikōura Event

4.1. The Asymmetric Mircopoplar Moment Tensor

Let us now define an asymmetric moment tensor

using the concepts of stress-glut in micropolar media

and distribution theory presented in the previous

section. For doing so, we use reduced micropolar

model (Grekova, 2012a, b, 2016; Grekova et al.,

2009; Kulesh et al., 2009). In such a medium, body

points have independent translational and rotational

Vol. 178, (2021) Understanding Micropolar Theory in the Earth 4331



degrees of freedom, but no stresses are induced by the

gradient of microrotation. We further discuss this

choice at the end of the section. Let first recall the

linear elastic equations of motion for a reduced

micropolar media

qo2
t uj ¼ oirij; balance of linear momentum

Io2
t hj ¼ �jklrkl; balance of angular momentum

ð25Þ

where r is the asymmetric micropolar stress tensor, �

is the Levi-Civita symbol and h is the independent

rotation vector. The free surface boundary conditions

are given by

n̂ � r ¼ 0 on oX; ð26Þ

where n̂ refers to the direction normal to the surface

oX. In an isotropic and homogeneous media, the

stress rij and strain �ij tensors are given by

rij ¼ lðoiuj þ ojuiÞ þ k dijokuk þ 2lc�ijkWk; ð27Þ

eij ¼
1

2
ðoiuj þ ojuiÞ þ �ijkWk; ð28Þ

where lc is the Cosserat couple modulus, a new

elastic parameter measuring the ability of the material

to be deformed by rotational motions, W is the

effective rotational motion or net vorticity vector

(Twiss et al., 1993) defined as the difference between

the curl ð1
2
�kaboaubÞ and the independent rotation h as

follows

Wk ¼
1

2
�kaboaub � hk

� 	
: ð29Þ

Using Eq. (1), we can write the following reduced

micropolar linear equations (Abreu et al., 2018)

qo2
t ui ¼ rji;j � r

glut
ji;j

Io2
t hi ¼ �ijkrjk � �ijkr

glut
jk :

ð30Þ

Using distribution theory (see Dahlen and Tromp

(1998) Chapter 5 for further details), it is straight-

forward to show that in micropolar media, the stress

glut rglut is given by the following expression

rglut
ij ¼ 1

2
Cijkl oiDuj þ ojDui

� �

þ �ijkDWk �D 1

2
oiuj þ ojui
� �

þ �ijkWk

� 	

¼ CijklDu
Twiss
k nl;

ð31Þ

where DuTwiss is a displacement discontinuity vector

across a surface S, defined by Eq. (22), with a unit

normal n to the fault plane. We can define the

micropolar seismic moment tensor as follows

Mmicropolar
ij ðtÞ ¼

Z
V

rglut
ij dV; ð32Þ

and assuming isotropy in the elastic parameters we

may write

Mmicropolar
ij ðtÞ ¼ 1

2

Z
S

kdijDu
Twiss
k nk

�

þ l DuTwiss
i nj þ DuTwiss

j ni

� �

þ lc DuTwiss
i nj � DuTwiss

j ni

� �
�dS:

ð33Þ

For shear sources ðDu ? nÞ, Eq. (33) reduces to the

following expression

Mmicropolar
ij ðtÞ ¼ 1

2

Z
S

l DuTwiss
i nj þ DuTwiss

j ni

� �h

þlc DuTwiss
i nj � DuTwiss

j ni

� �i
dS:

ð34Þ

The similarities between the isotropic and Twiss’s

micropolar moment tensor become evident, since we

can write Twiss’s seismic moment tensor as follows

MTwiss
ij ¼ M0Du

Twiss
i nj ¼ lADuTwiss

i nj

¼ 1

2

Z
S

l DuTwiss
i nj þ DuTwiss

j ni

� �h

þl DuTwiss
i nj � DuTwiss

j ni

� �i
dS;

ð35Þ

again, taking into account that the slip direction is

given by Eq. (22). One can observe that Twiss’s

seismic moment tensor is a particular case of the

micropolar moment tensor presented in Eq. (34).

Note that for lc ¼ l we have MTwiss
ij ¼ Mmicropolar

ij and

for lc ! 1 we have Mmicropolar
ij ¼ Msymmetric

ij . Thus,
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depending on the selection of the Cosserat couple

modulus lc, micropolar theory can reconcile both

symmetric and asymmetric points of view. Similari-

ties between the isotropic micropolar and Chapman’s

(Eq. 24) moment tensors also become evident. Both

models are equivalent if we write the following

MA
ij ¼

1

2

Z
S

lc Duinj � Dujni
� �

dS: ð36Þ

Equation (34) is valid in a reduced micropolar med-

ium. Using a more generalized micropolar theory

with a non zero couple stress tensor would have led to

a moment tensor dependent on (local) slip rotational

motions. We will develop the more generalized the-

ory in future works. In the next section we show how

to obtain the Cosserat couple modulus lc in a realistic

scenario. This will lead to the realistic calculations of

the introduced micropolar moment tensor.

4.2. Computing the Cosserat Couple Modulus lc
Using Homogenization of a Multilayered

Periodic Medium

Micropolar theory can be used to model the

behavior of granular, layered and blocky rock media

(Mühlhaus, 1993). In the case of the layered material,

the nonstandard terms of the micropolar theory can

be used to model the influence of the bending

stiffness of each layer on the material’s response. In

this way, a second (internal) length scale is intro-

duced in addition to the global one, defined for

example by structural dimensions. In this specific

case, the internal lengths are simply the layer

thicknesses (see Fig. 2).

Biot (1965) showed that, within certain limits, a

laminated periodic medium behaves like a classical

elastic continuum with anisotropic properties,

although the individual layers may be isotropic. The

validity of this approximation is restricted to cases

where the rigidity contrasts between the layers are not

too large and the layer thicknesses remain sufficiently

small with respect to the dominant wavelength in the

deformation field (layer thickness). Similar approxi-

mations have also been proposed in the geophysical

field by Backus (1962) with the same kind of

limitations. Strictly speaking, a layered material can

be modeled as a conventional orthotropic continuum

only if the layer thickness is negligible compared

with a characteristic structural length (Backus, 1962;

Mühlhaus, 1993).

In order to overcome this long time standing

limitations, Mühlhaus and Vardoulakis (1986) and

Mühlhaus (1990) proposed an alternative approach

by representing an incompressible laminated half-

space as a homogeneous half-space of Cosserat

(micropolar) material (Papamichos et al., 1990).

The internal length, introduced by the micropolar’s

theory, provides the way to include moment stresses

in the constitutive model and to remove the assump-

tion that the layers are small compared with the

characteristic structural length (Mühlhaus,

1990, 1993; Mühlhaus & Triantafyllidis, 1987;

Mühlhaus & Vardoulakis, 1986; Papamichos et al.,

1990; Sulem & Vardoulakis, 1995). The micropolar

continuum theory permits geometric properties of

(a) (b) (c)

Figure 2
a Periodic laminated medium with two thickness h1; h2 ðh2 [ h1Þ. The number of layer is infinite. b Simple shear applied in the direction of

the layering. c Homogeneous micropolar equivalent model
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certain material inhomogeneities to be considered

only in the constitutive relationships.

The elastic parameters of the micropolar contin-

uum are identified by stipulating the incremental

work in the respective deformations in the micropolar

and the classical continuum to be equal. In this case,

the Cosserat couple modulus lc can be written as

follows (see Mühlhaus and Vardoulakis (1986) and

Mühlhaus (1990) for further details)

lc ¼ lV � lR; ð37Þ

where lV ; lR refer to the Voigt’s modulus and

Reuss’s shear modulus respectively given by the

following expressions

lV ¼ x1l1 þ x2l2; lR ¼ 1
x1

l1
þ x2

l2

¼ l1l2

x2l1 þ x1l2

:

ð38Þ

where x1; x2 are the volume fractions of the two

materials (see Fig. 2) (Mühlhaus, 1993; Papamichos

et al., 1990). The equivalent shear modulus of the

layered medium is taken to be

leffective ¼ lR: ð39Þ

The Cosserat couple modulus defined by Mühlhaus

and Vardoulakis (1986) and Mühlhaus (1990) as the

difference between Voigt and Reuss moduli in

Eq. (37) is related to the magnitude of the elastic

anisotropy (Chung & Buessem, 1967; Hill, 1952).

To gain some feeling on the values that the

Cosserat couple modulus lc can adopt, we use

Mühlhaus and Vardoulakis (1986) calculations and

we first show on Fig. 3a that the Voigt and the Reuss

averages provide the upper and lower bound of the

elastic modulus of a composite material, in general,

the real shear modulus of the composite lies between

the two curves (Watt et al., 1976). In particular, the

Voigt model is related to axial loading of the

composite and the Reuss model is related to trans-

verse loading of the composite. We use l2=l1 ¼ 0:5

for the calculations of Fig. 3a.

We also show in Fig. 3b the predicted values of

the Cosserat couple modulus normalized by the

values of the shear modulus in layer type 1, lc=l1

using Eq. (37), as a function of the material fraction

x1 and of the material properties l2=l1. Figure 3b

shows that large lc=l1 occur for small l2=l1 and

large volume fractions x1, and that, lc is always

smaller than the shear modulus l1. We do not expect

the shear modulus ratio l2=l1 to be lower than 0.5 at

most, meaning that lc=l1 is likely lower than 0.1.

We can additionally relate the homogenized

micropolar model to the classical transverse isotropic

model. Postma (1955) showed that a periodic struc-

ture consisting of alternating plane, parallel,

isotropic, and homogeneous elastic layers can be

replaced by a homogeneous, transversely isotropic

material as far as its gross-scale elastic behavior is

concerned (see Fig. 4). As previously mentioned,

Biot (1965) also showed that, if the layer thickness is

Figure 3
a Voigt and Reuss averages as a function of the volume fraction x1 for l2=l1 ¼ 0:5. b Values of the Cosserat couple modulus lc normalized

by the shear modulus l1 computed using Eq. (37) and c values of the Cosserat couple modulus lc normalized by the Reuss shear modulus lR
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negligibly small compared with a characteristic

structural length, a laminated periodic medium

behaves like a classical elastic continuum with

transverse isotropy. Similarly, Mühlhaus and Var-

doulakis (1986) and Mühlhaus (1990, 1993) showed

that the same layered periodic structure proposed by

Postma (1955) can be replaced by a homogeneous

micropolar model (see Fig. 4). The advantage of the

micropolar model is that it does not assume that the

layers (of layered periodic structure) are small

compared with the characteristic structural length

(Mühlhaus, 1990, 1993; Mühlhaus & Triantafyllidis,

1987; Mühlhaus & Vardoulakis, 1986; Papamichos

et al., 1990; Sulem & Vardoulakis, 1995).

4.3. Application to the Kaikōura event, 14th

of November 2016, Mw 7.8

The main motivation to apply micropolar theory

in the description of brittle fracture deformation

comes from the fact that continuum mechanics fails

to describe the average motion of the shear planes

that form the surfaces of the rotating blocks observed

in the field. This is because those planes must rotate

with the blocks rather than with the large-scale

continuum motion. In this section we show how to

compute the micropolar moment tensor presented in

Sect. 4.

One important example of observed block rotation

is in the North and South Islands of New Zealand

(Ron et al., 1984; Roberts, 1995; Walcott, 1984;

Wang et al., 2020). We select the Kaikōura event that

occurred on the 14th of November 2016, northeastern

South Island with moment magnitude (Mw) 7.8. The

Kaikōura earthquake was the most powerful event

experienced in the region in more than 150 years

(Hamling et al., 2017). Field observations, in con-

junction with interferometric synthetic aperture radar

(InSAR), Global Positioning System (GPS), and

seismology data, reveal the Kaikōura earthquake to

be one of the most complex earthquakes ever

recorded with modern instrumental techniques (Ham-

ling et al., 2017). Various studies show a clear pattern

of clockwise block rotation bounded by three nearly-

orthogonal surface ruptures produced by the Kai-

kōura earthquake (Hamling et al. 2017; Shi et al.,

2019; Wang et al., 2020). Crustal block rotation

played a significant role in releasing accumulated

strain, possibly preventing further rupture propaga-

tion along the Hope fault (Wang et al., 2020). This

suggests that coseismic rotation may help to accom-

modate plate boundary propagation.

The location of the Kaikōura earthquake and the

fault involved in the rupture are shown in Fig. 5. To

apply micropolar theory for the description of the

block rotations we must compute the asymmetric

micropolar moment tensor given in Eq. (34) using

information of the symmetric moment tensor

obtained by different seismological inversion

techniques.

The standard symmetric moment tensor Msym
ij

decomposition is given by the following expression

(Udias & Buforn, 2018)

M
sym
ij ¼ MISO

ij þMDC
ij þMCLVD

ij ; ð40Þ

where MISO refers to the isotropic part (a change in

(a) (b) (c)

Figure 4
Equivalences between three different types of continuum models. Postma (1955) have shown the equivalence between a homogeneous

transverse isotropic model and periodic structure consisting of two alternating plane, parallel, isotropic, and homogeneous elastic layers with

certain density q, velocity v and thickness h, which is in turn an equivalent micropolar models as shown by Mühlhaus (1993)
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volume like in an explosion), MDC refers to the

double-couple part and MCLVD refers to the com-

pensated linear vector dipole part. The physical

interpretation of MCLVD is a sudden change in the

shear modulus in a direction normal to the fault

plane, without changes in volume (Udias & Buforn,

2018). The double-couple part can be written as fol-

lows [see Eq. (10)]

MDC
ij ¼ lA

2
Duinj þ Dujni
� �

; ð41Þ

where Du is the slip vector and n the unit normal to

the fault plane and A is the area of rupture. We can re-

write the micropolar moment tensor Eq. (34) in terms

of the double-couple MDC
ij as follows

Mmicropolar
ij ¼ lA

2
Duinj þ Dujni
� �

þ lc
l

Duinj � Dujni
� �
 �

;

¼ MDC
ij þMskew

ij ;

ð42Þ

where we have called

Mskew
ij ¼ lRA

2

lc
lR

Duinj � Dujni
� �
 �

; ð43Þ

and we have replaced the average shear modulus l by

the Reuss average lR (Eq. 38)). Equation (42) means

that if we have information on the double-couple part

of the moment tensor MDC
ij , obtained for example

from the CMT Catalog (Ekström et al., 2012), and we

compute the ratio lc=l
R, we will have access to the

micropolar moment tensor. Note that this is because

we have access to the term lRA=2 directly from MDC
ij .

The slip vector Du and the unit vector normal to the

fault plane n can be computed from the eigenvectors

of the seismic moment tensor (Udias & Buforn, 2018;

Vavryčuk, 2005) as follows

n ¼ 1ffiffiffi
2

p ðpþ tÞ; Du ¼ 1ffiffiffi
2

p ðp� tÞ; ð44Þ

where p and t are the unit eigenvectors of the moment

tensor corresponding to the pressure (P) and tension

(T) axes.

We recall that the physical meaning of the

Cosserat couple modulus lc is a measure of seismic

anisotropy (see Sect. 4.2), thus the antisymmetric part

Figure 5
a Tectonic setting of the Marlborough Fault Zone (Langridge et al., 2016) showing all active faults (black lines) and the 2016 Kaikōura

earthquake (yellow star) ruptures (red curves). b Rotational field wTotal
ij (blue vectors) computed from Mskew ðlc=lR ¼ 0:5Þ compared to

observed GPS coseismic displacements (yellow vectors) (Hamling et al., 2017). It is important to note that while GPS data are given in

meters, we have not inverted for the amplitude of the rotational field wTotal
ij . The purpose is to show that the direction of the rotational field

obtained using micropolar theory is in agreement with GPS observations
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of the seismic moment tensor defined in Eq. (43) is

simply a contribution of a certain level of anisotropy

to the seismic moment tensor, which allows to model

coseismic block rotations.

We define the total asymmetric moment tensor

MTotal
ij given by combining symmetric (Eq. 40) and

anti-symmetric (Eq. 42) parts as follows

MTotal
ij ¼ MISO

ij þMCLVD
ij þMmicropolar

ij ;

¼ MISO
ij þMDC

ij þMCLVD
ij þMskew

ij ;

¼ Msym
ij þMskew

ij :

ð45Þ

Note, however, that we have assumed that the slip

direction of the micropolar and symmetric moment

tensors are the same. Twiss et al. (1991, 1993), Twiss

and Unruh (2007), Twiss (2009) and Lewis et al.

(2007) found the slip direction of micropolar theory

(Eq. 22) in several studies by inverting a set of event

data within a deforming area. This is, unfortunately,

impractical from a seismological point of view since

seismologists usually analyze, and invert for, seismic

focal mechanisms of individual events. For simplifi-

cation purposes, and for the aim of this study, we

assume that the unit vectors of the slip Du and fault

normal n, as well as the term lRA can be directly

obtained from the individual seismic moment tensors

found in the CMT catalog (Ekström et al., 2012). The

only parameter left is thus lc=l
R.

From Fig. 4c, it seems that for reasonable values

of l2=l1 we will always get lc=l
R lower than 1. We

emphasize, however, that our aim here is to find

differences in waveforms predicted by linear elastic

and micropolar theories. In order to obtain more

realistic values of the ratio lc=l
R, a proper inversion

process will be performed in future studies. For our

illustration purposes we will assume two different

values for the ratio lc=l
R ¼ ½0:1; 0:5�. The resulting

asymmetric moment tensors are given in Table 1.

To analyze differences in seismograms using the

linear elastic and micropolar theories we run numer-

ical simulations of global wave propagation using the

freely available package SPECFEM3D GLOBE

(Komatitsch & Tromp, 1999). The numerical package

solves the linear elastic equations of motion using the

spectral-element method (Komatitsch & Vilotte,

1998) and we take into account micropolar theory

in the rupture area only by implementing an asym-

metric moment tensor in the numerical code. Outside

the rupture area, only the conventional elastic theory

is considered.

Figure 6 shows the predicted T-component seis-

mograms, with a dominant period of 20 s, for the

different asymmetric moment tensors presented in

Table 1. We can observe differences for the seismo-

grams for symmetric and asymmetric moment tensors

in certain directions. Between the two cases of 90�

distance, some wave arrivals show large discrepan-

cies compared with the waveforms predicted by the

symmetric moment tensor. These differences are

directly related to the computed value of the ratio

lc=l
R, which serves as a weighting factor of the

asymmetric contribution to the total asymmetric

seismic moment tensor [see Eq. (42)].

Table 1

Micropolar seismic moment tensor of the Kaikōura earthquake

Moment tensor component Values in 1020 N m

Msym ¼ MDC þMCLVD þMISO 3:56 � 1:14 4:34

�1:14 1:69 � 2:04

4:34 � 2:04 � 5:25

2
4

3
5

Mskew ðlc=lR ¼ 0:1Þ
0:0 � 0:000426 0:450

0:000426 0:0 � 0:212

�0:450 0:212 0:0

2
4

3
5

Mskew ðlc=lR ¼ 0:5Þ
0:0 � 0:00213 2:25

0:00213 0:0 � 1:06

�2:25 1:06 0:0

2
4

3
5
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We recall that the purpose of this section is to

show that the micropolar moment tensor contribution

can have an observable effect on seismic waveforms

at teleseismic distances. Since we observe differences

in seismic waveforms predicted by symmetric and

asymmetric moment tensors, more accurate compu-

tations of the micropolar moment tensor can be

obtained in the future using full-waveform inversion

techniques (Fichtner et al., 2006; Tromp et al., 2005).

The strain deformation observed in the North and

South Islands can be computed using the following

expressions

eTotal
ij ¼ 1

2lDV

XN
x¼1

sym MTotal
ij

� �ðxÞ
;

wTotal
ij ¼ 1

2lcDV

XN
x¼1

skew MTotal
ij

� �ðxÞ
;

ð46Þ

where MTotal
ij denotes the total moment tensor defined

in Eq. (45) and the operator ðsym XÞij ¼ 1
2
ðXij þ XjiÞ

denotes the symmetric part of X and ðskew XÞij ¼
1
2
ðXij � XjiÞ denotes the skew-symmetric part of

X with X being a second-order tensor. We illustrate

Fig. 5b the retrieved rotational field from Eq. (46)

considering the Kaikōura event only. This is possible

because now the seismic moment tensor is asym-

metric, no rotational field is retrieved with

conventional symmetric moment tensors. This

Figure 6
Global numerical T-component seismograms predicted using the spectral-element code SPECFEM3D GLOBE (Komatitsch & Vilotte, 1998)

for the Kaikōura earthquake with a dominant period of 20 s computed using symmetric (Msym) and asymmetric moment tensors (Mskew). Two

different values of the ratio lc=l
R have been tested for the calculation of the micropolar moment tensor. The seismograms are presented at

various distances a–d 70�, e 60�, f 30�, g 90�) and directions
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rotational field can be in the future compared with

GPS data for instance.

Similar expressions to Eq. (46) have been found

by Legrand (2003) with the difference in the

rotational deformation wij divided by l instead of

the Cosserat couple modulus lc. Expressions given

by Legrand (2003) are found assuming Molnar’s

asymmetric moment tensor Eq. (19). Comparing the

inelastic deformation predicted by Kostrov in

Eq. (17) and the one predicted by micropolar theory

(46), we can observe that Kostrov’s is a case of

micropolar theory where the antisymmetric part of

the moment tensor has been neglected.

5. Discussion and Conclusions

Micropolar theory is today widely applied for the

description of localization in faults (Addessi, 2014;

Brandes & Tanner, 2020; Collins-Craft et al., 2020;

Rattez, 2017; Rattez et al., 2018a, b; Regenauer-Lieb

et al., 2013; Stefanou et al., 2017; Sulem et al., 2011;

Veveakis et al., 2012, 2013). In particular the recent

book from Žalohar (2018) as well as in the recent

works of Rattez et al. (2018a, b) and Collins-Craft

et al. (2020) a new approach of the physics of

earthquakes based on micropolar theory is developed.

In his model, blocks of rocks bounded by fault planes

can slide one along another and they can also rotate.

Deformation of the faulted rocks in the Earth’s crust

is described by translational and rotational move-

ments. The size of the rotating blocks defines the

Cosserat characteristic length of the crust (Žalohar,

2018). Additionally, fault reactivation is considered

to be controlled by a symmetric macro-strain tensor,

with large-scale deformation, and a skewed-sym-

metric relative micro-strain tensor, which describes a

local micro-rotations of blocks between faults

(Žalohar & Vrabec, 2010).

At the present time, the physical interpretation of

the Cosserat couple modulus lc has strongly pre-

vented the application of the dynamic equations of

micropolar theory in seismology (Abreu et al., 2017).

To overcome this problem we have employed

Muhlhaus’s theory (Mühlhaus, 1990, 1993; Mühlhaus

& Triantafyllidis, 1987; Mühlhaus & Vardoulakis,

1986; Papamichos et al., 1990; Sulem & Vardoulakis,

1995). This theory relates micropolar wave propa-

gation to conventional transverse isotropic media,

and it has the advantage that no long-wavelength

averaging of the elastic parameters of a layered

material must be taken into account like other theo-

ries used in the geophysical context Backus (1962).

The Cosserat couple modulus lc therefore is defined

as the difference between Voigt and Reuss moduli

[see Eq. (37)]. Using this interpretation, values of the

Cosserat couple modulus lc are simply a measure of

the actual elastic anisotropy observed in the field

(Hill, 1952).

Using Muhlhaus’s theory allows us to formulate a

micropolar seismic moment tensor that reconciles

discrepancies between previously introduced asym-

metric moment tensors by Molnar (1983), Twiss

et al. (1993) and Chapman and Leaney (2019). This

allows us to include coseismic clock rotations in the

description of the seismic wave propagation in a

simple and straightforward way (see Fig. 2). This is

done for the first time, and the calculation of the

asymmetric micropolar moment tensor only requires

the introduction of a single elastic constant: the

Cosserat couple modulus lc, which is again physi-

cally understood in terms of seismic anisotropy.

We have proposed a methodology to find the

micropolar elastic parameters required to compute

the asymmetric moment tensor by combining theories

proposed by Postma (1955) and Mühlhaus (1993) and

Papamichos et al. (1990). We have computed syn-

thetic global seismograms using the numerical

package SPECFEM3D GLOBE (Komatitsch &

Tromp, 1999) for the Kaikōura earthquake. In par-

ticular, different studies have shown that this

complex event has produced coseismic block rota-

tions (Hamling et al., 2017; Shi et al., 2019; Wang

et al., 2020) and we have included, for the first time,

these effects on the numerical predicted waveforms

by including a micropolar moment tensor. These

waveforms have shown differences compared to the

those obtained using a conventional symmetric

moment tensor. This opens a new avenue for invert-

ing for asymmetric moment tensors using seismic

waveforms as routinely done in seismological studies

for symmetric moment tensors (e.g. Dahm & Krüger,

2014). The advantage of including asymmetric

moment tensors in the description of seismic events is
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that we include better physics since we can model

coseismic block rotations in the moment tensor pro-

duced by single events. We recall that this cannot be

done with conventional symmetric moment tensors.

Following Chapman and Leaney (2019), we reiterate

that in an inverse problem it is better to include the

extra parameters (force and torque) and determine

whether they are necessary from the data rather than

eliminate them with a priori assumptions, in partic-

ular the asymmetric part of the seismic moment

tensor.

The future challenges are several. The adequate

visual representation of an asymmetric moment ten-

sor needs to be developed, which requires a further

study. The theory of full-waveform inversion for the

asymmetric moment tensor, as previously done for

the centroid moment tensor (Kim et al., 2011), must

also be developed. This will allow us to routinely

study crustal block rotations that are observed in

many places on Earth, for instance, the San Andreas

fault system in southern California (Nicholson et al.,

1986a, b; Schreurs, 1994), eastern Iran (Freund,

1970), New Zealand (Roberts, 1995; Ron et al., 1984;

Walcott, 1984; Wang et al., 2020), the Dead Sea

transform (Pichon & Gaulie, 1988; Ron & Eyal,

1985; Ron et al., 1990), the Mojave desert California

(Garfunkel, 1974; Schermer et al., 1996), the Sierran

microplate, SE California (Lewis et al., 2007) and the

Sumatra (McCaffrey et al., 2002; Prawirodirdjo

et al., 1997).
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Mühlhaus, H.-B., & Vardoulakis, I. (1986). Axially-symmetric

buckling of the surface of a laminated half space with Bendinh

stiffness. Mechanics of Materials, 5(2), 109–120.

Nagahama, H., & Teisseyre, R. (2000). Micromorphic continuum

and fractal properties of faults and earthquakes. In R. Teisseyre

& E. Majewski (Eds.), Earthquake Thermodynamics and Phase

Transformations in the Earth’s Interior (pp. 425–440). Academic

Press.

Nicholson, C., Seeber, L., Williams, P., & Sykes, L. R. (1986a).

Seismic evidence for conjugate slip and block rotation within the

San Andreas fault system, southern California. Tectonics, 5(4),

629–648.

Nicholson, C., Seeber, L., Williams, P., & Sykes, L. R. (1986b).

Seismicity and fault kinematics through the eastern transverse

ranges, california: Block rotation, strike-slip faulting and low-

angle thrusts. Journal of Geophysical Research: Solid Earth,

91(B5), 4891–4908.

Papamichos, E., Vardoulakis, I., & Mühlhaus, H.-B. (1990).
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